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 Abstract 

 Folate-mediated 1-carbon metabolism is a network of interconnected metabolic pathways nec-
essary for the synthesis of purine nucleotides, thymidylate and the remethylation of homocys-
teine to methionine. Disruptions in this pathway influence both DNA synthesis and stability and 
chromatin methylation, and result from nutritional deficiencies and common gene variants. The 
mechanisms underlying folate-associated pathologies and developmental anomalies have yet 
to be established. This review focuses on the relationships among folate-mediated 1-carbon 
metabolism, chromatin methylation and human disease, and the role of gene-nutrient interac-
tions in modifying epigenetic processes.  Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Epigenetics refers to the inheritance and/or self-propagation of gene expression potential 
that is independent of the primary DNA sequence  [1, 2] . Epigenetics includes biological pro-
cesses that are hardwired and mostly genetically determined, such as g enomic imprinting   [3] , 
whereby genes exhibit parent-of-origin-specific allelic expression  [4] . The term also includes 
more plastic processes including chromatin modifications resulting from metabolic, nutri-
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tional and other environmental queues  [5] . Environmentally responsive chromatin modifi-
cations can be reversible, transient and enable adaptation, or in other cases persist through-
out the lifetime of the organism. The latter is referred to as  metabolic imprinting , and includes 
the influence of maternal nutrition during gestation and the suckling period on chromatin 
modifications and gene expression profiles that influence lifelong risk of chronic disease  [6] .

  Chromatin methylation, which includes methylation of cytosine bases within DNA CpG 
islands  [7]  and methylation of histones on lysine and arginine residues  [8] , directly affects 
the activity and function of DNA binding proteins, regulates gene expression and can influ-
ence genome stability. Histone and DNA methylation are linked and coordinately regulated 
 [9] , can affect gene expression patterns, and are a primary molecular mechanism associated 
with epigenetic signatures and inheritance  [10] .

  DNA and histone protein methylation are linked by their common dependence upon S-
adenosylmethionine (AdoMet) as a methyl donor. All DNA and histone methyltransferases 
require this cofactor for both cytosine as well as lysine and arginine histone modifications 
 [11, 12] . AdoMet synthesis occurs through a metabolic network known as folate-mediated 
1-carbon metabolism, which requires folate, vitamin B 12  and other water-soluble B vitamins 
 [13] . The dependency of cellular methylation reactions on AdoMet synthesis and availability 
enables the cell to sense cellular metabolism and nutritional state, and respond and adapt by 
altering genome-wide expression patterns  [14] . This review focuses on the genetic and nutri-
tional factors that influence the synthesis and accumulation of AdoMet, and its influence on 
chromatin methylation and pathologies associated with altered folate-mediated 1-carbon 
metabolism ( fig. 1 ).

  One-Carbon Metabolism 

 Folate-mediated 1-carbon metabolism is a metabolic network present in the cytoplasm, 
mitochondria and nucleus of cells and functions to generate and transfer 1-carbons for the 
de novo synthesis of purines, thymidylate and methionine  [13] . These biosynthetic pathways 
all utilize tetrahydrofolate polyglutamates (THF) as cofactors. THF is present in cells as fam-
ily of 1-carbon substituted cofactors that carry and chemically activate single carbons for 
1-carbon transfer reactions. Because folate is a vitamin, it is acquired from the diet from ei-
ther natural food or enriched grain products and dietary supplements which contain a syn-
thetic form of the vitamin referred to as folic acid  [15] .

  One-carbon metabolism in mitochondria utilizes THF cofactors to generate the 1-car-
bon unit formate from the amino acids serine, glycine, and from sarcosine and dimethyl-
glycine which are derived from choline degradation  [13, 16] . Once generated, formate is 
transported into the cytoplasm where it condenses with THF in an ATP-dependent reaction 
to form 10-formyl-THF (FTHF;  fig. 1 ). Formate is the primary source of 1-carbons for de 
novo purine biosynthesis and for homocysteine remethylation to methionine, and therefore 
formate generation is essential for AdoMet-dependent methylation reactions, including 
chromatin methylation  [17, 18] . The de novo synthesis of thymidylate from uridylate occurs 
in both the mitochondria and nucleus  [19] .

