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Analysis of historical data has strongly shaped our understanding of the epidemiology of pandemic influenza and
informs analysis of current and future epidemics. Here, the authors analyzed previously unpublished documents
from a large household survey of the ‘‘Spanish’’ H1N1 influenza pandemic, conducted in 1918, for the first time
quantifying influenza transmissibility at the person-to-person level during that most lethal of pandemics. The
authors estimated a low probability of person-to-person transmission relative to comparable estimates from sea-
sonal influenza and other directly transmitted infections but similar to recent estimates from the 2009 H1N1
pandemic. The authors estimated a very low probability of asymptomatic infection, a previously unknown param-
eter for this pandemic, consistent with an unusually virulent virus. The authors estimated a high frequency of prior
immunity that they attributed to a largely unreported influenza epidemic in the spring of 1918 (or perhaps to cross-
reactive immunity). Extrapolating from this finding, the authors hypothesize that prior immunity partially protected
some populations from the worst of the fall pandemic and helps explain differences in attack rates between
populations. Together, these analyses demonstrate that the 1918 influenza virus, though highly virulent, was only
moderately transmissible and thus in a modern context would be considered controllable.

disease transmission, infectious; epidemics; history of medicine; influenza, human; Orthomyxoviridae; pandemics;
virulence

Abbreviations: CI, confidence interval; SITP, susceptible-infectious transmission probability.

The devastating impact of the 1918 ‘‘Spanish’’ influenza
pandemic on global mortality and morbidity has been well
documented (1). Analyses of historical data from that and
later pandemics have strongly shaped our understanding of
influenza epidemiology (2–12). Such analyses have been
used for calibrating efforts to prepare for future influenza
pandemics (4, 13–15) and provided prior information that
informed the response to the 2009 pandemic (16).

In the current study, we gained new insight into the trans-
mission of pandemic influenza from previously unpublished
data from a survey of 7,287 Maryland households conducted
in the fall of 1918. The survey was led by Wade Hampton
Frost, a pioneer of both field and theoretical epidemiology
(17, 18), who led the US Public Health Service’s investiga-
tion into the 1918 pandemic (17, 19) and developed one

of the first mathematical models of infectious disease trans-
mission (18). We extended Frost’s posthumously published
mathematical model of disease transmission in households
(18) and fitted a wide range of model variants to the data
from 1918. This analysis yielded new insights into the
epidemiology of the 1918 pandemic: We found that the
epidemic was characterized by low rates of transmission
within households (susceptible-infectious transmission
probability (SITP) < 20%), that there was considerable
interperson variability in infectiousness, and that up to 22%
of the population of Baltimore may have been immune be-
fore the fall wave of influenza. In addition, we inferred that
there appeared to have been very few (<6%) asymptomatic
infections. Here we place our results into context by com-
paring them with seasonal influenza (20, 21) and a recent
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study of the 2009 pandemic (22). Our results demonstrate that
influenza is consistently only moderately transmissible and
thus potentially controllable. They also demonstrate the value
of simple large-scale household surveys, such as Frost and
Sydenstricker’s 1918 study (19), for disaggregating different
clinically and epidemiologically relevant components of
influenza transmission during the first months of a pandemic.

The most important parameter in epidemic control is
transmissibility, which is often (but, as we will see, not
always) measured using the basic reproduction number R0,
the number of secondary cases that 1 typical patient infects
in an entirely susceptible population. Estimates of R0 for
pandemic influenza range from 1.5 to 2.5, indicating that
33%–60% of transmission (based on the conventional for-
mula, (R0 � 1)/R0) would need to be blocked to control a
pandemic completely, and also that lesser interventions would
have a substantive mitigating impact (2, 4–6, 10, 11, 13–16).

