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Background: Some proteins are ubiquitinated on their N
terminus, yet the enzymes that facilitate N-terminal
ubiquitination are unknown.
Results: Ube2w has a novel active site and ubiquitinates
the N terminus of substrates.
Conclusion: Ube2w is an N terminus-ubiquitinating E2.
Significance: Ube2w is the first identified E2 that ubiq-
uitinates the N terminus of substrates.

Attachment of ubiquitin to substrate is typically thought to
occur via formation of an isopeptide bond between the C-termi-
nal glycine residue of ubiquitin and a lysine residue in the sub-
strate. In vitro, Ube2w is nonreactive with free lysine yet readily
ubiquitinates substrate. Ube2w also contains novel residues
within its active site that are important for its ability to ubiquiti-
nate substrate. To identify the site of modification, we analyzed
ubiquitinated substrates by mass spectrometry and found the
N-terminal -NH2 group as the site of conjugation. To confirm
N-terminal ubiquitination, we generated lysine-less and N-ter-
minally blocked versions of one substrate, the polyglutamine
disease protein ataxin-3, and showed that Ube2w can ubiquiti-
nate a lysine-less, but not N-terminally blocked, ataxin-3. This
was confirmed with a second substrate, the neurodegenerative
disease protein Tau. Finally, we directly sequenced the N termi-
nus of unmodified and ubiquitinated ataxin-3, demonstrating
that Ube2w attaches ubiquitin to the N terminus of its sub-
strates. Together these data demonstrate that Ube2w has novel
enzymatic properties that direct ubiquitination of the N termi-
nus of substrates.

The attachment of ubiquitin to a substrate occurs through a
cascade of three enzymes: the E1 ubiquitin-activating enzyme,
E2 ubiquitin-conjugating enzyme, and E3 ubiquitin ligase.
Ubiquitination typically results in the formation of an isopep-
tide bond between the C-terminal glycine residue of ubiquitin
and a lysine residue in the substrate protein. Less commonly
than lysine, other residues including serine, threonine, and cys-
teine have been reported to be conjugated with ubiquitin via
formation of oxyester and thioester bonds, respectively (1–8).
In addition to conjugation to the side chain of amino acids,
ubiquitin can also be conjugated to the N-terminal -NH2 group
of some proteins (9–17).
N-terminal ubiquitination has been shown to target a num-

ber of proteins for degradation including transcription factors,
cell cycle regulators, and viral proteins (18). The enzymesmedi-
ating N-terminal ubiquitination, however, remain elusive, and
this gap in knowledge represents a major barrier to achieving a
mechanistic understanding of N-terminal ubiquitination.
Recently, we identified Ube2w as an E2 that functions with the
ubiquitin ligase C terminus of Hsc70-interacting protein
(CHIP)3 (19). Here we show that the E2 Ube2w is not reactive
toward free lysine and contains novel residues in its active site
that are important for activity. We further show that Ube2w
modifies the N terminus of its substrates rather than lysine
residues. Together the results identifyUbe2w as the first known
N terminus-modifying E2.

EXPERIMENTAL PROCEDURES

Nucleophile Reactivity Assays—Reaction mixtures contain-
ing 20�ME2, 20�MUb, 0.1�ME1, and 5mMATP/MgCl2 in 50
mMTris, 50mMKCl, pH 7.5, were incubated for 15min at 37 °C
prior to the addition of indicated L-amino acids (Sigma). Amino
acids were added to a final concentration of 50 mM and incu-
bated for 15 min at 37 °C, quenched with nonreducing sample
buffer, and run on 12% SDS-PAGE without boiling. Samples
were visualized by colloidal blue Coomassie stain (Invitrogen).
Sequence Alignment—Amino acid sequences of human E2s

were downloaded from National Center for Biotechnology
Information (NCBI), entered into the BiologyWorkbench, and
aligned with CLUSTALW.
Thioester Assay—Reactionmixtures containing 20 �M E2, 20