  The remethylation of homocysteine to methionine and subsequent conversion of me-
thionine to AdoMet occurs exclusively in the cytoplasm  [20]  ( fig. 1 ). Mammalian cells con-
tain numerous AdoMet-dependent methyltransferases involved in many cellular processes 
including chromatin remodeling, regulatory functions including gene transcription  [21] , 
protein localization  [22] , and the biosynthesis and catabolism of small molecules including 
neurotransmitters  [23] . These reactions occur in the cytoplasm, nucleus and mitochondria, 
and generate S-adenosylhomocysteine (AdoHcy), which is the product of AdoMet-depen-
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dent transmethylation reactions. AdoHcy is hydrolyzed to adenosine and homocysteine to 
complete the homocysteine remethylation cycle in the cytoplasm ( fig. 1 ).

  One-carbon metabolism is highly sensitive to vitamin deficiency  [17] , and its impair-
ment impacts each of the folate-dependent pathways resulting in decreased rates of purine 
and thymidylate synthesis, elevated levels of homocysteine and AdoHcy and depleted levels 
of AdoMet  [24] . These metabolic disruptions affect DNA synthesis and stability and impair 
cellular methylation reactions  [24, 25] . Vitamin B 12  deficiency can also disrupt 1-carbon me-
tabolism. Methionine synthase (MTR), which catalyzes the remethylation of homocysteine 
to methionine, is vitamin B 12  dependent  [26] . It has been estimated that 38% of older adults 
may exhibit mild vitamin B 12  deficiency  [27] . Both folate and vitamin B 12  deficiency elevate 
plasma homocysteine and AdoHcy  [27] , and homocysteine is a biomarker for folate and vi-
tamin B 12  deficiency  [28] . 

  One-Carbon Metabolism and Human Pathology 

 Population studies and randomized clinical trials implicate impaired 1-carbon metabo-
lism in several pathologies and developmental anomalies, e.g. neural tube defects  [29, 30] , 
cardiovascular disease  [31–33]  and cancer  [34–38] . Elevated plasma homocysteine, resulting 
from folate and/or vitamin B 12  deficiency, is a risk factor for certain cancers  [39] , cardiovas-
cular disease  [40] , neural tube defects  [41] , and Alzheimer’s disease  [42] . These folate-related 
pathologies are complex traits resulting from deleterious gene-environment interactions 

  Fig. 1.  Folate-dependent homocysteine remethylation and its interaction with AdoMet-dependent trans-
methylation reactions. One-carbon metabolism in the cytoplasm generates folate-activated 1-car -
bon units for remethylation of homocysteine to methionine. One carbon metabolism in the mitochon-
dria generates formate for 1-carbon metabolism in the cytoplasm. The 1-carbon unit is shown in bold. 
BHMT = Betaine-homocysteine methyltransferase; X = a substrate that serves as a methyl group acceptor. 
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 [14] . Although nutritional deficiencies in folate and vitamin B 12  can impair 1-carbon me-
tabolism, the degree of the metabolic impairment and its relationship to pathology depends 
on the genetic background of the individual. Many common, penetrant genetic mutations 
and polymorphisms have been identified in 1-carbon metabolism that are associated with 
pathology and interact with and/or can cause nutritional deficiencies  [29, 43–45] . The mo-
lecular mechanisms and causal pathways underlying the gene-nutrient interactions that con-
tribute to the initiation and/or progression of folate-associated pathologies have yet to be 
established, but are assumed to result from impairments in DNA synthesis and repair, and/
or changes in chromatin methylation that alter genome expression and stability  [24] .

  The Cellular Methylation Potential Links 1-Carbon Metabolism and 

Transmethylation Reactions 

 The ratio of AdoMet to AdoHcy levels in the cell is often referred to as the methylation 
potential  [46] . AdoMet and AdoHcy both affect the activity of AdoMet-dependent methyl-
transferases. AdoMet serves as the substrate for transmethylation reactions including DNA 
and histone methyltransferases, whereas the product, AdoHcy, binds tightly to these en-
zymes and inhibits their activity through product inhibition and therefore is a physiologi-
cally relevant inhibitor of chromatin methylation. AdoHcy accumulates in cells when homo-
cysteine remethylation to methionine is inhibited, because homocysteine is in equilibrium 
with AdoHcy ( fig. 1 ). Therefore, metabolic disruptions in 1-carbon metabolism that impair 
homocysteine remethylation are sensed by the genome through changes in chromatin meth-
ylation, and elicit alterations in gene expression  [47] .