While published estimates of R0 have mostly been con-
sistent, they share frailties. Time series of deaths (or, in
some cases, morbidity reports) are analyzed to determine
the rate of spread of the virus in the population. The first
frailty is that estimates of R0 are highly dependent on the
generation time distribution (23), the distribution of times
between subsequent infection events. There are no good
estimates for the generation time of influenza in 1918, and
there are only limited data for interpandemic influenza (23)
and the 2009 H1N1 pandemic (22, 24). Second, methods
for estimating R0 have mostly been applied to highly aggre-
gated data from large populations. Where outbreaks in
small, isolated communities (e.g., military camps or ships)
have been analyzed, estimates of R0 have been more vari-
able and typically higher (5, 6, 24, 25). Third, estimates of
R0 for the 1918 pandemic have been reported from places
where nonpharmaceutical interventions were applied with
some effect (7–9). Finally, prior immunity should be ac-
counted for. The fall epidemic of 1918 was preceded in
some locations by earlier waves of transmission that may
have generated immunity (3, 11, 12, 26, 27). Similarly, prior
immunity played an important role in mitigating the 2009
H1N1 pandemic (28). These frailties imply that the real
transmissibility of pandemic influenza viruses could be
higher than expected from published estimates of R0, and
thus there is a need to obtain more robust estimates.

MATERIALS AND METHODS

Additional details on our methods, data, sensitivity analyses,
and time-series analysis are given in the Web Appendix, which
is posted on the Journal’s Web site (http://aje.oxfordjournals.
org/); here we report enough information to ensure reproduc-
ibility.

The study

In 1919, Frost and Sydenstricker (19) published results
from a house-to-house canvass carried out in Baltimore,
Maryland, between November 20, 1918, and December
15, 1918, immediately after the first peak of the lethal fall
wave of the pandemic. We analyzed previously unpublished
documents held by the Chesney Medical Archives of Johns

Hopkins University (reproduced in the Web Appendix). Part
of the data are summarized in Figure 1 and consist of con-
tingency tables of final outcomes—that is, of the 7,140
households surveyed in Baltimore, the number k(m,n) of
households of size n reporting m cases.

Nonmathematical description of methods

For the sake of clarity, we briefly describe our methods in
nonmathematical form. To model transmission in house-
holds, we used (and extended) a formalism developed by
Wade Hampton Frost and Lowell Read, which predicts the
progression of an epidemic in discrete generations of infec-
tion, with random infection events specified by predeter-
mined probabilities (18). Once infected, individuals are
considered infectious for 1 time step (the generation) and
then recover to full immunity. Closed mathematical forms
can be derived for the final size distribution of small epi-
demics (29, 30). The model has been shown, for this task
of predicting epidemic sizes, to be equivalent to much more
realistic models formulated in continuous time (31). It is
thus ideally suited for analyzing household outbreak data.

The basic variant of the model has 2 parameters: the
escape probability (Q), the probability that an individual is
not ‘‘exposed’’ to infection outside the household, estimated
cumulatively over the whole course of the epidemic; and
the SITP. ‘‘Exposure’’ refers to events that result in infection
if and only if the individual is susceptible at that point in
time. The SITP quantifies infectiousness within the house-
hold, and it is defined for each infectious person in relation
to each other susceptible individual in the household. The
SITP is the probability of transmission occurring between
each susceptible-infectious pair of individuals, measured
over the whole period of infectiousness of the infectious
individual and in the case when the susceptible individual
is not infected by a third party during that period.

The basic model is extended to include various other ef-
fects, including variable infectiousness (including depen-
dence on household size), asymptomatic infection (in both
infectious and uninfectious states), systematic misreporting,
prior immunity, and inclusion of classes of persons with
higher infectiousness (e.g., children). By varying assump-
tions from this list, many different models are obtained. Each
model’s ability to explain the data is assessed by maximizing
the likelihood, defined as the probability that the model could
have generated the data. The different models are compared
with each other using an information theoretical method,
in which (roughly speaking) the likelihood of the model is
discounted by the number of parameters in the model, thus
achieving the best-fitting, most parsimonious model.

To complement this analysis of household data, a time-
series analysis is performed on the time series of incident
disease cases reported by Frost and Sydenstricker (19), with
the aim of estimating individual and household reproduction
numbers over time. These reproduction numbers are defined
as the numbers of individuals and households infected by
each infectious individual and household, respectively. The
method is based on estimating, on each day, the total num-
ber of infectious persons and the total number of newly
infected persons and defining the reproduction number as
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the ratio of these 2 quantities (32). Finally, using simulations
that integrate all of the estimates from the household and
time-series analyses, we estimated the effect of nonpharma-
ceutical interventions and prior immunity in reducing the
final attack rate in the city.