�MUb, 0.1 �M E1, and 5mMATP/MgCl2 in 50mMTris, 50 mM

KCl, pH 7.5, were incubated for the indicated time at 37 °C.
Reactions were quenched with sample buffer with or without
�ME. Reactions with �ME were heated for 4 min at 95 °C, and
all samples were then separated by 12% SDS-PAGE and visual-
ized by colloidal blue Coomassie stain (Invitrogen).
Ubiquitination Assays—Ubiquitination was typically per-

formed at 37 °C in 10-�l mixtures containing reaction buffer
E1mix (5 mM ATP, 5 mM MgCl2, 100 nM Ube1, and 500 �M
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ubiquitin), 1 �M of the indicated E2, 1 �M CHIP, and 1 �M

substrate (ataxin-3 or Tau). Reactions were stopped by the
addition of SDS-Laemmli buffer and boiling followed by sepa-
ration of proteins by SDS-PAGE and visualization by Western
blotting with appropriate antibodies.
Protein Identification by LC-MS/MS—Protein identification

and ubiquitination sites on ataxin-3 were conducted based on
previously described protocols (20). Briefly, protein bands cor-
responding to unmodified and modified AT3 were excised and
destained with 30% methanol for 4 h. Upon reduction (10 mM

DTT) and alkylation (65 mM 2-chloroacetamide or iodoacet-
amide, with similar results) of the cysteines, proteins were
digested overnight with sequencing grade modified trypsin
(Promega). The resulting peptides were resolved on a nano-
capillary reverse phase column (PicoFrit column, New Objec-
tive) using a 1% acetic acid/acetonitrile gradient at 300 nl/min
and directly introduced into a linear ion-trap mass spectrome-
ter (LTQ Orbitrap XL, Thermo Fisher). Data-dependent
MS/MS spectra on the fivemost intense ions from each full MS
scan were collected (relative collision energy �35%). Proteins
were identified by searching the data against the Human Inter-
national Protein Index database (version 3.5) appended with
decoy (reverse) sequences using the X!Tandem/Trans-Pro-
teomic Pipeline (TPP) software suite. All peptides and proteins
with a PeptideProphet and ProteinProphet probability score of
�0.9 (false discovery rate �2%) were considered positive iden-
tifications and manually verified.
Carbamylation of Proteins—Carbamylation of substrateswas

performed as described previously (21). Purified ataxin-3 or

Tau proteins were incubated in 0.2 M potassium phosphate, pH
6.0, 6 M urea, 50 mM potassium cyanate at 37 °C for 8 h. Reac-
tions were stopped by the addition of 150 mMGly-Gly (Sigma),
and the pH was adjusted to pH 8.1 with 30% K2HPO4, pH 11.0.
Samples were then incubated for 1 h at 37 °C prior to dialysis
against H2O overnight with two H2O changes. The carbamy-
lated protein was then quantified, aliquoted, and frozen at
�80 °C prior to use in assays.
Edman Sequencing—Samples for Edman sequencing were

separated by SDS-PAGE, transferred to PVDF (Immobilon-
PSQ, Millipore), and stained with Ponceau stain. Bands were
excised, and samples were submitted for Edman sequencing
(Alphalyse).

RESULTS

Ube2w Is Nonreactive with Free Lysine—E2s that function
with RING and U-box E3s directly transfer ubiquitin to sub-
strate, typically to a lysine residue. In some cases, E2s transfer
ubiquitin to residues other than lysine, and some E2s are inca-
pable of transferring ubiquitin to lysine (22). To assess the reac-
tivity profile of Ube2w, we compared the intrinsic activity of
Ube2w�Ub (�Ub indicates a thioester bond with E2) and
UbcH5c�Ub with a panel of free amino acids including resi-
dues known to be ubiquitinated: lysine, cysteine, serine, and
threonine as well as arginine, asparagine, glutamine, and histi-
dine (Fig. 1A, top panel). Although UbcH5c�Ub, a known
lysine-reactive E2, discharged ubiquitin in the presence of
lysine and cysteine, Ube2w�Ub reacted only with cysteine (Fig.
1A). Similar results have been observed for another E2, UbcH7,

