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Abstract
Adolescence is the transition from childhood to adulthood, with onset marked by puberty and the
offset by relative independence from parents. Across species, it is a time of incredible change that
carries increased risks and rewards. The ability of the individual to respond adequately to the
mental, physical and emotional stresses of life during this time is a function of both their early
environment and their present state. In this article, we focus on the effects that acute threat and
chronic stress have on the brain and behavior in humans and rodents. First, we highlight
developmental changes in frontolimbic function as healthy individuals transition into and out of
adolescence. Second, we examine genetic factors that may enhance susceptibility to stress in one
individual over another using translation from genetic mouse models to human neuroimaging.
Third, we examine how the timing and nature of stress varies in its impact on brain and behavior.
These findings are discussed in the context of implications for adolescent mental health and
illness.
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Introduction
Recent reports in the US suggest that stress is taking a toll on the physical and mental health
of Americans and their families (APA, 2010), with reports of stress levels exceeding what
families consider to be healthy in the majority of homes. It should come as no surprise then
that stress related disorders including anxiety and depression affect as many as 10% of our
youth, making them the most prevalent of the developmental psychiatric disorders (Newman
et al., 1996, Pollack et al., 1996, Kim-Cohen et al., 2003, Kessler et al., 2005, Merikangas et
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al., 2010) This article highlights recent studies on the impact of stress on the brain and
behavior across development and across species that may help to explain the high incidence
of anxiety and stress related disorders during adolescence.

Overview
Stress occurs when mental, emotional and or physical demands exceed the regulatory
capacity of the organism. Situations that are highly unpredictable or uncontrollable are
examples of highly stressful environments (e.g., institutionalization, warfare) (Koolhaas,
2011)). Such environments threaten the survival or coping ability of the organism. When
such threats occur, the nervous system responds by releasing stress hormones that help put
the organism in an alert state and ready for action. While moderate stress can be adaptive in
helping the animal respond to the situational demands, chronic stress can have lasting
negative consequences (Shonkoff et al., 2009). Thus, stress can vary along dimensions of
frequency, duration (e.g. acute or chronic), and magnitude, each of which has different
implications for the stability of the animal. We focus on the adaptive and maladaptive
effects of psychological stress across different points in development in this paper.

We highlight three approaches that examine the impact of emotionally charged or
environmentally demanding events that can lead to stress. In the context of this review, a
potential threat can be a stressor depending on how one perceives that threat. Since threat is
invariably associated with negative emotions, how well we can regulate those emotions can
influence whether we perceive it as a psychologically stressful event. We begin with a brief
review of threat related brain circuitry. We then present findings from recent human imaging
and mouse studies that illustrate developmental differences in response to potential threat
highlighting changes during the period of adolescence. Second, we describe mouse and
human genetic studies that illustrate individual variability in response to threat. We end by
providing an example of prolonged early stress in humans; specifically those reared in
institutions abroad and illustrate how such challenging environments impact later behavioral
and neural responses to potential threat.

Stress effects on the brain
Major circuits involving the amygdala/hippocampal complex together with the prefrontal
cortex support behaviors related to threat processing and vigilance (Lupien et al., 2009).
Threat results in the release of stress hormones that target regions of the brain and major
muscles key for flight or flight. Under non-stressful conditions, these hormones help to
support growth and development (De Kloet et al., 1998). However, under conditions of
challenge the release of hormones suppress growth and repair in order to support functions
necessary for survival. Especially key to the stress response is the release of glucocorticoids
that redistribute glucose to the body to help the individual overcome the threat or challenge.
Failure to activate the stress response places the organism in a fragile state. Yet, failure to
inhibit the stress response can result in disease and lasting adverse effects on growth and
development.

