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SUMMARY

We recently proposed two novel criteria to assess the usefulness of risk prediction models for public health
applications. The proportion of cases followed, PCF(p), is the proportion of individuals who will develop
disease who are included in the proportion p of individuals in the population at highest risk. The proportion
needed to follow-up, PNF(q), is the proportion of the general population at highest risk that one needs to
follow in order that a proportion q of those destined to become cases will be followed (Pfeiffer, R. M. and
Gail, M. H., 2011. Two criteria for evaluating risk prediction models. Biometrics 67, 1057–1065). Here,
we extend these criteria in two ways. First, we introduce two new criteria by integrating PCF and PNF
over a range of values of q or p to obtain iPCF, the integrated PCF, and iPNF, the integrated PNF. A key
assumption in the previous work was that the risk model is well calibrated. This assumption also underlies
novel estimates of iPCF and iPNF based on observed risks in a population alone. The second extension is
to propose and study estimates of PCF, PNF, iPCF, and iPNF that are consistent even if the risk models are
not well calibrated. These new estimates are obtained from case–control data when the outcome prevalence
in the population is known, and from cohort data, with baseline covariates and observed health outcomes.
We study the efficiency of the various estimates and propose and compare tests for comparing two risk
models, both of which were evaluated in the same validation data.

Keywords: Area under the receiver operator characteristics curve (ROC); AUC; Discrimination; Discriminatory accu-
racy; Risk models; Study design.

1. INTRODUCTION

Statistical models that predict disease incidence (Freedman and others, 2009), disease recurrence
(Stephenson and others, 2006), mortality following disease onset (Albertsen and others, 2005), or
response to treatment (O’Brien and others, 2011) are used in clinical practice and decision making, for
example, to inform choices for a prevention or treatment with serious side effects. These models also have
public health applications. They can be used to target preventive interventions to those with high enough
risks to justify an intervention that has adverse effects and to identify high-risk individuals for intensive
screening for early detection of disease.

We recently proposed two measures of concentration of risk that are directly relevant to public health
decisions. We defined the “proportion of cases followed”, PCF(p), as the proportion of cases that would
be followed in a program that followed the proportion p of the population at highest risk. We also proposed
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a complementary criterion, the “proportion needed to follow-up”, PNF(q), namely the proportion of the
general population at highest risk that one needs to follow in order that a proportion q of those destined
to become cases will be followed. We also derived tests for comparing PCF and PNF for two risk models
evaluated in the same validation data (Pfeiffer and Gail, 2011).

Here, we extend these criteria in two ways. In the previous work, p or q were prespecified and fixed
numbers. First, we introduce two new criteria by integrating PCF and PNF over a range of values of p or q
to obtain iPCF, the integrated PCF, and iPNF, the integrated PNF (Section 3). When integrating over the
whole range of p and when the disease is rare, iPCF is similar to the area under the curve (AUC), the area
under the receiver operating characteristic (ROC) curve (Pepe, 2003, p. 67). While the AUC is based on
comparing ranks of the estimated risks in cases to those in non-cases, iPCF compares the risk in cases to
risks in the whole population, which is a mixture of cases and non-cases. The AUC is ideal for measuring
the discrimination accuracy in diagnostic applications, where one wants to distinguish cases from controls.
For screening a general population, however, iPCF is more useful because it measures how different risks
are in those destined to develop disease (or to have prevalent disease) from the population to be screened.

A key assumption in Pfeiffer and Gail (2011) was that the risk model is well calibrated. This assump-
tion is also needed for novel estimates of iPCF and iPNF based on observed risks in a population alone
(Section 4.1). The second extension is to propose and study estimates of PCF, PNF, iPCF, and iPNF
that are consistent even if the risk model is not well calibrated. These new estimates are obtained from
case–control data when the outcome prevalence in the population is known, and from cohort data, with
baseline covariates and observed health outcomes (Sections 4.2 and 4.3). We propose testing differences
between two risk models evaluated on the same dataset using iPCF and iPNF (Section 5). We then study
the efficiency of the various estimates for these criteria and compare their performance for testing differ-
ences between two risk models evaluated on the same dataset in simulations (Section 6). A data example
is presented in Section 7 before we close with a discussion (Section 8).

2. NOTATION AND BACKGROUND

We are interested in predicting the probability of a binary event, Y = 1 or Y = 0. This event could denote
the incidence of a particular disease over a given time period, for example, 5 years, or of dying before the
end of a defined time interval after disease onset. The event could also refer to the response to a treatment
in a population with a particular disease. Given a set of baseline predictors X , a risk prediction model
R(x)= P(Y = 1 | X = x) is a mapping from the set � of possible values of X to [0, 1]. In a specific
population, the distribution of the covariates FX (x) induces the distribution F of risk R that has support
on [0, 1] through

F(r)= P(R � r)=
∫

{x :R(x)�r}
dFX (x). (2.1)

We let G be the distribution of risk in those who experience the event (cases, Y = 1),

G(r)= P(R � r | Y = 1),

and K be the distribution of risk in non-cases, or controls (Y = 0),

K (r)= P(R � r | Y = 0).

We denote risk realizations from F by r F , and risk realizations from cases and non-cases by r G and r K ,
respectively.
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3. CRITERIA TO ASSESS MODEL PERFORMANCE AND THEIR ESTIMATION

3.1 Review of the definition of PCF and PNF

We recently proposed and studied two criteria to assess the usefulness of models that predict the risk of
disease incidence for screening and prevention, or the usefulness of prognostic models for management
following disease diagnosis (Pfeiffer and Gail, 2011). The first criterion, the proportion of cases followed,
PCF(p) is the proportion of cases who are included in the proportion p of individuals in the population at
highest risk, given by

PCF(p)= 1 − G ◦ F−1(1 − p)= 1 − G(φ1−p), (3.1)

where G ◦ F(x)= G{F(x)} is the composition of G with F and φ1−p = F−1(1 − p) denotes the 1 − pth
quantile of F . The second criterion is the proportion needed to follow-up PNF(q) namely the proportion
of the general population at highest risk that one needs to follow in order that a proportion q of cases will
be followed, defined as

PNF(q)= 1 − F ◦ G−1(1 − q)= 1 − F(γ1−q), (3.2)

where γ1−q = G−1(1 − q) denotes the 1 − qth quantile of the distribution of risk in cases, G.
If risk is concentrated in a small proportion of the population at highest risk, then PCF(p) will be high,

even for small p and PNF(q) will be small, even for large q.