FIGURE 1. Ube2w has novel enzymatic properties. A, amino acid reactivity of Ube2w�Ub and UbcH5c�Ub. Ube2w or UbcH5c was charged with ubiquitin
for 5 min prior to the addition of the indicated free amino acids for 25 min. Samples were analyzed by Coomassie Blue stain. B, sequence alignment of key active
site residues for select E2s. Green indicates the active cysteine residue, blue indicates conserved key active site residues, and red indicates differences in Ube2w.
H. Sapiens, Homo sapiens; M. Mulatta, Macaca mulatta; B. Taurus, Bos taurus; G. Gallus, Gallus gallus; D. Rerio, Danio rerio; C. Elegans, Caenorhabditis elegans. C,
alignment of Ube2w from different species. Red indicates residues that are nonidentical residues across species. D, thioester formation by Ube2w and
Ube2wH94N. Ube2w or Ube2wH94N was incubated with E1, ubiquitin, and ATP/MgCl2 for either 0 or 5 min prior to the addition of SDS sample buffer with or
without �ME (as indicated). Samples were analyzed by Coomassie Blue stain. E, Ube2wH94N has reduced capacity to ubiquitinate substrate. Tau ubiquitination
reactions were performed with Ube2w or Ube2wH94N for the indicated lengths of time. Samples were analyzed by Western blot for either Tau or CHIP, as
indicated.
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which functions with HECT and RBR (RING-between-RING)
E3s to transfer ubiquitin to the active site cysteine of the E3 (22).
Ube2w, however, transfers ubiquitin in complex with RING/U-
box type E3s that do not have active site cysteine residues to
form thioester bonds with ubiquitin (23). Furthermore, sub-
strates that are ubiquitinated by Ube2w are not sensitive to
reducing agents, arguing against a role for Ube2w in transfer-
ring ubiquitin to a cysteine residue on the substrate (19).
Ube2w Has a Novel Active Site—To gain insight into differ-

ences in active site residues of Ube2w, we performed
CLUSTALW alignment of E2s (Fig. 1B). Among residues
known to be involved in E2 catalysis, Ube2w has a histidine
(His-94) in place of the highly conserved asparagine observed in
other E2s, such as Asn-77 in UbcH5a (Fig. 1B). Additionally,
Asp-117 of UbcH5a and related E2s is thought to be important
for suppressing the pKa of substrate lysine (24, 25), and
although this negatively charged residue is conserved in Ube2w
(Glu-132), it is uniquely surrounded by a cluster of basic resi-
dues, making it unlikely that it could serve a similar function in
deprotonating substrate lysine (Fig. 1B). These features of the
active site of Ube2w are likely important for its activity because
they are highly conserved in Ube2w orthologs across evolution
(Fig. 1C). To begin assessing the importance of these residues in
the active site of Ube2w, we mutated His-94 of Ube2w to the
more commonly found asparagine in related E2s. Although
Ube2wH94N formed a thioester bond with ubiquitin as effi-
ciently aswild-typeUbe2w (Fig. 1D), theH94Nmutationmark-
edly impaired substrate ubiquitination of both Tau and CHIP
(Fig. 1E). Separately, we mutated the basic cluster of amino
acids in Ube2w to resemble UbcH5a, but this caused the
mutant protein to become insoluble, preventing its use in ubiq-
uitination assays (data not shown). Together these results sug-
gest that Ube2w has a novel active site that is necessary for it to
ubiquitinate substrate.
Ube2wUbiquitinates the N Terminus of Substrates—In addi-

tion to internal lysine, serine, threonine, and cysteine residues,
ubiquitin can also be attached to the N-terminal -NH2 group of
select proteins (18). OneHECT type E3 has been demonstrated
to N-terminally ubiquitinate substrate (26), but to date no N
terminus-ubiquitinating E2s have been identified, thus far
excluding RING/U-box type E3s from facilitating N-terminal
modification. To determine where Ube2w ubiquitinates its
substrates, we monoubiquitinated several substrates with
Ube2w and subjected them to mass spec analysis. This analysis
indicated that theUbe2w preferentially ubiquitinates theN ter-
minus of tested substrates including ataxin-3 (Fig. 2A), Tau,
HSP70, HSP90, and Ube2w (data not shown).
In addition to N-terminal ubiquitination of ataxin-3, we also