This article focuses on the effects of psychological stressors. Psychological stressors, in
contrast to physiological ones (e.g., hypoxia), require higher order processing and
interpretation of sensory information, thus making connections with limbic and cognitive
circuitry crucial for reacting to this type of stressor. Specifically the amygdala (Davis, 1992)
appears to be critical in activating the stress response to cognitive-emotional challenge and
threat while hippocampal and prefrontal regions appear critical in the regulation of the stress
response. For the purposes of this review we will focus predominantly on frontoamygdala
circuitry implicated in threat processing (see Figure 1).
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The majority of human and animal stress studies have focused on the effects of stress on the
hippocampus, but more attention has been given to the amygdala and prefrontal cortex in
recent years (Liston et al., 2009). A large body of research, beyond the scope of this paper,
has documented detrimental effects of stress on the hippocampus. In brief, these studies
show that repeated threat or chronic stress leads to decreased hippocampal volume, dendritic
spine density, and a remodeling of synaptic terminals of this region (Magarinos et al., 1997).
If the stressor is short-lived, these effects are reversible (McEwen, 1998). However, if stress
occurs over a period of months or years it can result in irreversible apical dendritic atrophy
and even cell death (Uno et al., 1989). The amygdala, in contrast to the hippocampus, shows
proliferative effects with stress. Specifically, stress and/or the administration of stress
hormones leads to enhanced dendritic arborization and increased spine density (Vyas et al.,
2002, Vyas et al., 2003, Mitra et al., 2005) that may be less reversible than the hippocampus
(Vyas et al., 2004). Human imaging studies show parallel results of stress on these regions,
with individuals who have experienced high levels of stress showing smaller hippocampal
volume (Bremner et al., 1995, Gurvits et al., 1996, Bremner et al., 1997), larger amygdala
volume (Tottenham et al., 2010), and elevated amygdala activity to cues of threat relative to
non-stressed individuals (Liberzon et al., 1999, Rauch et al., 2000, Shin et al., 2005).

Repeated stress has been shown to have profound effects on prefrontal functions too (e.g.,
Arnsten, 1999, Mizoguchi et al., 2000, Bland et al., 2004, Cook and Wellman, 2004,
Moghaddam and Jackson, 2004, Maroun, 2006, Radley et al., 2006, Del Arco et al., 2007),
by diminishing the ability to flexibly regulate attention, actions and affect (Phelps et al.,
2004, Liston et al., 2006b). Whereas the amygdala and hippocampus are involved in
learning about cues and contexts that signal threat, the prefrontal cortex has been suggested
to be involved in “un-learning” these associations (Morgan and LeDoux, 1999, Nair et al.,
2001, Herry and Garcia, 2002, Gottfried and Dolan, 2004, Phelps et al., 2004, Santini et al.,
2004, Mickley et al., 2005, Akirav and Maroun, 2006, Kalisch et al., 2006, Corcoran and
Quirk, 2007, Milad et al., 2007). Failure to recognize when environmental cues and contexts
are no longer threatening (Quirk and Gehlert, 2003) has been suggested to be at the very
core of anxiety and stress related disorders that peak in diagnosis around adolescence.

Adolescence: A time of stress
By definition, adolescence poses new environmental demands on the organism, as the
individual moves from dependence on parents to relative independence. As such, the
adolescent must rapidly adapt to new social, sexual, and intellectual challenges (Romeo,
2010, Spear, 2010). In a series of recent experiments we examined changes in the brain and
behavior to threat during adolescence. Our work uses two distinct approaches. The first
approach involves the use of naturalistic cues (e.g., a frightened face) that over a lifetime
become associated with potential threat in the environment. The second behavioral paradigm
involves experimentally manipulating a neutral stimulus to take on aversive associations
using Pavlovian fear conditioning. This conditioning involves pairing a neutral cue (e.g.,
tone) repeatedly with an aversive stimulus (e.g., shock), until the neutral cue takes on
noxious properties that mimic the aversive stimulus through associative learning. Both
approaches have been used to determine how well an individual can suppress a fear response
when danger cues and contexts are no longer a source of threat, but differ in behavioral
validity when considering developmental and species differences that we will discuss. We
present converging evidence for developmental variation in fear regulation using both of
these approaches below.