3.2 New criteria: iPCF and iPNF

While PCF(p) and PNF(q) are useful criteria for model evaluation, they require the specification of thresh-
olds p and q. To lessen the dependency of these criteria on the given thresholds, we define the iPCF as

iPCF(p∗)=
∫ 1

p∗
PCF(p) dW (p)= 1 − p∗ −

∫ 1−p∗

0
G(φp) dW (p), (3.3)

where W is a probability measure on the unit interval. The iPNF is

iPNF(q∗)=
∫ 1

q∗
PNF(q) dW (q)= 1 − q∗ −

∫ 1−q∗

0
F(γq) dW (q). (3.4)

In what follows, we assume dW (p)= dp. In that case, using a change of variables, we obtain

iPCF(p∗)= 1 − p∗ −
∫ φ1−p∗

0
G(u) dF(u)= 1 − p∗ − 1

1 − p∗ P{RG � RF | RF ∈ (0, φ1−p∗)} (3.5)

and

iPNF(q∗)= 1 − q∗ −
∫ γ1−q∗

0
F(u) dG(u)= 1 − q∗ − 1

1 − q∗ P{RF � RG | RG ∈ (0, γ1−q∗)}. (3.6)

For the special case of p∗ = q∗ = 0, iPCF(0)= 1 − P(RG � RF )= P(RF < RG) and iPNF(0)= 1 −
P(RF � RG)= P(RF > RG). We note that iPCF(0) is similar to the AUC, which can also be expressed as
the probability that a randomly selected case has a higher projected risk than a randomly selected control,
i.e. AUC = P(RG > RK ). While the AUC is based on comparing ranks of the estimated risks in cases to
those in non-cases, iPCF(0) compares risk in cases to risks in the whole population, which is a mixture of
cases and non-cases. However, for a rare disease K ≈ F , and the values of the AUC and iPCF(0) will be
close. Figure 1 shows a PCF curve when the population distribution of risk F is a beta distribution with
parameters α = 1.5, β = 28.5, with μ≡ P(Y = 1)= 0.05. The area under this curve is iPCF(0)= 0.71.
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Fig. 1. PCF curve when the distribution F of risk is a beta distribution with parameters α = 1.5, β = 28.5, with
μ= 0.05, corresponding to iPCF(0)= 0.71.

Equations (3.5) and (3.6) resemble expressions for the partial area under the ROC curve (pAUC;
McGlish 1989) that focuses on the region of the ROC curve with a low false positive rate, which is often of
prime interest for diagnostic tests. Likewise, iPCF(p∗) and iPNF(q∗) can be used to focus on the high-risk
portion of the population to be screened. However, (3.5) and (3.6) again use F as the reference population
instead of K .

4. ESTIMATION OF PCF(p), PNF(q), iPCF AND iPNF

We now study estimates of PCF, PNF, and their integrated versions, iPCF and iPNF, for three types of
data and derive their asymptotic distributions. First, we assume that the risk model is well calibrated, and
a random sample of risk estimates r F

i , i = 1, . . . , N , is observed. We first review the estimators of PCF
and PNF used in Pfeiffer and Gail (2011) for this setting and propose novel estimators for iPCF and iPNF.
We then estimate PCF, PNF, iPCF, and iPNF non-parameterically using random samples of risks in cases,
r G

i ∼ G, i = 1, . . . ,m, and controls, r K
j ∼ K , j = 1, . . . , n, assuming the event probabilityμ≡ P(Y = 1)

in the population is known from external sources. We also study the corresponding estimates when a
random sample of risks in the population and the associated binary outcomes (r F

i ,Yi ), i = 1, . . . , N , are
available.

4.1 Estimation using observed risks in a population

If the risk model R is well calibrated, that is, P(Y = 1 | r)= r , i.e. among individuals with risk r the fraction
of events is r , then μ≡ P(Y = 1)= E(R)= ∫ 1

0 r dF(r), and the distributions G and K of risk in cases
and non-cases, respectively, can be derived from the population distribution F as

G(r)= P(R � r | Y = 1)= 1

μ

∫ r

0
t dF(t) (4.1)



370 R. M. PFEIFFER

and

K (r)= P(R � r | Y = 0)= 1

1 − μ

∫ r

0
(1 − t) dF(t). (4.2)

In this setting, using (4.1),

PCF(p)= 1 − G(φ1−p)= 1 − 1

μ

∫ φ1−p

0
t dF(t)= 1 − L(1 − p), (4.3)

where the L denotes the Lorenz curve of F (Goldie, 1977), and

PNF(q)= 1 − F(γ1−q)= 1 − L−1(1 − q), (4.4)

where L−1 is the inverse of the Lorenz curve, also called the concentration curve (Goldie, 1977).
Thus, if the risk model is well calibrated, PCF and PNF can be estimated from a random sample

r F
1 , . . . , r

F
N of risks from the continuous distribution F in a given population. To briefly summarize earlier

work (Pfeiffer and Gail, 2011), let r F
(1) � . . .� r F

(N ) denote the order statistics of the estimated risks, and

[x] be the largest integer less than or equal to x . Following Goldie (1977), and letting Si = ∑i
k=1 r(k), an

estimate of the Lorenz curve and thus PCF is

P̂CF(p)= 1 − L N (1 − p)= 1 − S[N (1−p)]/SN . (4.5)

Using the result of Goldie (1977) for the inverse function of the Lorenz curve, L−1
N , for a fixed value of

1 − q, the PNF is estimated as

P̂NF(q)= 1 − L−1
N (1 − q)= 1 − i/n, Si/SN < 1 − q � Si+1/SN , i = 0, . . . , N . (4.6)

By drawing on the distribution theory for the Lorenz cure and its inverse, we derived the asymptotic normal-
ity of the estimates in (4.5) and (4.6) and obtained their asymptotic variances using an influence function-
based approach (Pfeiffer and Gail, 2011).