Mathematical models

We initially model these data with a generalized susceptible-
infected-removed (SIR) epidemic model (29) that predicts the
proportion Fn;s0

m

�
Q
�

of households of size n with s0 initial
susceptible individuals and reporting m cases, found by solving
the system of equations�

s0

k

�
¼
Xk

m¼0

�
s0 � m

k � m

�
F n;s0

m ½Q�
�

�
/nðs0 � kÞmQs0�k

�
for k ¼ 0; . . . ; s0: ð1Þ

Q is the probability of each individual’s not being infected
from outside the household (a.k.a. the escape probability).
/n(x) is the generating function for the distribution of in-

fection rates within a household of size n. In the basic Reed-
Frost model, this distribution is concentrated at a fixed in-
fectiousness, b, while in our extended model it is a gamma
distribution with mean b/na and shape k. Our extended
model also allows for prior epidemic(s) generating cross-
protective immunity with total escape probability Qprior and
similar in-house transmission parameters. Infection can be
asymptomatic and infectious with probability pasx, asymp-
tomatic and uninfectious with probability ppr, or symptom-
atic. Allowing for these additional effects, the distribution
of final outcomes, denoted T(m,n) and to be compared with
the data k(m,n), is given by

Tðm;nÞ ¼
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Bin( ) is the standard binomial distribution. The basic model
has 2 parameters (b and Q), while the extended model has
7 (b, Q, a, k, Qprior, pasx, and ppr).
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Figure 1. A) Sizes of the households included in a canvass of influenza cases in Baltimore, Maryland, 1918. We analyzed data from 6,753
households with a mean of 4.26 inhabitants per household. B) Distribution of the 7,140 recorded influenza cases within these households. For each
household size, the bars show the proportion of households recording 0, 1, 2, or more cases, highlighted in colors ranging from cold (white/blue) to
warm (red/black). The yellow diamonds show the attack rate for each household size (the overall attack rate was 24.7%), while the open triangles
show the secondary attack rate (i.e., the attack rate for remaining persons after the introduction of 1 infected case); the overall mean was 32.5%.
Data from households containing more than 12 people were sparse and are not shown. C) Graph equivalent to that in part B, showing the best-
fitting basic Reed-Frost model. D) Predictions of the best-fitting extended model (which included the effects of prior immunity, variable infectious-
ness, and transmission rates scaling with household size).
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Statistical analysis

The models are fitted by finding the parameter values that
maximize the likelihood, or alternatively minimize the deviance

Dev ¼ 2
X

fm;ng2X
kðm;nÞ

�
ln
�

kðm;nÞ

.Xn

j¼0

kðj;nÞ

	

� ln
�

Tðm;nÞ

		
: ð3Þ

X is the set of all values of m and n such that k(m,n) > 0.
Models of intermediate complexity are obtained by

considering all combinations of parameter limits which
partially reduce the extended model to the simple one, that
is, k / þ N, a ¼ 0, Qprior ¼ 1, ppr ¼ 0, and pasx ¼ 0.
Altogether, the 32 resulting models are compared using the
modified Akaike’s Information Criterion (AIC):

AICc ¼ min


Dev

�
þ 2


no: of parameters

�
�

no: of df

no: of df � no: of parameters � 1

�
þ constant: ð4Þ

More model variants, as well as details of how the method
was adapted to different data sets where it is known that
there was exactly 1 infection external to the household,
are described in the Web Appendix.

Time-series analysis

To complement our analysis of transmission within
households, a time-series analysis was used to estimate
time-varying reproduction numbers from the incidence of
disease reported in the Frost and Sydenstricker study (19).
The reproduction number is defined as the number of in-
dividuals (or households) infected, on average, by each
infected individual (or household) over his or her (its) entire
infectious period. It is determined from the time series
of incident cases and the generation time distribution (the
distribution of times between the infection of an index case
and the times of infection of secondary cases). The method
was adapted from Fraser (32). A likelihood was constructed
by assuming that incidence was generated by a stochastic
epidemic renewal process,

It: Poisson

 
Rt

Xt

s¼1

It�sxs

!
; ð5Þ

where It is the incidence time series, Rt is the reproduction
number, and xs is the (discrete) generation time distribution.
The likelihood is then given by

l
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which is maximized with respect to the reproduction num-
bers Rt. For the estimates used in the main text, Rt was

considered piecewise constant over 10-day intervals, while
for the estimates presented in Table 1, Rt was assumed to
be constant before and after October 10. Different standard
choices for the generation time distribution were used (as
described in the Web Appendix). The household reproduc-
tion number, the number of households infected by each
household, was estimated by substituting the simulated
household generation time distribution into equation 6, fol-
lowing the scheme defined by Fraser (32).