  Nutrient-Induced Changes in the Cellular Methylation Potential and Chromatin 

Methylation 

 Changes in the AdoMet/AdoHcy ratio influence the cellular activity of DNA and histone 
methyltransferases, and different regions of DNA may be more sensitive than others to 
changes in the cellular methylation potential  [48] . Subcutaneous methionine treatment
(5 mmol/kg twice a day for 3 days) induces GAD67 promoter hypermethylation in mice 
through elevations in AdoMet levels  [49] . In human lymphocytes, AdoHcy is a more impor-
tant determinant of cellular methylation capacity and global DNA methylation levels com-
pared to AdoMet  [50] . In mice with elevated homocysteine, AdoHcy but not AdoMet predicts 
global DNA hypomethylation  [51] . Other studies demonstrated that mice maintained on a 
folate-deficient diet ( ! 0.05 ppm folic acid) for 32 weeks exhibited elevated serum homocys-
teine and global DNA hypomethylation in splenocytes (reduced 9.1%) and colonic epithelial 
cells (reduced 7.2%), without changes in allele-specific methylation at the mouse B1 element, 
 H19  or  Oct4  loci  [25] . Endothelial cells exposed to homocysteine exhibited 30% reduced DNA 
methyltransferase 1 (DNMT1) activity without changes in DMNT1 protein levels, and re-
duced CpG methylation of the cyclin A promoter, leading to depressed  cyclin A  transcription. 
These studies demonstrate that homocysteine-induced elevations in AdoHcy repress DNMT1 
activity and chromatin methylation  [52] .

  AdoHcy elevations have also been demonstrated to affect the expression of genetically 
imprinted genes. Elevations in plasma homocysteine at levels observed in patients with ho-
mocystinuria resulted in DNA CpG hypomethylation and biallelic expression of  H19  and 
other genomically imprinted genes. Folic acid administration, in the form of 15 mg oral 
methyl-THF a day for 8 weeks, corrected the DNA hypomethylation and restored monoal-
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lelic gene expression patterns  [53] . Diet-induced changes in the cellular methylation potential 
also influence imprinted gene expression in animal models. Mice lacking dietary choline 
and methionine exhibited elevated  Igf2  and  H19  expression in the prostate without changes 
in promoter methylation or imprinting, but did exhibit lower levels of repressive histone 
modifications (dimethyl-H3K9). These effects were reversible by feeding mice a nutrient-
sufficient diet  [54] . In non-small cell lung cancers, folate levels correlated with global meth-
ylation when LINE-1 methylation is used as a surrogate, as well as allelic-specific methylation 
at the promoters of CDH13, RUNX3, but not MYOD1, RASSF1P16, APC, and RARB. There-
fore, folate levels influence both global and allele-specific methylation in transformed cells 
 [55] . Vitamin B 12  deficiency, induced in gastrectomized rats which have reduced capacity to 
absorb vitamin B 12 , also causes elevated plasma homocysteine and DNA hypomethylation in 
rodents  [56] . However, the relationship between diet and DNA methylation may be most pro-
nounced in nutrient deficiency, in cancers and in severe inborn errors of metabolism that 
elevate homocysteine. Folate nutrition and global DNA CpG methylation do not always 
correlate; folate supplementation of human subjects at 1 mg/day did not alter LINE-1 meth-
ylation density, which is a proxy for DNA global methylation, in normal colonic mucosa 
cells  [57] .

  One-Carbon Metabolism Regulates the Activity of DNA Methyltransferases 

 Changes in DNMT1 expression correlate with CpG methylation levels in nuclear DNA 
in tissues and transgenic animals  [58] , indicating that methyltransferase levels, like changes 
in the AdoMet/AdoHcy ratio, affect cellular methylation capacity. DNMT1 ensures that 
DNA methylation patterns are reestablished during DNA replication and that global DNA 
methylation levels are maintained.