If the model is well calibrated, iPCF and iPNF also relate to the Lorenz curve and its inverse through

iPCF(p∗)= 1 − p∗ −
∫ 1

p∗
L(1 − p) dp

and

iPNF(q∗)= 1 − q∗ −
∫ 1

q∗
L−1(1 − q) dq.

It is easy to see that a popular summary measure of the Lorenz curve, the Gini index (Gini, 1912), defined as
Gini = 1 − 2

∫ 1
0 L(p) dp, which is commonly used to measure income inequality in economics, is related

to iPCF(0) through Gini = 2iPCF(0)− 1.
Using ordered risk estimates r F

(1) � · · · � r F
(N ) in the population, a non-parametric estimate of iPCF

based on (4.5) is thus obtained by interpolation as

̂iPCF(p∗)= 1 − p∗ − 1

N SN

[(1−p∗)N ]∑
i=1

Si = 1 − p∗ − 1

N SN

[(1−p∗)N ]∑
i=1

([(1 − p∗)N ] − i + 1)r(i). (4.7)

For p∗ = 0, this expression reduces to ̂iPNF(0)= 1 − 1/(N SN )
∑N

1 (N − i + 1)r(i).
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Similarly, we estimate iPNF using simple geometric arguments as

̂iPNF(q∗)= 1 − q∗ − 1

N SN

k∗∑
i=1

ir(i+1), (4.8)

where k∗ satisfies Sk∗/SN < q∗ � Sk∗+1/SN .

In addition to being consistent, ̂iPCF and ̂iPNF also have asymptotically normal distributions. This
follows directly from the fact that they are linear functionals of estimates of the Lorenz curve and its
inverse, which are Gaussian stochastic processes (Goldie, 1977). The asymptotic variance estimates of
̂iPCF and ̂iPNF are given in Appendix A, see supplementary material available at Biostatistics online.

4.2 Estimation using risks in a case–control sample when μ= P(Y = 1) is known

We assume that risks r G
i ∼ G, i = 1, . . . ,m, from a random sample of cases and risks r K

j ∼ K , j =
1, . . . , n, from a random sample of non-cases from a population are available, and that the event probabil-
ity μ= P(Y = 1) in that population is known. We express the distribution of risk in the general population
as F =μG + (1 − μ)K , and estimate F using the empirical distribution functions

Gm(r
∗)= 1

m

m∑
i=1

I (r G
i � r∗) and Kn(r

∗)= 1

n

n∑
i=1

I (r K
i � r∗),

as

F̂(r∗)=μGm(r
∗)+ (1 − μ)Kn(r

∗).

Plugging Gm and F̂ into (3.1) yields

P̂CF(p)= 1 − Gm ◦ F̂−1(1 − p). (4.9)

The expression for PNF in (3.2) simplifies to PNF(q)= 1 − μ(1 − q)− (1 − μ)K ◦ G−1(1 − q) and thus

P̂NF(q)= 1 − μ(1 − q)− (1 − μ)Kn ◦ G−1
m (1 − q). (4.10)

Using F =μG + (1 − μ)K in (3.5), we express iPCF as

iPCF(p∗)= 1 − p∗ − μ

2
G2(φ1−p∗)− (1 − μ)P{RG � RK ; RK ∈ (0, φ1−p∗)}. (4.11)

We estimate iPCF using the empirical distribution functions Gm and Kn , and F̂ and φ̂1−p∗ = F̂−1

(1 − p∗) as

̂iPCF(p∗)= 1 − p∗ − μ

2
G2

m(φ̂1−p∗)− (1 − μ)
1

mn

∑
i, j

I {r G
i � r K

j ; r K
j ∈ (0, φ̂1−p∗)}, (4.12)

where I (A) denotes the indicator function that is one if A is true and zero otherwise.
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Similarly, iPNF given in (3.6) can be expressed as

iPNF(q∗)= 1 − q∗ − μ

2
(1 − q∗)2 − (1 − μ)P{RK � RG, RG ∈ (0, γ1−q∗)}, (4.13)

and thus an estimate is given by

̂iPNF(1 − q∗)= 1 − q∗ − μ

2
(1 − q∗)2 − (1 − μ)

1

mn

∑
i, j

I {r K
i � r G

j ; r G
j ∈ (0, γ̂1−q∗)}, (4.14)

where γ̂1−q∗ = G−
m1(1 − q∗).

Consistency of ̂iPCF(p∗) and ̂iPNF follows immediately from the consistency of Gm and φ̂1−p∗ , γ̂1−q∗

and the fact that E I {r G
i � r K

j ; r K
j ∈ (0, φ̂1−p∗)} = P{RG � RK , RK ∈ (0, φ1−p∗)} and E I {r K

i � r G
j ; r G

j ∈
(0, γ̂1−q∗)} = P{RK � RG, RG ∈ (0, γ1−q∗)}.

PCF, PNF, iPCF, and iPNF are functionals of the two distribution functions G and K that are estimated
based on independent samples. We derive their asymptotic properties using a bivariate influence function
approach (Pires and Branco, 2002) in Appendix B, see supplementary material available at Biostatistics
online.

4.3 Estimation using risks and outcomes in a population

Here, a random sample of risks and the corresponding event outcomes in a population are available, that
is, we observe the i.i.d. samples (r F

i ,Yi ), i = 1, . . . , N . For a model that predicts disease incidence, these
data would be comprised of risk estimates at baseline and observed outcomes at the end of the follow-up
period, and for a model that predicts the prevalence of a disease, the risks and outcomes could be based on
a cross-sectional sample.