identified a small number of peptides in which Lys-200 of
ataxin-3 had been ubiquitinated (data not shown). To deter-
mine whether Lys-200 is an important site of conjugation, we
mutated Lys-200 to arginine and observed that eliminating Lys-
200 did not alter ataxin-3 modification by Ube2w (data not
shown). Moreover, mutating all lysines in ataxin-3 to arginine
(ataxin-3K0) did not prevent ataxin-3 ubiquitination by Ube2w
(Fig. 2B). By contrast, altering the N terminus of ataxin-3 either
by adding a GST fusion (GSTataxin-3; Fig. 2B) or by carbamyla-
tion (Carbataxin-3; Fig. 2D), which selectively modifies the N

terminus of proteins (11), inhibited ubiquitination of ataxin-3
byUbe2w (Fig. 2,B andD) but not byUbcH5c (Fig. 2C, data not
shown). To confirm that the observed effects were specific to
Ube2w, we confirmed that UbcH5c, a lysine-reactive E2, was
unable to ubiquitinate ataxin-3K0 yet could ubiquitinate
GSTataxin-3 and Carbataxin-3 (Fig. 2, C and D). Carbamylation
also inhibited ubiquitination of a second substrate, Tau, by
Ube2w (Fig. 2E) but not by UbcH5c (Fig. 2F).
Finally, to confirm that the N terminus is the site of conjuga-

tion by Ube2w, we purified unmodified and ubiquitinated
ataxin-3 and subjected these samples to Edman sequencing.
Unmodified ataxin-3 gave the expected residues for the N ter-
minus of ataxin-3, whereas ataxin-3 ubiquitinated by Ube2w
only gave chromatographs consistent with ubiquitin and lacked
any signal corresponding to the N terminus of ataxin-3, con-
sistent with N-terminal ubiquitination of ataxin-3 (Fig. 2G and
data not shown). In addition, although Edman sequencing of
Tau revealed multiple N-terminal sequences consistent with
partial cleavage of Tau during the purification process (27),
upon ubiquitination by Ube2w, only N-terminal residues con-
sistent with ubiquitin were observed (data not shown). These
results demonstrate that Ube2w preferentially ubiquitinates
the N terminus of substrates.

DISCUSSION

Here we have shown that Ube2w is a non-lysine-reactive E2
with a novel active site. Mutations of the Ube2w active site to
residues found in traditional, lysine-reactive E2s inhibited
Ube2w activity, suggesting that Ube2w has novel enzymatic
properties. We also provide multiple lines of evidence that
Ube2w is an N terminus-modifying E2: 1) mass spectrometry
directly identifiedN-terminalmodification of five substrates; 2)
Ube2w effectively ubiquitinated a lysine-less version of
ataxin-3; 3) modification of the N terminus of two substrates,
ataxin-3 and Tau, inhibited their ubiquitination by Ube2w; and
4) after Ube2w-mediated ubiquitination of these substrates,
only the N-terminal sequence of ubiquitin was obtained upon
Edman sequencing. Together these findings argue that Ube2w
contains a novel active site that mediates N-terminal ubiquiti-
nation of substrates. Ube2w thus represents the first identified
E2 to transfer ubiquitin to the N termini of substrates.
It has been known for some time that certain proteins can be

targeted for degradation via N-terminal ubiquitination (18).
The enzymes responsible for N-terminal modification have
remained elusive. One E3, HUWE1 (HECT, UBA, and WWE
domain-containing 1), has been shown to ubiquitinate lysine-
less MyoD on its N terminus, but this activity may not be phys-
iologically relevant as HUWE1 preferentially modifies lysines
and fails to modify the N terminus of wild-type MyoD (26). By
contrast, eliminating all lysines in ataxin-3 does not alter the
rate or extent of ubiquitination of ataxin-3 by Ube2w, strongly
suggesting that the physiological target of Ube2w is the N ter-
minus of substrates.
In addition to modification of the N terminus of substrates,

we also observed limited modification of internal lysine resi-
dues by Ube2w. We observed modification of Lys-200 of
ataxin-3 (data not shown) and previously observed Lys-2 mod-
ification of CHIP (19). In both cases, however, mutating these
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lysines to arginine did not inhibit the ability of Ube2w to ubiq-
uitinate the substrate, arguing that lysine modification by
Ube2w is not likely to be its primary physiological role.
Ube2w strictlymonoubiquitinates substrates.We have yet to