Transitional Studies of Threat
In a series of neuroimaging studies of adolescents, we have examined inflections in behavior
as the individual transitions into and out of adolescence (Galvan et al., 2006, Hare et al.,
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2008, Somerville and Casey, 2010). In the most relevant of these studies, we examined
responses to threat cues (fearful faces) in 60 children, adolescents, and adults with functional
magnetic resonance imaging (fMRI). This study went beyond examining the magnitude of
brain activity that has been shown by several groups to be higher in adolescents than in
adults to such cues (Monk et al., 2003b, Ernst et al., 2005, Rich et al., 2006, Williams et al.,
2006, Guyer et al., 2008a, Guyer et al., 2008b, Guyer et al., 2009) to show specific changes
in adolescents to these threat cues relative to both adults and children. We examined not
only transient patterns of frontolimbic activity, but changes in activity as a function of
repeated exposure (Hare et al., 2008).

Our adult human results showed that reaction times to threat cues were longer than to neutral
ones (Hare et al 2005). Reaction times were positively associated with amygdala activity
and negatively associated with the ventromedial prefrontal activity. Adolescents showed an
initial exaggerated amygdala response to cues that signal threat (fearful faces) relative to
children and adults (see Figure 2, Hare et al., 2008). This initial heightened response in
amygdala activity was age-dependent and did not correlate with symptoms of anxiety.
Although several groups have shown similar elevated amygdala activity to emotional
pictures in adolescents relative to adults (Monk et al., 2003a, Guyer et al., 2008b) few
studies have shown a distinct pattern in adolescents from both children and adults. This
response was attenuated with repeated presentation of the fearful face (i.e., exposure to
empty threat) across experimental trials. The extent to which activation of the amygdala
diminished with time was correlated with ratings of everyday anxiety as measured by the
Spielberger trait anxiety rating scale (Spielberger et al., 1988). These findings suggest that
initial emotional reactivity as indexed by elevated amygdala activity may be typical of or
normal for adolescents, but that failure of this response to subside over time with no
impending threat is atypical and may be indicative of heightened anxiety during this period.
During adolescence, when the amygdala response is heightened relative to that observed in
children and adults, more top down prefrontal control may be needed to effectively attenuate
the fear response. Failure to dampen this response may lead to symptoms and ultimately
diagnosis of anxiety and stress related disorders.

Translational Studies of Threat
In a recent parallel study of adolescent humans and mice, we examined sensitivity to threat
cues. In contrast to the previous studies, instead of using naturalistic cues (fearful faces) we
used neutral cues to control for the amount of history with the cue of threat. Naturalistic
threat cues come to be associated with danger over a lifetime. However, our experiences
over a lifetime are not equivocal and are limited by our age and opportunity for such
experiences. For example, a child may have fewer experiences of dangerous situations or
threats than an adult, and an anxious child may have many more experiences of threat than a
non-anxious child. These experiences will differentially impact threat-related circuitry. Fear
learning paradigms are thus advantageous in that they can assess fear learning equivalently
in typically and atypically developing humans. Second, because there is a high degree of
neural and behavioral conservation across species, fear learning can be assessed equivalently
in humans and mice. The translation of findings from human to mouse provides the added
opportunity of delineating mechanisms of change in mice that would be more difficult in
developing humans.

In our experiments we used a Pavlovian fear conditioning paradigm to more directly
examine how responses to threat change during the period of adolescence (Lau et al., 2008,
Lissek et al., 2009, Pine, 2009, Waters et al., 2009, Britton et al., 2011, Lau et al., 2011,
Pattwell et al., 2012). Specifically we wanted to examine the ability of the adolescent to
regulate fear once the threat of fear was removed (i.e., extinction learning). We tested over
80 individuals between the ages of 5 and 28 using skin conductance response (SCR) to
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measure physiological responses of arousal during both fear conditioning and extinction
(Fere, 1888, Cacioppo et al., 2007). Because of the developmental nature of this study we
used an aversive sound for the human subjects rather than shock as our aversive stimulus
and paired it repeatedly with a neutral stimulus (yellow or blue square). Our results indicated
no effect of age on fear acquisition, but a significant effect on fear extinction (Pattwell et al.,
2012). Adolescents showed attenuated fear extinction relative to both children and adults
(Figure 3). This effect remained when co-varying for both gender and trait anxiety in the
humans.

