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Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates
by comparing a novel technique based on external measurements alone to three direct measurement
methods.
Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment frac-
tions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor
position from marker motion were created from the first six measurements in each dataset. Succes-
sive tumor localizations were obtained at a rate of once per minute on average. Model updates were
timed according to four methods: never, respiratory surrogate-based (when metrics based on res-
piratory surrogate measurements exceeded confidence limits), error-based (when localization error
≥3 mm), and always (approximately once per minute).
Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four
schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively.
The never-update error was significantly larger than errors of the other methods. Mean update counts
over 20 min were 0, 4, 9, and 24, respectively.
Conclusions: The same improvement in tumor localization accuracy could be achieved through any
of the three update methods, but significantly fewer updates were required when the respiratory sur-
rogate method was utilized. This study establishes the feasibility of timing image acquisitions for
updating respiratory surrogate models without direct tumor localization. © 2013 American Associa-
tion of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4808119]
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I. INTRODUCTION

Respiratory surrogate-based models of tumor motion relate
tumor position to one or more respiratory surrogate signals
in order to localize the tumor from external measurements.
Such models are developed from a training dataset of concur-
rent tumor positions and surrogate measurements. To remain
accurate, the relationship between the tumor position and the
respiratory surrogate signals must remain constant over the
duration of treatment.1 However, intrafraction changes in the
tumor-surrogate relationship are common,2–5 and respiratory
surrogate model accuracy tends to degrade over time.5–7

To ensure accuracy over the course of treatment, mod-
els can be rebuilt during the fraction from new training
data.7 This method has been applied clinically in the
Cyberknife SynchronyTM stereotactic radiosurgery sys-
tem, which periodically (typically about once per minute)
verifies its surrogate model through radiographic tumor
localizations. If the tumor localization error (difference
between the measured tumor position and the position
predicted by the surrogate model) exceeds some user-defined
threshold, the system updates the model.7 Note that this
approach is labeled as the always update schema in this
paper.
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Few studies7, 8 have explored how best to update res-
piratory surrogate models to compensate for changes in
the tumor-surrogate relationship. Seppenwoolde et al.7

explored variations on update methods for the Cyberknife
SynchronyTM system and showed that errors can be reduced
through successively more frequent updates. They concluded
that updating the model quickly after the tumor-surrogate
relationship had changed can reduce overall residual error
over the course of a fraction. However, imaging the tumor
to collect data for updating the model as frequently as
Seppenwoolde et al.7 described, every 5–25 s, may not be
practical, as each image acquisition imparts nontherapeutic
ionizing radiation and prolongs the overall treatment time.
While Seppenwoolde et al.7 showed that a similar level of
accuracy could be achieved by updating the model once
halfway through a fraction, the magnitude of this error was
not reported.

In a previous study, we evaluated a method for determin-
ing when to update a respiratory surrogate model without di-
rectly measuring tumor position.8 By monitoring respiratory
surrogate measurements exclusively through Hotelling’s T2

statistic and the input variable squared prediction error, Q(X),
we were able to predict whether instantaneous respiratory
surrogate-based tumor localization was accurate to within
3 mm with 95% sensitivity and 15% specificity.8 That ini-
tial study demonstrated the feasibility of monitoring respira-
tory surrogate models through external measurements alone,
without explicitly measuring tumor position. However, fur-
ther study is needed to determine how the model accuracy
and the frequency of model updates for the surrogate mon-
itoring method compare to that of either error-based meth-
ods or methods in which the model is updated at arbitrary
intervals.

The purpose of this study was to evaluate the impact of
timing model updates based on respiratory surrogate mon-
itoring. A database of concurrent radiographic tumor local-
izations and respiratory surrogate measurements from a large
cohort of lung and pancreas cancer patients was analyzed ret-
rospectively. The cases we considered for determining when
to update a model once treatment had commenced were:
(1) never, (2) respiratory surrogate-based (when surrogate
model-based tumor localization error exceeded 3 mm), (3)
error-based (when either T2 or Q(X) exceeded preset confi-
dence limits), and (4) always (in our data, this frequency cor-
responds to once per minute on average).