RESULTS

The Frost and Sydenstricker study

Household studies of influenza are ideally suited for
deriving disaggregated estimates of transmissibility which
complement population-based estimates of R0 (21, 29, 30).
A key measure of transmissibility in households is the
SITP, the probability that each infectious individual will in-
fect each susceptible individual in a household during his or
her infectious period. We begin by focusing on previously
unpublished documents from the Wade Hampton Frost col-
lection of the Chesney Medical Archives at Johns Hopkins
University, which report the final outbreak size for households
surveyed in a canvass conducted by Frost and Sydenstricker’s
team (19) from November 20, 1918, to December 15, 1918.
While the time series of cases has been analyzed (5, 10),
detailed records collected during this study have not been
previously published. The newly rediscovered data from
Baltimore are summarized in Figure 1, parts A and B.
More detail, as well as data from the smaller nearby city
of Frederick, is provided in the Web Appendix.

Basic Reed-Frost model

To analyze these data, we started with the basic Reed-
Frost model (18) of transmission in households (29, 30).
This model assumes that an epidemic progresses through
discrete generations of infection, in which each susceptible
individual has a probability of being infected by each in-
fectious individual in the household (the SITP (33)). After
each generation, all currently infectious persons progress to
immunity, and all newly infected persons progress to infec-
tiousness. The ordering of events and the temporal variation
in individual infectiousness are irrelevant for predicting the
final number of persons infected (31). For the Baltimore
data, the maximum likelihood estimate for the SITP was
14% (95% confidence interval (CI): 13, 15).

An extended model

The basic Reed-Frost model is a poor fit to these data
(Figure 1C and Web Appendix). We therefore extended
the basic model to include other known or assumed features
of influenza transmission, such as infectiousness that varies
between individuals (34), contact rates that vary as a func-
tion of household size (4, 21), and asymptomatic infection
(as either an infectious state or a noninfectious state) (35).
We also allowed for prior immunity, which could be gener-
ated by the spring 1918 ‘‘herald’’ waves of infection (3, 11)
or by cross-immunity arising from other sources (27). We
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used an information theoretical framework to select the
best-fitting model variant; the fit for that model is shown in
Figure 1D. All methods are described in the Web Appendix.
The mean SITP was estimated to be 18% (95% CI: 15, 20)
(Figure 2A; see Web Appendix for details of how this was
computed from model parameters). Though it is difficult to
compare different studies because of different case defini-
tions (clinical vs. serologic), the estimated transmission
probability is lower than similar estimates for seasonal in-
fluenza (Figure 2A), thus demonstrating that the influenza
virus of 1918 was characterized by low person-to-person
infectiousness within affected households. Conversely, trans-
mission probabilities were generally higher in 1918 than
for the 2009 H1N1 pandemic.

Variable infectivity

We detected interperson variability in infectiousness. The
parameter k in our model (see Web Appendix) is directly
equivalent to the dispersion parameter introduced in an
earlier study of variability in infectiousness for multiple
diseases (34). To date, published microsimulations of pan-
demic influenza have used various assumptions regarding
interperson variability in biologic infectiousness, without
much empirical support (4, 13–15). The main effects of
biologic heterogeneity in infectiousness operate in the
early establishment phase of an epidemic (34) and in chang-

ing the predicted impact of contact tracing (36). If the source
of biologic heterogeneity could be identified, so that more
infectious individuals could be preferentially targeted for
isolation and quarantine, then gains in epidemic mitigation
might be substantial (34). Our estimate of k ¼ 0.94 (Table 1)
would imply that the most infectious 20% of the population
would be responsible for 50% of infections in a homoge-
nously mixing population (Figure 2B) and somewhat less
when household structure is accounted for; this is an inter-
mediate level of heterogeneity (Figure 2C). We were unable
to determine whether age was an important source of this
heterogeneity (see Web Appendix).