We estimate PCF and PNF by plugging estimates of F , G and the corresponding quantiles φ and γ
into the expressions (3.1) and (3.2), respectively. The distribution of risk in the general population, F , is
estimated using the empirical distribution function in the whole population,

FN (r
∗)= 1

N

N∑
i=1

I (r F
i � r∗),

and G is estimated using the empirical distribution function among cases,

Ĝ(r∗)= 1

NȲ

N∑
i=1

I (r F
i � r∗,Yi = 1)= 1

n̂1

n̂1∑
i=1

I (r G
i � r∗),

where Ȳ = ∑
Yi/N denotes the empirical mean of Y and n̂1 = ∑

Yi . Estimates of iPCF and iPNF are
obtained in a similar way as

̂iPCF(p∗)= 1 − p∗ − 1

Nn̂1

∑
i, j

I {r G
i � r F

j ; r F
j ∈ (0, φ̂1−p∗)} (4.15)

and
̂iPNF(q∗)= 1 − q∗ − 1

Nn̂1

∑
i, j

I {r F
i � r G

j ; r G
j ∈ (0, γ̂1−q∗)}. (4.16)

The asymptotic distributions of the estimators for PCF, PNF, iPCF, and iPNF based on risks and out-
comes in a cohort differ from the asymptotic distributions of the estimators (4.9)–(4.11) and (4.14) based on
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the case–control data in the previous section, as they use different estimates of F , and also incorporate the
variation arising from estimating the disease prevalence and the number of cases, NȲ , in the population.
In Appendix C (see supplementary material available at Biostatistics online), we derive their asymptotic
distributions by treating F and G as functions of the bivariate distribution function of (r F ,Y ).

5. COMPARING TWO RISK MODELS

We previously proposed test statistics based on PCF and PNF for two risk models, R1 and R2, both of
which were applied to the same population. To test whether, for fixed p, PCF1 = PCF2, or for a fixed q,
PNF1 = PNF2, we use the statistics

TPCF(p)= n{̂PCF1(p)− ̂PCF2(p)}2

V̂PCF

and TPNF(q)= n{ ̂PNF1(q)− ̂PNF2(q)}2

V̂PNF

, (5.1)

where V̂ are consistent estimates of the variance of the difference of the estimates.
Two new test statistics based on iPCF and iPNF to compare two models using correlated risk estimates

(r1, r2) are

TiPCF(p
∗)= {̂iPCF1(p∗)− ̂iPCF2(p∗)}2

V̂iPCF

and TiPNF(q
∗)= {̂iPNF1(q∗)− ̂iPNF2(q∗)}2

V̂iPNF

, (5.2)

where iPNF and iPCF for both models are evaluated at the same value p∗ or q∗, respectively.
Asymptotically all test statistics, TPCF, TPNF, TiPCF, and TiPNF have a central χ2

1 distribution under
H0. Under the alternative, the non-centrality parameters for the test statistics are δPCF = n(PCF1 −
PCF2)2/VPCF, δPNF = n(PNF1 − PNF2)2/VPNF, δiPCF = n(iPCF1 − iPCF2)2/ViPCF, δiPNF = n(iPNF1 −
iPNF2)2/ViPNF, respectively. The variances for all test statistics can be computed based on the respec-
tive influence functions ψ R1 and ψ R2 for models 1 and 2 as V = Var(ψ R1 − ψ R2), or alternatively, using a
bootstrap variance estimate. In the simulations, we use the bootstrap variances in the formulas of the test
statistics.

6. SIMULATIONS

6.1 Efficiency of estimates of PCF, PNF, iPCF, and iPNF

We use simulations to investigate the properties of the non-parametric estimates of PCF, PNF, iPCF,
and iPNF defined in Sections 4.1–4.3 and to compare their efficiency. We assume that the population
distribution of risk is a beta distribution with parameters α and β, F(r)= B(r, α, β)/B(α, β), where
B(r, α, β)= ∫ r

0 tα−1 (1 − t)β−1 dt and B(α, β)= B(1, α, β). In this setting, the distributions of risk in
cases and non-cases are also beta distributions, given by G(r)= B(r, α + 1, β)/B(α + 1, β) and K (r)=
B(r, α, β + 1)/B(α, β + 1). The subscript R refers to estimates based on the population risks only, the
subscript CC is used for estimates based on risks observed for a case–control sample with known disease
prevalence μ, and the subscript (R,Y ) refers to estimates based on risks and observed outcomes in a pop-
ulation. The efficiency of the various estimates is compared using their asymptotic relative efficiencies
(AREs), computed as the ratios of the influence function-based variances given in the Appendices (see
supplementary material available at Biostatistics online).

To create data for each of the study designs, we first simulated risk estimates r F
i , i = 1, . . . , N , and then

generated the binary outcomes Yi from a binomial distribution with probability ri , Yi ∼ binom(1, ri ), i =
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1, . . . , N . For the estimates using the population-based risks and the risks and outcomes, we used all the
observations of r F

i or (r F
i ,Yi ), respectively. To create a case–control study, we split the population into

cases and non-cases and used the risk estimates from all the cases and all the non-cases together, with the
true value of the disease prevalence μ. Thus, all estimates in a given simulation are based on the same
observations.

Table 1 gives results for 500 simulations each based on a random sample of size N = 10 000 for a rare
disease. The beta distribution parameters were α = 6.55, 1, and 0.3 with corresponding β = 124.45, 19.0,
and 5.7 and expected risk μ= E(R)= 0.05 for each (α, β) pair. The AUC values for these parameter
choices are 0.63, 0.79, and 0.98, respectively, corresponding to models with moderate to very high dis-
criminatory ability. The mean estimates of PCF and PNF were very close to the theoretical values for
all estimators. However, the estimates based on case–control data and cohort data with outcomes were
much less precise than the corresponding estimates P̂CFR and P̂NFR . The AREs of P̂CFCC compared with
P̂CFR ranged from 22.86 to 387.2, with more loss of efficiency for parameter values corresponding to
smaller AUCs. For example, for p = 0.20, ARE = 367.45 for (α, β)= (6.55, 124.45) and ARE = 22.86
for (α, β)= (0.3, 5.7). The AREs for the estimates based on risks and outcomes and based on case–control
data were close to 1.00 in all cases. Estimates of PNF behaved very similarly to estimates of PCF in terms
of efficiency (Table 1). Again, P̂NFCC and P̂NF(R,Y ) were much less efficient than P̂NFR for all settings.