II. METHODS AND MATERIALS

II.A. Data

A database of Cyberknife SynchronyTM system log files
was analyzed. We considered 121 treatment fractions of lung
tumor motion data from 61 patients and 45 treatment fractions
of pancreas tumor motion data from 23 patients. Each log file
consisted of two sets of recordings that were aligned using
system-recorded timestamps: (1) measurements of tumor po-
sition, as localized through identification of the centroid of
2–3 implanted fiducial markers in stereoscopic radiographs

captured once every three beams, or at an average interval of
once per minute; and (2) frequent (26 Hz) measurements of
the positions of a set of three LED markers affixed to a form-
fitting vest. From these datasets, we were able to extract con-
current internal (tumor) and external (marker) localizations at
each radiographic measurement.

II.B. Tumor motion prediction

In a previous study, we have shown that partial-least-
squares (PLS) regression can be used to accurately model tu-
mor motion from multiple respiratory surrogate signals.6 For
each treatment fraction, a PLS regression model was created
to predict tumor positions from the respiratory surrogate data.
The initial model was created from the first six radiographic
tumor localizations in each treatment fraction using PLS re-
gression, as described previously.6

The inputs of the PLS model were three one-dimensional
signals that were each derived from three-dimensional (3D)
external surrogate data. One input was created from the raw
data from each of the three external surrogate markers. Raw
input data consisted of Xm, where Xm was a n × 3 ma-
trix of n 3D marker position samples of surrogate marker
m. To create the PLS inputs, the three-dimensional surro-
gate marker motion, Xm, was projected onto a single dimen-
sion to create Rm. Each row of Rm, Rmi, was calculated as
Rmi = (Xmi − X̄m) · Pm, where X̄m was the 1 × 3 matrix con-
taining the mean of Xm along its columns and Pm was the first
principal component vector of Xm. The SIMPLS PLS regres-
sion algorithm was used to create the model of tumor posi-
tions of the form Ŷ = B̂ · R for surrogate inputs, R, estimated
tumor position, Ŷ , and regression coefficient matrix, B̂. The
details of this regression process are provided in Malinowski
et al.6

II.C. Model monitoring and updates

II.C.1. Respiratory surrogate analysis

The motion of the external respiratory surrogate markers
was characterized during the model training period and was
re-evaluated over the course of the treatment fraction.

For each set of six training data samples, a second PLS
model based on tumor position outputs, Y, and raw (unpro-
jected) surrogate marker positions, X, was created. This pro-
cess yielded a new set of regression coefficients and tumor
position estimates such that Ỹ = B̃ · X. The Hotelling’s T2

statistic and the input variable squared prediction error, Q(X),
were calculated for each respiratory surrogate marker posi-
tion sample as described by Malinowski et al.8 Once the PLS
model of tumor positions was created from a training dataset
of six samples, the surrogate-based metrics, T2 and Q(X), were
calculated from measurements of the surrogate markers ex-
clusively and did not utilize additional gold-standard mea-
surements of tumor position. Control limits on T2 and Q(X)

were calculated as previously described8 from the six sam-
ples used to develop the respiratory surrogate model of tumor
motion.
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FIG. 1. Timing of model updates for the four update methods in a representative treatment fraction. Updates are indicated by “x”s at the appropriate time.
Results for this fraction for each method are summarized at right.

II.C.2. Model update schema

The tumor localization accuracy of the respiratory surro-
gate models was evaluated for four update methods. Each
method was tested against 20 min of data following the ini-
tial six-sample training dataset.

II.C.2.a. Never update. Currently, despite possible in-
trafraction tumor-surrogate relationship changes, most clin-
ics do not update respiratory surrogate models during motion
management procedures. To simulate this case, we applied the
initial model based on the first six measurements in the treat-
ment fraction to the entire 20 min testing dataset.

II.C.2.b. Always update (approximately once per minute).
To evaluate the opposite extreme, we updated the model at
each radiographic tumor localization in the dataset; the aver-
age time between successive localizations was 63 s. Specifi-
cally, 1 s after a radiographic tumor localization, the six most
recent measurements were used to train a new model pre-
dicting tumor motion from external marker positions. This
predictive model was then applied to predict tumor position
up to the next update, 1 s after the next radiographic tumor
localization.