  One-carbon metabolism also regulates the expression of methyltransferases, in addition 
to maintaining the AdoMet/AdoHcy ratio. DMNT1 levels are increased in choline-deficient 
embryos leading to increased global DNA methylation, including  Igf2  methylation. Choline 
degradation is a source of formate from mitochondrial 1-carbon metabolism, and provides 
an alternative pathway for homocysteine remethylation independent of folate metabolism 
through the enzyme betaine-homocysteine methyltransferase  [59] . Choline deficiency in-
duces hypomethylation of the  Dnmt1  promoter and increased  Dnmt1  expression, indicating 
that  Dnmt1  promoter hypomethylation is a compensatory mechanism that maintains meth-
ylation capacity when the AdoMet/AdoHcy ratio decreases  [60] . mRNA levels of Dnmt3a, a 
de novo DNA methyltransferase, also inversely correlate with maternal choline intake  [60] .

  Genetic Variation in 1-Carbon Metabolism and Its Impact on Cellular Methylation 

 Genetic variation in the genes that encode the enzymes that constitute folate-mediated 
1-carbon metabolism is associated with changes in cellular metabolism, genome methylation 
and risk for human pathologies. This section reviews common genetic variants in this meta-
bolic network and their impact on 1-carbon metabolism, epigenetic processes and human 
disease.

  Methylenetetrahydrofolate Dehydrogenase 1  
 The mammalian  MTHFD1  gene encodes C 1 -THF synthase, a trifunctional enzyme that 

contains FTHF synthetase (FTHFS) activity on the C-terminal domain, and 5,10-methenyl-
THF cyclohydrolase (MTHFC) and dehydrogenase (MTHFD) activities on the N-terminal 
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domain  [61, 62]  ( fig. 1 ). FTHFS functions as a formate-activating enzyme by catalyzing the 
ATP-dependent conversion of THF and formate to FTHF, ADP, and inorganic phosphate 
 [16] . FTHF is used as cofactor for purine biosynthesis  [63] , or the 1-carbon can be reduced 
by MTHFC/MTHFD for use in the biosynthesis of thymidylate and methionine ( fig.  1 ). 
MTHFC catalyzes the reversible interconversion of FTHF and 5,10-methenyl-THF, whereas 
MTHFD catalyzes the NADPH-dependent and reversible reduction of 5,10-methenyl-THF 
to 5,10-methylene-THF. Disruption of a single  Mthfd1  allele in mice lowers hepatic AdoMet 
levels, consistent with formate serving as a source of 1-carbons for cellular methylation reac-
tions  [64]  ( fig. 1 ).

  A common single nucleotide variant in human  Mthfd1 , G1958A, results in the substitu-
tion of glutamine for arginine at position 653 in the 10-FTHFS domain of MTHFD1. The 
variant enzyme is thermolabile with 25% reduced activity in cultured cells  [65] . In humans, 
the R653Q variant does not influence levels of homocysteine, plasma folate or red blood cell 
folate  [66] , but was found to increase a mother’s risk of having a child with a neural tube de-
fect in several populations  [66–68] , to increase risk for intrauterine growth restriction  [69] , 
to increase risk for congenital heart defects  [65] , and to increase risk for non-Hodgkin’s lym-
phoma  [70] . This polymorphism is also a maternal risk factor for severe placental abruption 
and unexplained second trimester loss  [71, 72] , and has been demonstrated to be a maternal 
and fetal risk factor for cleft lip and cleft palate in an Irish population  [73] , but not in an Ital-
ian population  [74] . There is also a common variant in the MTHFD/MTHFC domain 
(R134K), but the functional significance of the variant domain is not known. It has been as-
sociated with a significant increase in the risk for postmenopausal breast cancer  [75] .