Supplementary material available at Biostatistics online, Table S1, gives results for a common disease,
μ= 0.30 with α= 6.55, 1, and 0.3 and corresponding β = 15.28, 2.33, and 0.7, leading to the same AUC
values as in Table 1. The patterns were very similar to those seen in Table 1, but the loss in efficiency for
the case–control based estimates and for cohort data with outcome-based estimates was less pronounced
than for a rare disease. P̂CFCC and P̂NFCC were somewhat more efficient than P̂CF(R,Y ) and P̂NF(R,Y )
for parameters resulting in larger AUC values. For example, for p = 0.10, the variance ratio of P̂CFCC

compared with P̂CF(R,Y ) was ARE = 3.43 for (α, β)= (0.3, 0.7).
Table 2 gives results for iPCF and iPNF for 500 simulations, each based on a random sample of size

N = 10 000 for the same simulation settings as in Table 1. Again, all methods had mean estimates that
were very close to the theoretical values of iPCF and iPNF. Similar to PCF and PNF the estimates of iPCF
and iPNF based on case–control data and (R,Y ) were much less precise than corresponding estimates
̂iPCFR and ̂iPNFR . For ̂iPCFCC compared with ̂iPCFR , the AREs ranged from 316.73 to 46.58 and were
lower for parameter values corresponding to larger AUCs. For example, for p = 0.20, ARE = 311.36 for
(α, β)= (6.55, 124.45) and ARE = 59.61 for (α, β)= (1, 2.33). Estimates of iPNFCC and iPNF(R,Y ) were

also less efficient than ̂iPNFR , but the loss of efficiency was less pronounced than for iPCF. ̂iPCFCC and
̂iPNFCC were slightly more efficient than estimated based on the cohort with outcomes. Results for iPCF
and iPNF for a common disease are given in Table S2, see supplementary material available at Biostatistics
online.

6.2 Comparing two risk models using PCF, PNF, and iPCF and iPNF

We examined the size and power of the tests (5.1) and (5.2) for comparing risk models 1 and 2 when
PCF, PNF, iPCF, and iPNF are estimated from observed bivariate risks (r1

i , r
2
i ), i = 1, . . . , N , and risks

and outcomes in a population. To simulate bivariate risks with outcome data, we first drew a random
number m of cases (Y = 1) in a population of size N from a binomial distribution with parameter μ,
and assigned the remaining n = N − m individuals to be controls (Y = 0). To obtain risk estimates from
each model that have a marginal beta distribution and are correlated, we first generated bivariate normal
random variables (Xi1, Xi2)∼ MV N ((0, 0),
) i = 1, . . . , N , where 
11 =
22 = 1 and 
12 =
21 = ρ.
We then separately computed risks for the n cases and m controls from ri1 = F−1

1 ◦�−1(Xi1) and ri2 =
F−1

2 ◦�−1(Xi2)where F−1
k , k = 1, 2, denotes the inverse of the beta distribution function with parameters
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Table 1. Mean values of PCF and PNF estimated using observed risks R in a population, assum-
ing that the model is well calibrated; risk estimates in a case–control sampling when the disease

prevalence μ is known, and based on observations of (R,Y ) in the population

P̂CF var(P̂CF) ARE

p PCF true R CC (R, Y ) R CC (R, Y ) CC/R (R, Y )/R (R, Y )/CC

α= 6.55, β = 124.45†

0.10 0.18 0.18 0.18 0.18 0.01 2.67 2.67 386.71 387.23 1.00
0.20 0.32 0.32 0.31 0.31 0.01 4.03 4.03 367.45 368.10 1.00
0.30 0.44 0.44 0.44 0.44 0.01 4.63 4.65 362.90 363.84 1.00
0.40 0.55 0.55 0.55 0.55 0.01 4.70 4.68 369.90 368.69 1.00

α= 1, β = 19‡

0.10 0.32 0.32 0.32 0.32 0.06 3.80 3.81 59.41 59.64 1.00
0.20 0.51 0.51 0.51 0.51 0.08 4.60 4.61 59.27 59.39 1.00
0.30 0.65 0.65 0.65 0.65 0.07 4.30 4.31 62.52 62.70 1.00
0.40 0.76 0.76 0.76 0.76 0.05 3.53 3.53 68.18 68.19 1.00

α= 0.3, β = 5.7§

0.10 0.51 0.51 0.51 0.51 0.22 4.23 4.32 19.07 19.48 1.02
0.20 0.73 0.73 0.73 0.73 0.16 3.65 3.71 22.48 22.86 1.02
0.30 0.86 0.86 0.86 0.86 0.08 2.35 2.38 28.20 28.46 1.01
0.40 0.93 0.93 0.93 0.93 0.03 1.28 1.29 38.74 38.98 1.01

P̂NF var(P̂NF) ARE

q PNF true R CC (R, Y ) R CC (R, Y ) CC/R (R, Y )/R (R, Y )/CC

α= 6.55, β = 124.45†

0.90 0.60 0.60 0.60 0.60 0.07 6.11 6.15 92.04 92.64 1.01
0.80 0.45 0.45 0.45 0.45 0.06 4.52 4.51 73.59 73.40 1.00
0.70 0.34 0.34 0.34 0.34 0.05 3.34 3.34 66.08 66.02 1.00
0.60 0.26 0.26 0.26 0.26 0.04 2.42 2.42 60.15 60.15 1.00