In a parallel study with mice postnatal days (P)23, 29 and 70, we used freezing behavior to
measure the fear response, electric shock as the unconditioned aversive stimulus, and a tone
as the conditioned stimulus. We observed a similar developmental pattern. The adolescent
(P29) mice, like human subjects, showed diminished fear extinction learning compared to
the preadolescent and adult mice. These findings are consistent with rodent studies that
show adolescent rats require twice as many extinction trials as adults, or prolonged duration
of the conditioned stimulus to achieve reductions in conditioned fear behavior comparable to
those seen in adult rats (McCallum et al., 2010, Lai et al., 2012). Thus, adolescence is a time
when threat cues appear to be highly salient and more resistent to exinction than at any other
time in development.

The mouse model provides the opportunity to assess the mechanism underlying the
conserved age differences in fear extinction learning across species. As such, we used
immunohistochemical and electrophysiological methods to assess neurobiological changes
in frontolimbic circuitry in the mice across developmental stages. We focused on the
infralimbic cortex because of its role in extinction learning (Santini et al., 2004) and because
of the behavioral findings indicating diminished extinction learning in adolescents. We
measured activity-induced expression of the immediate early gene c-Fos in the infralimbic
cortex. Consistent with previous studies, the density of c-Fos-labeled cells in the infralimbic
cortex of adult mice was significantly higher than non-extinguished, fear-conditioned
controls. In contrast, there was no change in density of c-Fos labeling in the adolescent (29-
day-old) mice. These data suggest that the neural circuit engaged by fear extinction learning
in adults is not active during adolescence, providing a likely neural substrate for the
inefficiency of cortical control of fear responses during adolescence.

To further delineate changes in frontoamygdala circuitry with age, we performed
electrophysiological recordings in ventromedial prefrontal cortex (vmPFC) brain slices of
mice after both fear acquisition and fear extinction. Previously it has been shown that fear
conditioning involves a decrease in intrinsic excitability of infralimbic cortex whereas fear
extinction reversed this decrease in excitability (Santini et al., 2008). Electrophysiological
recordings at infralimbic and prelimbic cortex synapses across age showed a fear-
conditioning-induced potentiation of prelimbic synapses present in adult mice that was
absent in adolescent mice. Extinction-induced enhancement of infralimbic cortex synaptic
plasticity in adult mice was lacking in adolescent mice (Pattwell et al., 2012)

Together, these studies suggest blunted regulation of amygdaladependent fear responses
during fear extinction in adolescents. These findings may help provide novel insights into
the heightened prevalence and treatment of anxiety disorders during adolescence, as the
main form of cognitive behavioral therapy relies on principles of extinction learning.

Genetic Factors
The previous work is consistent with different developmental trajectories of distinct limbic
brain regions being involved in adaptive fear responses. However, within any developmental
stage there is marked individual variability. An important source of variability is that of
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genetic variation. The main avenues for understanding gene function in anxiety and stress
related disorders have been human genetic association studies on one end and genetically
engineered mouse models on the other. We have used brain imaging to link structural and
functional abnormalities seen in knockout/transgenic mouse models to abnormal patterns of
brain activity seen in humans to bridge these (Casey et al., 2010). In an effort to implement a
translational approach to human genetic variability, we focused on a common polymorphism
in the human gene for brain-derived neurotrophic factor (BDNF). BDNF is a growth factor
that plays a central role in neuronal survival, growth, and synaptic plasticity---all core
aspects of associative learning in the central nervous system and adaptive fear learning in
particular. Human populations contain a common single nucleotide polymorphism (SNP)
that causes a valine-to-methionine substitution at codon 66 (Val66Met). This polymorphism
leads to decreased trafficking of BDNF into the regulated secretory pathway, which in turn
leads to impaired activity-dependent release of BDNF. The BDNF gene is highly conserved
from mouse to human, and wild-type mice naturally express the ancestral valine form of the
BDNF peptide. To study the effects of the human Val66Met polymorphism in mice, we
created a knock-in mouse with a BDNF protein identical to the wild type except it contains a
methionine in codon 66 (BDNFmet). Hippocampal neurons obtained from these BDNFmet
mice have impaired activity-dependent BDNF secretion and show reductions in dendritic
arborization. These mice also exhibit hippocampaldependent learning deficits similar to the
findings in humans with the variant human BDNF, validating this mouse as a model of the
human Val66Met polymorphism.