Preexisting immunity

Our analysis suggested a large role for preexisting immu-
nity (Figure 2D), with 22.2% of the population estimated
to have been immune prior to the lethal fall wave (Table 1).
This is consistent with earlier studies of the 1918 pandemic
in Scandinavia, which described high morbidity but a low
mortality epidemic wave occurring during the spring
or summer of 1918 (3, 11) and gave direct evidence of
cross-protection (12). However, unlike the situation in
Scandinavia (11), there is little direct evidence of a substan-
tial spring wave of influenza in the United States outside
of Army camps (12), though a minor mortality peak was
observed in New York (3). If our estimates of the degree

Table 1. Estimates of Key Quantities Describing Influenza Transmission in Baltimore, Maryland, During the 1918

Pandemic, as Inferred From the Best-Fitting Model

Quantity
Value or Estimate

No. 95% CI % 95% CI

No. of households sampled 6,753

No. of people included in sample 28,977

No. of people reported as cases 7,140

Overall attack rate for the fall wave 24.6

Proportion of households reporting at least 1 case 47.4

Secondary attack rate within affected households 32.5

Proportion of cases which are asymptomatic and uninfectious 0 0, 6

Proportion of cases which are asymptomatic and infectious 0 0, 3

Dispersion parameter for individual variability in infectiousness
(k; lower values correspond to more variability)

0.94 0.59, 1.72

Scaling parameter for infectiousness as a function of household
size (a, where in-house infectiousness decreases as 1/na)

0.35 0.22, 0.49

Effective reproduction no. (September 1–October 10), R 1.38 1.33, 1.42

Basic reproduction no., R0 1.77 1.61, 1.95

Basic household reproduction no., R0
* 2.47 2.25, 2.73

Proportion of the population immune prior to September 1 22.2 17.1, 27.0

Reduction in reproduction no. on October 10 42.1 38.2, 45.7

Attack rate for a hypothetical scenario in which:

There was no prior immunity 35.8

There was no reduction in R on October 10 44.9

There was neither immunity nor reduction in R 74.2

Abbreviation: CI, confidence interval.
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of prior immunity are accurate, then it had a major impact.
We estimate that the 1918 fall wave had an attack rate
of 22%, but in the absence of prior immunity, we predict
that this might have risen to approximately 36% (Table 1).
Interestingly, we were able to test these predictions using
documents from the study of Frederick, Maryland, where
we inferred very low levels of prior immunity and the ob-
served attack rate was indeed substantially higher than in
Baltimore, at 32.1% (see Web Appendix). This suggests that
levels of prior immunity generated by earlier infections
could have been very variable in different communities,
and that this could partly explain variable attack rates in
different localities (and very high attack rates experienced
in some remote communities) (7, 8).

Asymptomatic infections

Our analysis of multiple model variants consistently
indicated a very low proportion of asymptomatic infection,
whether infectious or not (see Table 1 and Web Table 3
in the Web Appendix), with the best-fit value being 0%.
Our estimate of a lack of asymptomatic infection can be
imputed directly from the data with a much simpler anal-
ysis, since a fair proportion of even large households re-
port all members experiencing symptomatic influenza
(Figure 1). A simple binomial calculation shows that this
outcome would be very unlikely with any appreciable fre-
quency of asymptomatic infection. Of course, models could
be devised to reconcile asymptomatic infections with this

