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Turbulence is ubiquitous in nature, yet even for the case of
ordinary Newtonian fluids like water, our understanding of this
phenomenon is limited. Many liquids of practical importance are
more complicated (e.g., blood, polymer melts, paints), however;
they exhibit elastic as well as viscous characteristics, and the
relation between stress and strain is nonlinear. We demonstrate
here for a model system of such complex fluids that at high shear
rates, turbulence is not simply modified as previously believed
but is suppressed and replaced by a different type of disordered
motion, elasto-inertial turbulence. Elasto-inertial turbulence is found
to occur at much lower Reynolds numbers than Newtonian turbu-
lence, and the dynamical properties differ significantly. The fric-
tion scaling observed coincides with the so-called “maximum drag
reduction” asymptote, which is exhibited by a wide range of vis-
coelastic fluids.
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The most efficient method with which to reduce the large drag
of turbulent flows of liquids is through addition of small

amounts of polymers or surfactants. As first observed in the
1940s (1), frictional losses can be reduced by more than 70%
(2, 3), and this technique has found application in oil pipelines,
sewage, heating, and irrigation networks (4, 5). For dilute sol-
utions, the drag is found to reduce with polymer concentration
and eventually approaches an empirically found limit, the max-
imum drag reduction (MDR) asymptote (6, 7). A number of
theories have been put forward to explain the mechanism of drag
reduction and the origin of the MDR asymptote (3). Most of
them invoke the elasticity of long polymer molecules: They are
stretched in strong shear and elongational flow, and they recoil in
vortical regions. It has been shown that this process inhibits
vortices, and hence suppresses the turbulence-sustaining mech-
anism (8–15). It has recently been proposed that such inhibition
may bring dynamics of drag-reducing flows close to the low-
dimensional structures that separate turbulent and laminar flows
in Newtonian turbulence (16), and it has been argued that the
MDR asymptote is a consequence of the marginal dynamics on
this separating boundary. Regarding the effect of polymers on
the onset of turbulence, seemingly conflicting observations have
been reported. Many investigations reported transition delay
(ref. 17 and references therein); that is, the onset was postponed
to a higher Reynolds number (Re; defined as a ratio of inertial to
viscous forces). In other studies (18–20) (largely in pipes of small
diameter), it has been observed that turbulence sets in at a Re
smaller than in the Newtonian case, a phenomenon termed
“early turbulence.” However, in other studies (17, 21), inves-
tigators found that the natural transition point of their pipe
experiment (i.e., the point where the flow becomes turbulent
without additional perturbations) moved to a lower Re compared
with the Newtonian case.
Although the addition of small amounts of polymer reduces

the drag at a large Re, its effect is dramatically different at a
very small Re. In this regime, the flow is controlled by polymer
stretching, orientation, and relaxation, which give rise to aniso-
tropic elastic stresses in the fluid. The magnitude of these stresses,

and the degree of their anisotropy, is set by the product of the
longest relaxation time of polymer molecules and a typical shear
rate, the so-called Weissenberg number (Wi). It has recently been
demonstrated that at a large Wi, the anisotropic elastic stresses
destabilize flows with curved streamlines even in the absence of
inertia, resulting in so-called “purely elastic linear instabilities”
(22, 23). At a yet higher Wi, these instabilities are followed by
a unique type of disordered motion called elastic turbulence,
which exhibits fluctuations at many spatial and temporal scales
(24, 25). A direct transition from laminar to turbulent flows has
also been observed for flows in curved channels (25). In parallel
shear geometries, like flow in straight pipes, purely linear elastic
instabilities are absent (26); however, in principle, there can be
a subcritical transition to elastic turbulence and strong evidence
for such a transition has been found (27–29).
Presently, very little is known about possible interaction be-

tween the two phenomena, Newtonian and elastic turbulence.
The existing theories of drag reduction all share the same con-
ceptual feature: They interpret the resulting flow as a modified
form of ordinary Newtonian shear flow turbulence, with its
properties being determined by the balance between elastic and
viscous stresses (11, 15, 16, 30, 31). Theoretical studies of the
influence of polymers on turbulence in unbounded (30–32) flows,
however, showed some qualitative differences from Newtonian
turbulence; in one case (32), the measured power spectra more
closely resembled those found in elastic turbulence than those
in Newtonian flows.
Here, we perform experiments on viscoelastic pipe flow and