  FTHF Dehydrogenase (ALDH1L1) 
 ALDH1L1 catalyzes the irreversible and NADP + -dependent oxidation of FTHF to THF 

and CO 2   [76, 77] . It is one of the most abundant folate enzymes in the liver and plays several 
roles in regulating folate metabolism, including the removal of excess FTHF in the form of 
CO 2 . ALDH1L1 has been shown to regulate cellular concentrations of FTHF and the homo-
cysteine remethylation cycle in cultured neuroblastoma cells  [78]  by limiting the supply of 
folate-activated 1-carbon units. Interestingly, ALDH1L1 gene expression is epigenetically si-
lenced in cancers  [79] . Two ALDH1L1 gene variants have been shown to alter the risk of de-
veloping postmenopausal breast cancer. The variant [rs2276731 (T/C)] is associated with an 
increased risk, while [rs2002287 (T/C)] is associated with a decreased risk. Both single nu-
cleotide polymorphisms are intronic, and may exist in linkage disequilibrium with coding 
variants including V812I, G481S, or F330V  [75] .

  5,10-Methylene-THF Reductase  
 Methylene-THF reductase (MTHFR) is a flavoprotein that catalyzes the NADPH-de-

pendent reduction in 5,10-methylene-THF to 5-methyl-THF, which is an essential folate co-
factor for the remethylation of homocysteine to methionine ( fig. 1 ). The MTHFR reaction is 
irreversible in vivo and thereby commits folate cofactors to the homocysteine remethylation 
pathway  [16, 80] . MTHFR activity is inhibited by AdoMet, providing feedback inhibition and 
limiting AdoMet synthesis and accumulation  [81] .

  MTFHR is expressed ubiquitously, with the highest mRNA levels observed in the testis 
where DNA methylation is critical for germ cell maturation and genomic imprinting  [82] . 
Mild MTHFR deficiency, defined as 35–45% residual activity, is the most common inborn 
error of folate metabolism and affects 5–20% of North Americans and Europeans  [83] . The 
most common cause is a C to T substitution at nucleotide position 677, which results in the 
amino acid change (A222V) in the catalytic domain of the protein  [84] . The C677T variant 
does not exhibit altered kinetic properties compared to the more common allele, but rather 
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exhibits enhanced loss of the FAD cofactor  [83, 85, 86]  creating a thermolabile protein  [87] . 
The C677T variant is associated with mild hyperhomocysteinemia, especially in those with 
low folate concentrations  [88] , and lower plasma and red cell folate levels  [89, 90] . The C677T 
variant has been demonstrated to effect the cellular methylation potential and is associated 
with DNA hypomethylation in lymphocytes  [91]  and increased tumor suppressor gene 
CDKN2A promoter methylation in colon cancer  [92] .

  The C677T MTHFR variant has been shown to modify risk for several clinical out-
comes, especially outcomes related to reproduction and cancer, as well as chronic disease. 
The variant has been shown to be associated with an increased risk for cardiovascular disease 
 [93–95] , neural tube defects  [96–98] , cleft lip and palate  [41, 99] , thrombosis  [100–102]  and 
schizophrenia  [103–106] . It has also been shown to be protective against several types of can-
cers, including acute lymphoblastic leukemia  [107] , childhood acute leukemia  [108] , and 
colorectal cancer  [109, 110] . It is not known if the association of the MTHFR C677T variant 
with pathology results from its effect on the homocysteine remethylation pathway and cel-
lular methylation, or from its effect on lowering cellular folate levels.

  Another common coding MTHFR single nucleotide polymorphism, A1298C (E429A), 
exists in strong linkage disequilibrium with C677T  [111] . Unlike C677T which affects the 
active site of the protein, A1298C is located in the regulatory domain of the protein and is 
catalytically indistinguishable from the wild-type MTHFR  [86] . The A1298C polymorphism 
is associated with increased red cell folate levels and does not affect homocysteine levels  [90] . 
This polymorphism was shown to be associated with a decreased risk for acute lymphoblas-
tic leukemia  [107]  and childhood acute leukemia  [108] .

  Methionine Synthase  
 MTR is a cobalamin (vitamin B 12 )-dependent enzyme that catalyzes the 5-methyl-THF-

dependent remethylation of homocysteine to methionine ( fig. 1 ). MTR activity is essential to 
supply methionine for AdoMet synthesis and the transmethylation reactions ( fig. 1 ), and to 
prevent the accumulation of homocysteine and its conversion to AdoHcy. MTR is an essen-
tial enzyme in mice; mice lacking MTR exhibit embryonic lethality  [112] . Although MTR 
activity is redundant with betaine-homocysteine methyltransferase which can also remeth-
ylate homocysteine to form methionine, its expression is limited to the liver and kidney, 
whereas methionine synthetase displays ubiquitous expression  [113] .