Figure 2. A) Susceptible-infectious transmission probability for the 1918 influenza pandemic, by household size. In addition to results from the
Baltimore, Maryland, study, which are shown in red (squares, nonparametric; line, parametric), results are also shown for a study of 2009 H1N1
pandemic influenza (22) (orange circles) and 2 further studies of seasonal influenza transmission (green diamonds, Epigrippe Study (21); blue
triangles, Tecumseh Study (20)). The studies used different methods, so estimates are not exactly comparable; the comparison with the Tecumseh
Study (20) may be the most valid, since we analyzed serologically confirmed infections in initially seronegative households. The 2 other studies
were also comparable, since they were based on follow-up of symptomatic cases after an index case (21, 22). All of the studies show evidence of
declining susceptible-infectious transmission probability in larger households, but this is less pronounced for the 1918 Frost and Sydenstricker
study (19) than for the others, perhaps because of secular changes in the nature of the household (see Web Appendix). Bars, 95% confidence
interval. B) Characterization of a measure of interperson variability in infectiousness by means of a plot of the proportion of transmission attributable
to the X% most infectious individuals. The brown line corresponds to homogeneity (when all infected persons have identical infectiousness); the
lower red line shows the best-fitting model. The upper red line corresponds to the estimate from a different but plausible model with misreporting
(see Web Appendix), and thus the red shaded area corresponds to estimates with model uncertainty. The curves were compared with a previous
analysis of several infectious diseases (34): The blue line shows the most variable of the infectious diseases studied (severe acute respiratory
syndrome (SARS)) and the green line the least (pneumonic plague). C) Predicted number of secondary cases attributable to within-household
transmission (blue bars) and between-household transmission (orange bars) for an index case living in a household of size 5, in the absence of prior
immunity or public health interventions. An index case infects an average of 0.69 persons in his or her household and 1.22 persons outside of it. The
distributions are highly overdispersed. D) Distribution of immune individuals within households of different sizes predicted by the best-fitting model, using
the same color scheme as in Figure 1. The yellow diamonds show the average proportion of immune individuals.
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pattern (such as dose-dependent amplification in heavily
affected households or shared genetic susceptibility), but
they would be far less parsimonious than the models used
here.

Potential misreporting

The results presented above assume full reporting of
cases in the survey. To test the importance of this, we con-
sidered the impact of possible systematic misreporting. We
assumed, plausibly, that a fraction of households falsely
reported zero cases, perhaps to evade further questioning.
This model could also be used to describe a situation
wherein a proportion of households successfully isolated
themselves entirely during the epidemic. This model also
fitted the data well (indeed, slightly better than the model
with prior immunity (see Web Table 3)). The best-fit pa-
rameters for this model are listed in Web Table 7 and are
compared with the main model; the estimated secondary
attack rate was very similar, but the interperson variability
in infectiousness was larger (Figure 2B). The model did
not include prior immunity; it proved impossible to inde-
pendently estimate both prior immunity and misreporting,
indicating that these phenomena have a similar impact
on the predicted distribution of cases in households. Thus,
the estimate of the degree of prior immunity presented
above could be considered an upper bound if a significant
fraction of households falsely reported no cases. Under-
reporting of infected individuals within households is
equivalent (in the model) to asymptomatic infectious
cases. Our analysis suggested a very low rate for such
underreporting.

Comparison with seasonal influenza and the 2009 H1N1
influenza pandemic

We also fitted our model to published data on seasonal
influenza and on the recent H1N1 pandemic (Figure 2A).
For the pandemic studies, the overall SITP was estimated
at 17.6% (95% CI: 15.2, 20.1) for the 1918 pandemic
and 11.9% (95% CI: 7.1, 18.2) for the 2009 pandemic
(22). In comparison, for the studies of seasonal influenza,
it was 32.0% (95% CI: 15.2, 56.0) (Tecumseh Study (20))
and 34.0% (95% CI: 26.7, 39.4) (Epigrippe Study (21)).
While some caution is needed in drawing strong conclu-
sions because of differences in the study populations (the
seasonal studies focused on households with children),
duration of follow-up, and what was being measured (the
Tecumseh Study investigators recorded seroconversion),
this comparison suggests lower person-to-person trans-
mission in both pandemics than in seasonal influenza and
confirms the early finding that 2009 H1N1 influenza was
particularly modestly transmissible (16). In addition, only
Frost and Sydenstricker’s 1918 study had a sufficiently large
sample size to permit estimation of anything beyond
the most basic transmission parameters. Our analysis of
the 2009 data could not identify parameters relating to
asymptomatic infection or prior immunity, both likely to
be important factors; a sensitivity analysis of these param-
eters is presented in the Web Appendix.