α= 1, β = 19.0‡

0.90 0.60 0.60 0.60 0.60 0.06 6.11 6.07 95.58 94.83 0.99
0.80 0.45 0.45 0.45 0.45 0.06 4.52 4.54 74.24 74.62 1.01
0.70 0.34 0.34 0.35 0.35 0.05 3.34 3.36 62.44 62.80 1.01
0.60 0.26 0.26 0.26 0.26 0.04 2.42 2.43 59.11 59.46 1.01

α= 0.3, β = 5.7§

0.90 0.35 0.35 0.38 0.38 0.11 3.58 3.65 32.19 32.81 1.02
0.80 0.25 0.25 0.26 0.26 0.08 1.89 1.93 24.23 24.75 1.02
0.70 0.18 0.18 0.19 0.19 0.05 1.14 1.14 21.79 21.79 1.00
0.60 0.13 0.13 0.14 0.14 0.04 0.71 0.72 20.15 20.33 1.01

Results are based on 500 simulations for each set of parameters (α, β) for the beta distribution and values of q and p.
Each simulation has N = 10 000 samples with μ= 0.05. AREs are computed as the ratio of the influence function-based
variances.
ARE = asymptotic relative efficiency, the ratio of the influence functions-based variances CC/R = var(TCC)/var(TR),
(R, Y )/R = var(T(R,Y ))/var(TR), (R, Y )/CC = var(T(R,Y ))/var(TCC), where T = PCF or T = PNF, respectively.
†AUC = 0.63.
‡AUC = 0.79.
§ AUC = 0.92.
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Table 2. Mean values of iPCF and iPNF estimated using: the population risk distribution F(R)
assuming that the model is well calibrated; risks in a case–control study and known disease

prevalence μ; observations of (R,Y ) in the population

̂iPCF var(̂iPCF) ARE

p† iPCF true R CC (R, Y ) R CC (R, Y ) CC/R(R,Y)/R (R, Y )/CC

α = 6.55, β = 124.45†

0.10 0.60 0.60 0.60 0.60 0 1.26 1.26 279.48 278.91 1.00
0.20 0.57 0.57 0.57 0.57 0 1.20 1.20 311.36 311.83 1.00
0.30 0.53 0.53 0.53 0.53 0 0.84 0.84 316.73 316.32 1.00
0.40 0.48 0.48 0.48 0.48 0 0.49 0.49 271.95 271.77 1.00

α = 1, β = 2.33‡

0.10 0.73 0.73 0.73 0.73 0.02 0.81 0.81 46.58 46.54 1.00
0.20 0.68 0.68 0.68 0.68 0.01 0.59 0.59 59.61 59.52 1.00
0.30 0.63 0.63 0.63 0.63 0.01 0.39 0.39 68.36 68.90 1.01
0.40 0.55 0.55 0.55 0.55 0 0.24 0.25 69.42 69.52 1.00

̂iPNF var(̂iPNF) ARE

q† iPNF true R CC (R, Y ) R CC (R, Y ) CC/R(R,Y)/R (R, Y )/CC

α = 6.55, β = 124.45†

0.60 0.27 0.27 0.27 0.27 0.0014 0.44 0.44 311.04 310.85 1.00
0.70 0.22 0.22 0.22 0.22 0.0006 0.23 0.23 358.61 358.83 1.00
0.80 0.16 0.16 0.16 0.16 0.0003 0.10 0.10 353.88 353.58 1.00
0.90 0.09 0.09 0.09 0.09 0 0.02 0.02 506.42 506.83 1.00

α = 1, β = 19.0‡

0.60 0.19 0.19 0.19 0.19 0.01 0.49 0.49 58.48 58.39 1.00
0.70 0.16 0.16 0.16 0.16 0.01 0.27 0.27 53.43 53.46 1.00
0.80 0.12 0.12 0.12 0.12 0.0002 0.15 0.15 77.24 77.47 1.00
0.90 0.07 0.07 0.07 0.07 0 0.05 0.05 91.55 91.58 1.00

α = 0.3, β = 5.7‡

0.50 0.12 0.12 0.12 0.12 0.01 0.29 0.30 20.92 21.71 1.04
0.60 0.11 0.11 0.11 0.11 0.01 0.23 0.23 19.70 20.19 1.02
0.70 0.10 0.10 0.10 0.10 0.01 0.19 0.19 26.88 26.77 1.00
0.80 0.08 0.08 0.08 0.08 0 0.11 0.11 27.62 27.53 1.00
0.90 0.05 0.05 0.05 0.05 0 0.05 0.05 46.03 45.81 1.00

Results are based on 500 simulations for each set of parameters (α, β) for the beta distribution and values of q and p.
Each simulation has N = 10 000 samples with μ= 0.05. AREs are computed as the ratio of the influence function-based
variances.
ARE = asymptotic relative efficiency, the ratio of the influence functions-based variances CC/R = var(TCC)/var(TR),
(R, Y )/R = var(T(R,Y ))/var(TR), (R, Y )/CC = var(T(R,Y ))/var(TCC), where T = PCF or T = PNF respectively.
†AUC = 0.63.
‡AUC = 0.79.
§ AUC = 0.92.

(αk + 1, βk) for cases and parameters (αk, βk + 1) for controls, and �−1 is the inverse of the standard
normal distribution.

Based on the random sample (ri1, ri2,Yi ), i = 1, . . . , N ,we computed the non-parametric estimates of
TPCF, TPNF, TiPCF, and TiPNF using observed risks only as well as risks and outcome data in the population,
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with the bootstrap variance estimates based on B = 500 bootstrap samples. A standard way to assess the
discriminatory ability of two models is to compare their AUC or partial area under the curve (pAUC)
values. When the test statistics were estimated from risks and outcome data, we computed non-parametric
estimates of pAUC,

̂pAUC(p)= 1

mn

∑
i, j

I {r G
i > r K

j , r
K
j ∈ (φ̂1−p, 1)} + 0.5I {r G

i = r K
j , r

K
j ∈ (φ̂1−p, 1)},

and also used the test statistic

TpAUC = {̂pAUC1(p)− ̂pAUC2(p)}2/v̂ar(̂pAUC1 − ̂pAUC2).