  Inborn errors of metabolism associated with MTR, including the P1173L mutation, re-
sult in an autosomal recessive disease characterized by homocysteinemia, homocystinuria, 
hypomethioninemia, megaloblastic anemia, neural dysfunction, and mental retardation 
 [114] . The common MTR polymorphic variant, A2756G, which affects the domain involved 
in methylation and activation of the vitamin B 12  cofactor  [115] , is associated with more sub-
tle clinical outcomes; including decreased plasma homocysteine levels  [116]  and aberrant 
methylation in patients with colorectal, breast, and lung tumors  [117] , and is a risk factor for 
systemic lupus erythematosus  [118] , bipolar disorder, schizophrenia  [119] , spina bifida  [120] , 
orofacial clefts  [121] , nonsyndromic cleft lip and palate  [122]  and Down’s syndrome  [123] . 
This variant was also shown to reduce  MLH1  promoter hypermethylation in colorectal can-
cer  [124] .

  Glycine N-Methyltransferase  
 Glycine N-methyltransferase (GNMT) is a methyltransferase that catalyzes the AdoMet-

dependent methylation of glycine to sarcosine. The primary function of this reaction is to 
regulate and buffer the AdoMet/AdoHyc ratio and prevent AdoMet accumulation. Mice 
lacking GNMT exhibit fatty liver with a 36-fold elevation in AdoMet concentrations and a 
100-fold increase in the AdoMet/AdoHcy ratio  [125] . Humans with loss-of-function GNMT 
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mutations present with similar metabolic disruptions  [125] . GNMT expression is regulated 
by other nutrients, including retinoic acid  [126]  and glucocorticoids  [127] ; this regulation of 
GNMT expression provides a mechanism whereby nutrients unrelated to 1-carbon metabo-
lism signal influence chromatin methylation and epigenetic processes  [12] . The GNMT 
C1289T variant was shown to be associated with elevated plasma total homocysteine con-
centrations in women with the MTHFR C677T genotype  [128] .

  One-Carbon Metabolism in Mitochondria 
 Mitochondria play an important role in generating formate for AdoMet synthesis in the 

cytoplasm, but our understanding of the pathway and its regulation is incomplete, including 
its role in folate-associated pathologies and cellular methylation reactions. A connection be-
tween mitochondrial 1-carbon metabolism and homocysteine has been established in pa-
tients with nonketotic hyperglycinemia, an autosomal recessive inborn error of metabolism 
caused by mutations in the P-protein or T-protein of the glycine cleavage system  [129] . This 
system accounts for nearly 40% of overall glycine flux in humans and the formate produced 
from glycine catabolism makes major contributions to 1-carbon flux through cytoplasmic 
1-carbon metabolism  [130] . Mutations in the glycine cleavage system are associated with el-
evated homocysteine levels in cerebrospinal fluid, severe mental retardation, seizures, apnea, 
and hypotonia, but their impact on cellular methylation has yet to be established  [131] .

  Concluding Remarks 

 Folate-mediated 1-carbon metabolism is a conduit that links cellular metabolism to the 
epigenetic machinery through the common molecule, AdoMet. There is strong evidence that 
changes in the cellular methylation potential (AdoMet/AdoHcy ratio), induced by changes 
in cellular metabolism, can influence the activity of both DNA and histone methyltransfer-
ases and the expression of DNA methyltransferases, and thereby alter chromatin methyla-
tion patterns. These changes in chromatin methylation can be global and/or allele specific. 
It remains to be established how changes in the cellular methylation potential can induce 
allele-specific alterations in genome methylation, including the mechanisms underlying the 
targeting of specific alleles. Likewise, the establishment of pathways that link B-vitamin nu-
trition, cellular methylation and downstream effects on gene expression is needed to eluci-
date mechanisms underlying B-vitamin-associated pathologies. Finally, understanding the 
relative contributions of genetic variation and environment (including nutrition) to epigen-
etic processes is essential to the design of nutritional and/or pharmaceutical approaches for 
the prevention and management of chronic disease.
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