Population dynamic analysis

To complement our analysis of household transmis-
sibility, we also estimated the effective reproduction num-
ber over different periods of the epidemic in Baltimore
(Figure 3). The reproduction number estimated over the first
period of epidemic growth in the fall of 1918 in Baltimore
was 1.38 (Table 1); extrapolating this to a population with-
out immunity gives an estimate of R0 ¼ 1.77. To account
for the impact of household structure, we also calculated
the basic household reproduction number R0

*, the number
of households infected by each household in the absence of
immunity (32), estimated to be 2.47. The dependence of
these estimates on the generation time distribution is
explored in the Web Appendix.

The final attack rate for the fall wave (24.6%) was lower
than would be predicted for the effective R of 1.38 (which,
even allowing for the effect of prior immunity, is 38.3%
(95% CI: 33.1, 43.8)), suggesting that most of the reduction
in transmission that occurred around October 10 (Figure 3)
was due to the effect of nonpharmaceutical interventions
rather than depletion of the pool of susceptible contacts,
which is consistent with earlier analyses (7–9) but subject
to the caveat that assortative mixing by age group can also
skew the relation between R0 and final attack rates. We can
thus estimate the reduction in transmission that must have
arisen around October 10 (Table 1). The precision with
which we can estimate the date of reduction in transmission
is limited by our method (in which the reproduction number
is estimated over 10-day time periods (Figure 3)). However,
and validating the approach taken here, this date is con-
sistent with contemporary news reports citing a ramp-up
in social distancing measures, starting on October 7 with
school closures, followed by daily updated closures of meet-
ing spaces, and culminating on October 11 with the closure
of churches (7–9). We estimate that these measures reduced
transmission by 42% and reduced the attack rate from 45%
to 25% (Table 1); more timely and sustained responses would
have had a greater effect in mitigating the epidemic (7–9).

DISCUSSION

The size of Frost and Sydenstricker’s study (19) allowed
us to discriminate between hypotheses regarding influenza
transmission in 1918, highlighting the power of a simple but
effective study design augmented by modern statistical
methods for gaining insight into the epidemiology of an
infectious disease. Of the 4 household studies analyzed here,
only Frost and Sydenstricker’s was large enough to estimate
multiple parameters reliably. A particular strength of our
study was that we fitted many different models to the data
and used likelihood-based information theoretical methods
to choose the most appropriate of the models we proposed;
this can only be done reliably with large data sets. Of course,
one cannot rule out the possibility of having missed even
better models, and indeed some models we developed in a
second iteration of analysis described the data better than
the first set of models (without changing our main conclu-
sions; see Web Appendix). Such is the process of iterative
model development.
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While features such as asymptomatic infection and prior
immunity can now be assessed more reliably with serologic
surveys, recent experience with the 2009 H1N1 pandemic
shows that while serologic surveys are invaluable, they can
also be slow and difficult to perform in the early stages of
a pandemic (28). We suggest that rapidly performed large-
scale household studies could generate many insights even
during the first few months of a newly emergent epidemic.

At best, inference from 1918 will only ever be as reliable
as the data themselves, which were collected over 90 years
ago in the absence of any diagnostic test (or even correct
knowledge of the etiologic agent). Nonetheless, the scale
of the epidemic and the reported exceptional care taken
by the chief investigators (17) give us some confidence in
the data. The lack of asymptomatic infections and the low
and consistent estimates of the SITP and of R0, even when
adjusting for the effect of prior immunity, all suggest that
current plans for pandemic preparedness (4, 13–15) might
overestimate the difficulty with which a highly pathogenic
pandemic virus could be controlled. Particularly compelling
in the light of these findings is the case for household-based
isolation, quarantine, reactive household-wide prophylaxis
(13, 37, 38), and perhaps even contact tracing. The recent
H1N1 pandemic presented a particular challenge for control
because of very low virulence (39), which made case-finding
and diagnosis difficult and meant that disruptive nonpharma-
ceutical interventions would have been more costly than the
epidemic they would have aimed to mitigate. Our findings

of low transmissibility for 1918 pandemic influenza suggest
that a severe pandemic caused by a novel virulent influenza
virus could be comparatively easy to mitigate or even con-
trol in a modern setting if population compliance were high.
Findings of higher transmissibility for seasonal influenza
than for pandemics shed some light on the slow tempo
and magnitude of the evolution of transmissibility that
may take place in the years following a pandemic.
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