II.C.2.c. Error-based update. The Cyberknife
SynchronyTM system is an example of a device that pe-
riodically captures radiographs in order to validate its
respiratory surrogate model. The measured tumor position
(using radiographs) was compared to the model-predicted
tumor position. If the difference (the localization error)
exceeded a user-set threshold such as 3 mm,7 the model was
updated. To simulate this process, a new model was created
each time the localization error exceeded 3 mm. An updated
model was applied to data acquired 1 s after each tumor
localization error that was greater than 3 mm.

II.C.2.d. Respiratory surrogate-based update. Rather
than base the decision of whether to update a model on gold-
standard tumor localizations, the respiratory surrogate method
is based on external measurements alone. The T2 and Q(X)

values were evaluated for each set of surrogate marker mea-
surements. If either T2 or Q(X) of a sample exceeded the 70th
percentile T2 or Q(X) confidence limit, then a new model was
created from the previous six localizations. This model was
applied to data in the fraction following 1 s after either T2 or
Q(X) exceeded its confidence limit threshold.

The 70th percentile threshold for the T2 and Q(X) confi-
dence limits was selected to balance the technique’s ability to

detect changes in the relationship between the model and the
respiratory surrogate signals with the tendency toward false
detections of such changes.

III. RESULTS

While updates for this dataset were limited to the times at
which radiographs were acquired, the update timings differed
considerably across the four methods (Fig. 1). More frequent
updates did not always correspond to more accurate tumor
motion prediction.

III.A. Model errors

Tumor localization errors (mean ± standard deviation) for
never, respiratory surrogate-based, error-based, and always
update schema were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and
1.7 ± 0.8 mm, respectively (Fig. 2). For never, surrogate-
based, error-based, and always update methods, respectively,
7%, 3%, 3%, and 3% of tumor position prediction errors ex-
ceeded 5 mm, and 26%, 14%, 11%, and 13% exceeded 3 mm
(Fig. 3). Error distributions for update schema other than
never-update did not differ significantly from one another
(t-test, p > 0.05). However, the never-update tumor local-
ization errors were significantly larger (t-test, p < 0.05) than
those of the other update methods.

FIG. 2. (a) Lung and (b) pancreas mean and standard deviation (error bars)
tumor position prediction errors over 20 min for each update method. There
is no significant difference (p > 0.05) between results for surrogate-based,
error-based, and always update methods.
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FIG. 3. Incidence of large (>3 and >5 mm) tumor localization errors for
each update method.

III.B. Update timing

The median numbers of updates over the course of 20 min
were 0, 4, 9, and 24 for never, surrogate-based, error-based,
and always update schema, respectively (Fig. 4). Despite the
lack of significant difference in model errors across the three
update schema (Sec. III.A), there were significant (t-test, p
< 0.05) differences in the numbers of updates between each
of the four methods. 24% of the tumor localizations associ-
ated with an error-based update were also associated with a
surrogate-based update (Fig. 4), and 55% of tumor localiza-
tions that were associated with surrogate-based updates cor-
responded to simultaneous error-based updates.

III.C. Site-specific results

Lung and pancreas results were compared (Fig. 2). Neither
mean error nor number of updates was significantly associ-
ated with tumor site (two-way ANOVA, p > 0.05).

IV. DISCUSSION

This study evaluated the hypothesis that knowledge-based
model update timing can lead to an accurate model while lim-

FIG. 4. Numbers of model updates per 20-min fraction for each update
method. (Boxes denote quartile ranges, horizontal lines inside the boxes in-
dicate the median, and any outliers greater than 1.5 times the interquartile
range past the box limits are plotted as + signs.)

iting the necessity for frequent imaging. The results of this
study indicate that more frequent updates do not guarantee a
more accurate model. While any update method resulted in
smaller tumor localization errors than no updates at all, er-
rors were not significantly different across the three update
methods (surrogate-based, error-based, or always). This lack
of difference in tumor localization performance came about
despite large differences in the mean number of updates in
20 min: 4, 9, and 24 for the surrogate-based, error-based, and
always updates methods, respectively.