Estimates of size and power were based on 100 simulations for each choice of parameter values. Each
simulation is based on a random sample of N = 1000 bivariate risks. We show results for ρ = 0.2 and a
common disease, μ= 0.3, as other choices resulted in similar conclusions.

Tests based on PCF, iPCF, PNF, or iPNF had better power than TpAUC for all settings in Table 3. Table 3
highlights again that estimates computed under the assumption of a well-calibrated model have better power
than those relying on risks and outcome data. For example, for (α1, β1)= (1, 2.3) and (α2, β2)= (1.2, 2.8)
the power ranged from 0.77 to 0.81 for iPCFR , but was lower than 0.21 for iPCF(R,Y ) for all values of p, and
from 0.79 to 0.82 for iPNFR , and from 0.29 to 0.77 for iPNF(R,Y ); the power was lower for smaller values
of q. Tests based on iPCFR and iPNFR had somewhat better power than tests based on PCFR and PNFR .

7. DATA EXAMPLE

To illustrate the various estimates of PCF, PNF, iPCF, and iPNF, we used data from a validation study of
a colorectal cancer (CRC) risk prediction model (Freedman and others, 2009) that was developed to aid
decision making for colorectal cancer screening. The risk model R estimates the probability, or absolute
risk (also called cumulative incidence), of the binary event defined as “developing CRC during the age
interval (a, b], given that one is alive and free of CRC at age a”. Letting T denote the failure time, the
absolute CRC risk R is

R(x, a, b)= P(T ∈ (a, b], cause = CRC | T > a)=
∫ b

a
hCRC(t, x)e− ∫ t

0 hCRC(u,x)+hM(u,x) du dt,

where x denotes individual covariates, hCRC(t, x) is the cause-specific hazard for CRC, and hM(t, x)
denotes the competing mortality hazard.

The validation data were from an independent sample of 108 057 women from a prospective cohort,
the National Institutes of Health (NIH)-AARP Diet and Health Study (Park and others, 2009). For the i th
woman in the validation cohort the starting age ai of the prediction was her age at entry into the cohort,
and the end of the prediction interval, bi , the age the woman had at the sooner of the end of study or loss to
follow-up. Note that bi does not depend on whether the woman died or developed CRC. These events are
accounted for in the calculation of absolute risk R. For the validation, we thus define the event as Yi = 1 if
woman i develops CRC in (ai , bi ] and Yi = 0 otherwise. The mean follow-up time was 6.9 years, and 965
women were diagnosed with CRC during follow-up. For estimates of PCF, PNF, iPCF, and iPNF based on
case–control data, the disease prevalence μ was the observed incidence of CRC in the validation cohort.

Based on risk predictions for all 108 057 women in the study, R had ̂AUC = 0.605. Estimates P̂CFCC

and P̂CF(R,Y ) were basically identical, but the latter had slightly wider confidence intervals as the uncer-
tainty from estimating μ is also accommodated (Table 4). For example, for p = 0.10, P̂CFCC = 0.178 with
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Table 4. Estimates P̂CF, P̂NF, ̂iPCF, and P̂NF (with 95% bootstrap confidence intervals in parenthesis)
based on the observed distribution of risks R and outcome data for CRC in AARP women

p PCF∗ P̂CFR P̂CFCC P̂CF(R,Y ) P̂CFRc

0.10 0.178 0.245 (0.244, 0.246) 0.178 (0.155, 0.202) 0.178 (0.152, 0.205) 0.179
0.20 0.313 0.415 (0.413, 0.416) 0.313 (0.284, 0.342) 0.311 (0.277, 0.345) 0.307
0.30 0.423 0.551 (0.549, 0.552) 0.420 (0.387, 0.452) 0.420 (0.377, 0.462) 0.418
0.40 0.549 0.663 (0.662, 0.664) 0.547 (0.515, 0.579) 0.547 (0.500, 0.594) 0.518

q P̂NFR , q̂R P̂NFCC P̂NF(R,Y ), q̂(R,Y ) P̂NF
∗
Rc

, q̂Rc

0.90 0.711 (0.710, 0.712), 0.832 0.797 (0.784, 0.810) 0.797 (0.737, 0.858), 0.898 0.857, 0.927
0.80 0.556 (0.555, 0.557), 0.704 0.660 (0.641, 0.679) 0.661 (0.600, 0.723), 0.800 0.725, 0.839
0.70 0.438 (0.437, 0.439), 0.585 0.543 (0.518, 0.569) 0.545 (0.490, 0.599), 0.691 0.602, 0.751
0.60 0.342 (0.341, 0.343), 0.473 0.446 (0.418, 0.473) 0.447 (0.393, 0.501), 0.597 0.488, 0.635

p ̂iPCFR ̂iPCFCC ̂iPCF(R,Y ) ̂iPCF
∗
Rc

0.10 0.667 (0.666, 0.668) 0.592 (0.589, 0.596) 0.592 (0.575, 0.609) 0.572
0.20 0.634 (0.633, 0.634) 0.568 (0.565, 0.572) 0.567 (0.552, 0.582) 0.547
0.30 0.585 (0.585, 0.586) 0.530 (0.527, 0.533) 0.530 (0.517, 0.543) 0.511
0.40 0.524 (0.524, 0.525) 0.482 (0.479, 0.486) 0.483 (0.472, 0.493) 0.464

q ̂iPNFR ̂iPNFCC ̂iPNF(R,Y ) ̂iPNF
∗
Rc

0.90 0.083 (0.082, 0.083) 0.086 (0.084, 0.089) 0.086 (0.084, 0.089) 0.093
0.80 0.145 (0.145, 0.146) 0.160 (0.154, 0.165) 0.160 (0.154, 0.165) 0.172
0.70 0.195 (0.195, 0.195) 0.216 (0.207, 0.224) 0.216 (0.208, 0.225) 0.238
0.60 0.234 (0.233, 0.234) 0.268 (0.258, 0.278) 0.269 (0.259, 0.279) 0.293

The corresponding observed proportion of cases PCF∗ found among the fraction q of the AARP population at highest risk and the
proportions pR and pCC of cases found among the fractions P̂NFR and P̂NFCC of the AARP population at highest risk are also shown.
P̂CFRc and P̂NFRc are based means over five test sets of the model after recalibration using 5-fold cross-validation.