We examined the impact of the variant BDNF on fear regulation using similar fear
conditioning and extinction paradigms in mice and humans as those described above. In
adult humans and mice, we observed less extinction in Met allele carriers than in Val allele
carriers, as shown in Figure 4 (Soliman et al., 2010). Moreover, human functional
neuroimaging data provided neurobiological validation of the cross-species translation.
Specifically, we showed alterations in frontoamygdala circuitry, as a function of BDNF
genotype. During extinction, Met allele carriers showed less vmPFC activity (Figure 4c) but
greater amygdala activity (Figure 4d) than non-carriers. These findings suggest that cortical
regions essential for extinction in animals and humans are less responsive in Met allele
carriers. Moreover, amygdala recruitment which should show diminished activity during
extinction was elevated in Met allele carriers, suggesting less dampening by vmPFC and
more fear response as generated by amygdala output to neuromodulatory systems, the
hypothalamus, periaqueductal gray, and vagus (LeDoux, 2000, Phelps et al., 2004).

These genetic findings provide an example of bridging human behavioral and imaging
genetics with a molecular mouse model to suggest a role for BDNF in anxiety and stress.
Individuals with the BDNF Met allele may be more vulnerable to developing symptoms of
anxiety as teens, in that they show higher and prolonged patterns of amygdala activity and
less vmPFC activity in response to threat. During a period when evaluating social cues from
peers is essential in forming and maintaining healthy peer relationships, the failure to
suppress heightened emotional responses to empty threat (e.g., failure of a peer to notice or
smile at a teenager, without any negative intent) could lead to over interpretation and
ruminations of self-doubt (Guyer et al., 2008a, Monk et al., 2008). The genetic data provide
an example of how an imbalance in amygdalavmPFC coupling during typical development
could predispose the adolescent to anxiety and, when exacerbated by an individual factor
such as the BDNF Met66 allele, lead to clinical levels of anxiety.

Effects of Early Adversity
The variability observed in both our developmental studies of fear regulation may in part be
due to genetic variation, but clearly individual experiences impact behavior. A number of
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studies have shown the significance of environmental factors such as early adversity and
stress on the brain and on behavior (Liston et al., 2006a, Liston et al., 2009, Tottenham et
al., 2009, 2010, Tottenham et al., in press). Individuals who experience adversity or multiple
traumas during development, may be especially vulnerable for developing symptoms of
anxiety or depression as teens or adults. Non-human animal studies have shown that early
rearing conditions can have long-term consequences on emotional behavior and the effects
of early experience can be more significant than later experiences (Sabatini et al., 2007).
Many of these behavioral outcomes are associated with changes in limbic circuitry. Within
this circuitry, the region of the amygdala is particularly sensitive to early life rearing
conditions (Plotsky et al., 2005, Sabatini et al., 2007, Kikusui and Mori, 2009) and its
growth and hyperactivity under such stress, have been shown to mediate the expression of
hyperemotionality as measured by increased anxiety-like behaviors in animals (Vyas and
Chattarji, 2004).

We recently examined the effects of suboptimal early rearing conditions on human
development by examining threat related behavior in children and adolescents reared in an
orphanage before being adopted to the U.S. These children exhibit elevated emotional
reactivity (Colvert et al., 2008) more anxiety (Casey et al., 2009, Zeanah et al., 2009),
internalizing problems (Juffer and van Ijzendoorn, 2005) and difficulty regulating behavior
in emotionally arousing contexts (Tottenham et al., 2009) - a profile that can persist for
many years. Our question was to what extent these children could suppress threat responses
with repeated presentation of an empty threat such as a fearful face. We used the same
paradigm as that described earlier by Hare et al. (2008) and collected both structural and
functional MRI data. Behavioral and imaging data were collected from nearly 60 children
(28 adopted and 27 non-adopted) with an average age of 10 years (Tottenham et al., 2010).