observe appreciable amounts ofmulti-monoubiquitinated sub-
strate in Ube2w reactions, supporting a restricted role for
Ube2w in N-terminal modification. Intriguingly, Ube2w does
not elongate linear ubiquitin chains as has been observed for
the linear ubiquitin chain assembly complex (LUBAC) (28).
Unlike Ube2w, which attaches ubiquitin to the N terminus of
substrates, LUBAC specifically extends linear polyubiquitin
chains that are attached to an internal lysine residue of one of its
substrates, NF-�B essential modulator (NEMO) (29). Although
LUBAC recognizes and extends polyubiquitin chains via the N
terminus of ubiquitin, Ube2w does not extend polyubiquitin
chains. The failure of Ube2w to extend chains likely reflects the
lack of a noncovalent interaction betweenUbe2w and ubiquitin
(30) as noncovalent interactions with ubiquitin appear to be a
property common to ubiquitin chain-elongating E2s (30–35).
Moreover, Ube2w does not ubiquitinate an N-terminally GST-

tagged version of ataxin-3, suggesting that undefined structural
features of the substrate participate in recognition of substrates
by Ube2w. How Ube2w recognizes its substrates and why it
does not recognize the N terminus of ubiquitin nor GST as a
substrate are important unanswered questions.
Given the novel function of Ube2w as an N terminus-con-

jugating E2, it now will be important to define its physiolog-
ical role in cells. N-terminal ubiquitination has been demon-
strated to target some proteins for degradation via the
proteasome (18). An alternative possible function is sug-
gested by that fact that linear ubiquitin chain formation by
LUBAC participates in signaling pathways (28). It will be
important to identify bona fide in vivo targets of Ube2w to
begin defining the in vivo role of Ube2w. Further work elu-
cidating the outcome of N-terminal ubiquitination by
Ube2w on its substrates will be critical to begin understand-
ing the function of Ube2w in vivo.
During the preparation of thismanuscript, Tatham et al. (36)

also reported that Ube2w N-terminally modified two sub-
strates, small ubiquitin modifier-2 (SUMO-2) and CHIP.

FIGURE 2. Ube2w modifies the N terminus of substrates. A, Ube2w ubiquitinates the N terminus of ataxin-3. Ataxin-3 was ubiquitinated in vitro by Ube2w,
run on SDS-PAGE, and stained with Coomassie Blue. After in-gel digestion with trypsin, peptides were subjected to LC-MS/MS analysis using an orbitrap mass
spectrometer. The resulting MS/MS spectra were searched against the Swiss-Prot human protein database appended with synthetic ataxin-3 using the
x!Tandem/TPP software suite, considering N-terminal ubiquitination as both a fixed and a variable modification. All peptide-to-spectral matches (PSMs) with
a PeptideProphet probability of �0.9 were considered correct assignments. PSMs of modified peptides were manually verified, and a representative spectrum
is shown. Observed b- and y-ion series are indicated. The majority (46/50) of PSMs assigned to N-terminal peptide were ubiquitinated, indicating modification
of the ataxin-3 N terminus. B, Ube2w modifies lysine-less ataxin-3 but not N-terminal GST-tagged ataxin-3. In vitro ubiquitination reactions were performed for
the indicated lengths of time with ataxin-3, K0ataxin-3, or GSTataxin-3. Samples were analyzed by Western blot with anti-ataxin-3 antibody. C, as in B except
employing UbcH5c as the E2 instead of Ube2w. D, chemical modification of the N terminus of ataxin-3 prevents Ube2w-mediated ubiquitination. Ubiquitina-
tion reactions were performed for the indicated lengths of time with ataxin-3 or carbamylated ataxin-3 as substrate. E, as in D but employing Tau or carbamy-
lated Tau as substrate. F, as in E except employing UbcH5c as the E2 instead of Ube2w. G, results of Edman sequencing are consistent with N-terminal
modification of substrates by Ube2w. Unmodified ataxin-3 or ataxin-3 ubiquitinated by Ube2w were transferred to PVDF and Ponceau-stained, and bands
corresponding to unmodified or ubiquitinated ataxin-3 were subjected to Edman sequencing. The predicted sequences for unmodified or ubiquitinated
ataixn-3 are shown. Blank and standard cycles were run prior to each run, and pmols of amino acid observed from each run were quantified.
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