The prediction accuracy of respiratory surrogate-based tu-
mor localization models degrades over the course of a treat-
ment fraction.1, 2, 5, 7 In a previous study,8 we concluded that
the T2 and Q(X) were able to predict large respiratory surrogate
model errors with high sensitivity (95%) but limited speci-
ficity (15%). In this work, we have shown that instantaneous
error may not be the best way to decide whether to update a
model. By updating the model each time a localization error
exceeded the threshold of 3 mm, many updates were carried
out without significant improvement to mean model accuracy.
Over the course of a fraction, the surrogate-based method
was associated with more frequent localization errors >3 mm
than the error-based method (14% vs 11% of localizations),
but for both methods only 3% of errors were >5 mm. De-
spite no improvement in error, the error-based method re-
quired more than twice as many updates as the surrogate-
based method. This result is in agreement with Seppenwoolde
et al.,7 who also concluded that, while any update is valuable,
more frequent updates do not necessarily lead to a more accu-
rate model.

In both the error-based and the surrogate-based update
methods, parameters can be selected to trade off between
tumor localization error and number of updates. For error-
based updates, 3 mm was used as the threshold, because it has
been cited as a clinically relevant error threshold for the Cy-
berknife SynchronyTM system.7 The surrogate metrics’ con-
fidence limits were set to the 70th percentile expected value,
such that the accuracy was not significantly different than the
error-based method. This allowed us to compare number of
updates for the two methods when localization errors were
equal. For either technique, a larger localization error toler-
ance would necessitate fewer updates.

In this work, the number of updates was evaluated for
20 min of data. For many modern treatments, beam-on time
is less than 20 min, but inroom time can be longer. At our
institution, the patient is usually on the couch for approxi-
mately 15 min for conventionally fractionated treatments and
for approximately 30 min for stereotactic body radiotherapy
treatments. In practice, model update implementation would
be implemented differently on each system, but it is likely that
the process of capturing images for new model-building data
during an update would take some time, potentially extend-
ing the duration of the treatment fraction. A shorter treatment
would require fewer updates. Thus, even with respiration
monitoring, it is important to complete a treatment fraction,
including the setup process, as quickly as possible.

The surrogate-based monitoring method explored in this
study was applied to PLS respiratory surrogate models. The
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T2 and Q(X) metrics are based on the scores developed as part
of the PLS regression process. However, it would be possi-
ble to monitor any multiple-input respiratory surrogate model
through these metrics. In particular, because the PLS output is
very similar to that of the Cyberknife SynchronyTM system,6

it is likely that the surrogate-based monitoring method eval-
uated in this study would be equally effective for the
Cyberknife SynchronyTM tumor localization algorithm. In
any real-time tracking technology,7, 9, 10 accurate tumor local-
ization is essential, and a knowledge-based method for model
update timing could improve system performance. This type
of monitoring would also benefit gating technologies.11, 12

Berbeco et al.11 and Cai et al.13 have shown that breath-
to-breath variations even in the relatively stable end-exhale
position necessitate use of an internal margin for gated
treatments.

The surrogate-based timing method uses respiratory sur-
rogate measurements alone. By contrast, the error-based
method requires concurrent respiratory surrogate measure-
ments and radiographic images to validate the model directly.
For this work, to allow validation of the method, updates
were limited to the instances at which radiographic tumor
localizations were available (about once per minute). How-
ever, because the surrogate-based method does not require
internal localization, it has the potential to give early warn-
ings of large errors by checking for updates at the surro-
gate measurement rate (26 Hz in this dataset). Further study
is needed to determine how to best implement surrogate-
based monitoring when high-frequency surrogate data are
available.

V. CONCLUSION

When the model is never updated, mean tumor localiza-
tion errors were 2.4 mm, and 26% of errors exceeded 3 mm.
With the update methods, mean errors were reduced to 1.7–
1.9 mm, and 11%–14% of errors exceeded 3 mm. Differences
in magnitude of error between respiratory surrogate-based,
error-based, and always update methods were not significant,
but the number of updates in a fraction varied considerably
with update method. On average, the surrogate-based method
reduced the number of updates by a factor of 2.3 relative to
the number required by the error-based method and by a fac-
tor of 5.9 relative to the number required by the always update
method.
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