Our structural MRI results revealed larger amygdala volumes for children adopted from
institutions abroad, specifically for those adopted at ages older than 15 months (see Figure
#5). No differences were observed in the hippocampus, however. Given that several years
have passed between the offset of early institutionalization and when children visit the lab
for an MRI, it is possible that hippocampal volumes have recovered from any stress effects,
while their amygdalae have not. These findings would parallel animal studies showing that
changes in the hippocampus and amygdala following termination of stress often result in
recovery of the hippocampus but not the amygdala (Vyas et al., 2004).

Most striking of the imaging findings were those from the functional imaging experiment.
Specifically, children reared in orphanges showed elevated amygdala activity to emotional
distractors, relative to children reared with their biological families (see Figure 6). The
enhanced amygdala activity in the adopted children may suggest that they were less able to
suppress irrelevant emotional information relative to the comparison group when performing
the task. Examination of prefrontal regions involved in modulating the amygdala (Phelps et
al., 2004, Quirk and Beer, 2006) showed atypical activity. Unlike the comparison children,
the adopted children showed little to no change in prefrontal regions. In healthy populations,
the amygdala and ventromedial prefrontal cortex showed inverse patterns of activity during
performance of such tasks (Phelps et al., 2004, Hare et al., 2008), which might be mediated
by the integrity of the white matter tracts between them (Kim and Whalen, 2009).
Populations with anxiety and stress related disorders show less inverse coupling between
theses two regions (Shin et al., 2006, Marsh et al., 2008). Therefore the findings are
consistent with less top down prefrontal control of amygdala related fear responses in the
children raised in the orphanage, which is supported by reports of reduced white matter
between these regions in an independent sample of previously institutionalized children
(Govindan et al., 2009).
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Conclusion
In this review, we described three sets of experiments showing differential responses to
acute threat and chronic stress across development. In the first, set of studies we illustrated
developmental differences in the regulation of the fear response to potential threat in both
mice and humans. Specifically, we showed that adolescents have diminished ability to
suppress fear responses when the threat is no longer present. Second, we described parallel
human and mouse genetic experiments that showed striking individual variability in
response to threat and the underlying neural circuitry as a function of genetic factors.
Finally, we provided evidence for environmental factors such as the early life stress of
institutional rearing on the fear response and underlying neural circuitry. Each of these
approaches alone provides limited information on developmental, genetic and environmental
factors that influence the impact of stress on behavior and later outcomes. Taken together,
the findings indicate that increased risk for anxiety and stress related disorders in
adolescence may be associated with different developmental trajectories of subcortical
emotional systems relative to cortical control regions involved in suppressing emotional
responses. This differential development can lead to an imbalance in control by subcortical
regions over prefrontal ones leading to heightened emotional reactivity. Although elevated
emotional reactivity appears to be a typical part of development during the period of
adolescence, failure to suppress that emotional reactivity over time seems to be associated
more with individual differences in, or symptoms of, anxiety. Both environmental (e.g.,
early institutional experience) and genetic (BDNF Val66Met polymorphism) factors can
exacerbate the imbalance between limbic and cortical regions resulting is dysregulation of
limbic circuitry and sustained rather than transient emotional responses to cues of threat.