95% CI (0.155, 0.202) and P̂CF(R,Y ) = 0.178 (0.152, 0.205); thus, 17.8% of the cases were in the 10%
of women at highest risk. However, for p = 0.10, P̂CFR = 0.245 (0.244, 0.246), which noticeably overes-
timated the observed PCF = 0.178. For PNF, a fraction q̂(R,Y ) = 0.898 of cases was found in the fraction
P̂NFCC = P̂NF(R,Y ) = 0.797 of the population with the highest risk when q = 0.90, showing an unbiased
estimation of PNF. However, only a fraction q̂R = 0.832 of cases was found in the fraction P̂NFR = 0.711 of
the population with highest risk when q = 0.90. Thus, only 83.2% of cases instead of the desired 90% had

risks in the highest 71.1% of the population, reflecting poor calibration. Similarly, estimates ̂iPCFR were

higher than ̂iPCFCC and ̂iPCF(R,Y ), and ̂iPNFR were lower than estimates ̂iPNFCC and ̂iPNF(R,Y ) (Table 4).
To illustrate the importance of good calibration for estimates of PCF, PNF, and iPCF and iPNF based

on observed risks alone, we recalibrated the model and recalculated these estimates using 5-fold cross-
validation. That is, we split the AARP cohort randomly into five equal-sized datasets, and used four of
them to recalibrate the model by fitting a logistic regression model to observed CRC outcomes with the
risk estimate r as the independent variable (Cox, 1958). This simple recalibration requires estimating
only two parameters, the logistic intercept β0 and slope β1. We then used logit(rc)= β0 + β1r to predict
CRC outcomes for women in the remaining fifth of the data, the test set, to estimate the criteria with
the recalibrated model. The last column of Table 4 shows averages of estimates of PCF, PNF, iPCF, and
iPNF over the five test sets. After recalibration P̂CFRc was less biased, e.g. P̂CFRc = 0.179 for p = 0.10.
Similarly, a fraction q̂Rc = 0.927 of cases was found in the fraction P̂NFRc = 0.857 of women at highest risk
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when q = 0.90, reflecting improved calibration of Rc. Estimates ̂iPCFRc and ̂iPNFRc were also noticeably

closer to ̂iPCFCC and ̂iPNFCC.

8. DISCUSSION

We proposed two new criteria for model evaluation, iPCF and iPNF, respectively, which lessen the depen-
dency of earlier criteria, PCF and PNF, on prespecified thresholds. PCF(p)= 1 − G ◦ F−1(1 − p) resem-
bles the ROC value, which can be expressed as ROC(p)= 1 − G ◦ K −1(1 − p) (Huang and Pepe, 2009).
Similarly, iPCF that also is based on comparing the distribution of risk in cases to the distribution of risk
in the whole population instead of in non-cases, relates to the AUC, the partial area under the ROC curve,
pAUC, or more generally, to the weighted area under the ROC curve (Li and Fine, 2010). For rare dis-
eases, they tend to be very similar, but derivations of the asymptotic properties for criteria based on PCF
and PNF are more involved, as unlike the estimates of the ROC curve and the (partial) AUC, the risks in
the population and in cases are not independent. The comparison of risk in cases to non-cases is appropri-
ate for diagnostic tests that are applied in a clinical setting. However, for risk models that may be used to
identify high-risk individuals for screening or for assessing the impact of a screening program in a popu-
lation, criteria based on comparing the risk of cases to the risk in the whole population are more relevant
(Pharoah and others, 2002).

While decision making based on risk models for public health applications ultimately needs to incor-
porate cost considerations, the proposed criteria can aid in the initial assessment of the feasibility of a
screening or intervention program. For example, assume that one can only afford to screen 10% of a pop-
ulation. If a particular model has a low PCF or high PNF, targeting those at highest risk based on that
model will have limited preventive impact. In contrast, if a model has a high PCF or a low PNF, then a
targeted screening program may identify a large proportion of the disease and reduce costs and the burden
of screening. A more complete understanding is provided by iPCF and iPNF, which display the proportion
of disease accounted for by cumulative proportions of individuals in the population ranked from the lowest
to highest risk.

The new criteria are also useful for comparing two risk models evaluated on the same dataset. A test
for comparing two models based on PCF had comparable power to a test based on pAUC. However, a test
for model comparison based on iPCF had significantly better power than a test based on PCF, while the
tests based on PNF and iPNF had similar power.

We also studied estimates of PCF, PNF, iPCF, and iPNF when either risk estimates alone, or risk
estimates and outcomes in a case–control study with known prevalence or in a cohort study are available.
Estimates that also used outcome data were less efficient than estimates that were based on only observed
risks and the assumption that the model was well calibrated. The efficiency gain comes from the fact that,
for a well-calibrated model, knowing F implies knowing G, the distribution of risk in the cases. All the
observed risks in a population are thus used to estimate G. When one estimates G from the risks in observed
cases in a cohort, i.e. based on (R,Y ), the effective sample size is much reduced, leading to substantial
losses in efficiency. However, as also highlighted by our real example, estimates of PCF, PNF, iPCF, and
iPNF based on R alone are biased when the model is not well calibrated, and model comparisons can be

misleading. In practice, if outcome data are not available, one is forced to use estimates such as ̂iPCFR . If

outcome data are available, one can compute ̂iPCF(R,Y ). If there are large discrepancies, one must suspect

miscalibration and rely on ̂iPCF(R,Y ). We thus recommend using estimates of the criteria based on R alone,
but comparing them to estimates that also use Y to check unbiasedness.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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