Our findings suggest that it is sustainment of the emotional response that leads to anxiogenic
feelings and possible risk for anxiety disorders. Important future directions will be to
consider how genetic, environmental and developmental factors inter-relate in sufficiently
large human samples or in mouse models to directly test these effects from a developmental
perspective. Such genetic studies will need to entertain dynamic models that capture the
effects of changing environmental and developmental demands on the organism.
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Abbreviations

BDNF brain-derived neurotrophic factor

BDNFmet methionine in codon 66 of the BDNF protein

fMRI functional magnetic resonance imaging

MRI magnetic resonance imaging

Met methionine

P postnatal day

PI previously institutionalized

SCR skin conductance response

Val66met valine-to-methionine substitution at codon 66
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Val valine

vmPFC ventromedial prefrontal cortex
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Highlights

• The effects that stress has on brain and behavior in humans and rodents

• Developmental changes in frontolimbic function during the transition into and
out of adolescence

• Genetic factors that may enhance susceptibility to stress in one individual over
another

• We examine how the timing and nature of stress varies in its impact on brain
and behavior
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Fig. 1. Frontoamygdala circuit of Fear
A simplified cartoon of the brain circuitry involved in emotion reactivity and regulation
related to threat processing. The amygdala receives multimodal sensory signals that may
initiate a fear response, while top-down input from the infralimbic prefrontal cortex to the
amygdala can dampen or extinguish fear responses generated there. Abbreviations: BA,
basal amygdala; CE, central amygdala; IL, infralimbic prefrontal cortex; ITC, intercalated;
LA, lateral amygdala; PL, prefrontal cortex; vmPFC, ventromedial prefrontal cortex.
Adapted from Casey et al 2013.
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Fig. 2. Amygdala response to empty threat as a function of age and symptoms of anxiety
(A) Depiction of threat stimulus and location of activation in the amygdala. Middle:
Amygdala activity to empty threat (fearful faces) plotted as a function of age. (B) Scatter
plot of the correlation between Spielberger trait anxiety scores and habituation (decrease
from early to late trials) of amygdala activity for teens and adults (note: anxiety scale was
not appropriate for under 13 years) r = −.447, p < 0.001. Adapted from Hare et al., 2008.
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Fig. 3. Developmental variation in fear extinction learning
(B) Extinction learning is attenuated during adolescence in the human as measured by less
change in galvanic skin response with repeated presentation of the conditioned stimulus
alone during extinction trials. (C) This finding is paralleled in the mouse as measured by less
change in freezing behavior. Reproduced with permission from (Pattwell et al 2012).
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Fig. 4. Genetic variation in fear extinction learning and limbic activity
(A) Extinction learning is attenuated in mice with the BNDF Met (M) allele relative to non-
Met allele (V) carriers as measured by less change in freezing behavior with repeated
presentation of the conditioned stimulus alone during extinction trials. (B) This finding is
paralleled in the human as measured by less change in galvanic skin response. (C) Brain
activity as indexed by percent change in magnetic resonance (MR) signal during extinction
in the ventromedial prefrontal cortex (vmPFC) by genotype (x, y, z = −4, 24, 3), with Met
allele carriers having significantly less activity than Val/Val homozygotes (VM < VV is
blue), image threshold P < 0.05, corrected. (D) Genotypic differences in left amygdala
activity during extinction (x, y, z = −25, 2, −20) in 70 humans, with Met allele carriers
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having significantly greater activity than Val/Val homozygotes (VM > VV is orange), image
threshold P < 0.05, corrected. *P < 0.05. **MM were included in the analysis with VM, but
plotted separately to see the dose response. All results are presented as mean +/− SEM. VV,
Val/Val; VM, Val/Met; MM, Met/Met. Adapted from Soliman et al 2010.
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Fig. 5. Structural changes in limbic structures with early adversity
(A) Anatomical segmentation of the amygdala. (B) Children institutionalized for more than
15 months had larger amygdala volumes than those institutionalized for less than 15 months,
or control children. No differences in hippocampal volume were observed between groups.
Adapted from Tottenham et al., 2010.
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Fig. 6. Frontoamygdala activity to distracting emotional stimuli with early adversity
(A) Previously institutionalized (PI) children exhibited greater amygdala activity in response
to emotional distractors than their typically reared counterparts, suggesting an inability to
suppress emotionally laden irrelevant information. (B) Post-hoc t-tests of activity vs.
baseline. Adapted from Tottenham et al., 2011.
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