observe that addition of small amounts of polymer postpones the
transition to Newtonian turbulence. However, we find that, ad-
ditionally, there exists a different type of chaotic motion, con-
trolled by the elastic stresses, that can set in at a lower Re than
in the Newtonian case (in agreement with refs. 18–20), and we
demonstrate that this state suppresses Newtonian turbulence. In
particular, we find that after the latter instability sets in, the flow
directly approaches (with increasing Re) the MDR asymptote
without any excursions to friction values indicative of Newtonian
turbulence [note that a direct transition from laminar friction to
MDR has also been seen in earlier studies (6), without relating it
to an elastic instability, however]. Our observations imply that the
MDR asymptote has its origin in the discovered instability and
that it is dominated by elasticity. Although the instability mech-
anism is likely to be related to elastic turbulence, our studies are
carried out in a different parameter regime where inertia cannot
be neglected, and we therefore dub this state elasto-inertial tur-
bulence (EIT). In addition, the existence of EIT and the direct
approach to MDR are reproduced by direct numerical simulation
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(DNS) of model viscoelastic fluid flow in a straight channel in the
same range of Reynolds numbers as in the experiment. This
suggests that the observed instability and friction scaling is char-
acteristic for viscoelastic fluids in wall-bounded flows.

Results
At the lowest Re at which turbulence is sustainable in pipe flow,
the turbulence appears (33) in the form of axially localized
structures about 20 D in length, so-called “turbulent puffs.” It
has been shown that these structures decay back to laminar after
sufficiently long times following a memoryless process (34, 35).
Hence, for each Re, there is a distinct probability that a turbulent
puff will survive beyond a certain time horizon. In the first set of
measurements, this characteristic was used to quantify the in-
fluence of polymers on the transition to turbulence. Experiments
were carried out in pipe flows for different polymer concen-
trations (50 ppm, 100 ppm, 125 ppm, 150 ppm, and 175 ppm).
In all cases, the survival probability of puffs increases with the
Re and, owing to the transient nature of the turbulent puffs, is
only found to approach a probability of 1 asymptotically with the
Re (Fig. 1A). Compared with pure water (Fig. 1A, blue curve),
the curves are shifted to a larger Re as the concentration is in-
creased, showing that the polymers delay transition and subdue
turbulence. The Re required to reach a P= 0:5 survival probability
is found to increase faster than linearly (Fig. 1B) with polymer
concentration, providing a measure of the rate at which the tur-
bulent state is postponed to a larger Re (i.e., transition delay).
Surprisingly, for polymer concentrations ≥200 ppm, turbulent

puffs could not be detected; instead, a different type of disor-
dered motion already sets in at a lower Re: Whereas in the
Newtonian case, turbulent fluctuations can first be sustained for
Re∼ 2; 000 (Fig. 2A, open squares), in a 500-ppm solution, dis-
ordered motion was observed for a Re as low as 800 (Fig. 2B).
Also, in Newtonian fluids, flows just above onset are intermittent
[i.e., turbulent regions are interspersed by laminar regions (33);
SI Text], whereas in the polymer solutions, fluctuations set in
globally throughout the pipe (SI Text). The instability observed in
polymer solutions hence leads to a qualitatively different type of
disordered motion, EIT. A further distinction between the two
types of turbulence is that in the Newtonian case, the onset is
strongly hysteretic: Unperturbed flows remain laminar up to
a large Re (to Re= 6;500 in our setup; black squares in Fig. 2 A
and C), whereas perturbed flows display turbulence from around
Re = 2,000. In contrast, in a 500-ppm solution, perturbed and
unperturbed flows become turbulent at the same Re (Fig. 2B).
Equally, friction factors follow the same scaling and directly
approach the MDR asymptote (Fig. 2D) without any excursions
toward the Newtonian turbulence (so-called “Blasius”) friction
scaling. This observation suggests that the MDR asymptote
marks the characteristic drag of EIT rather than being the con-
sequence of an asymptotic adjustment of ordinary turbulence.
Further inspection shows that the elasto-inertial instability also

appears for lower polymer concentrations (<200 ppm). Here, the
instability sets in at a larger Re, and hence in the regime where, in
the presence of finite amplitude perturbations, flows already ex-
hibit Newtonian-like (i.e., hysteretic, intermittent) turbulence.
Starting from laminar flow without additional perturbations, we
find that with an increasing Re, these more dilute solutions will
unavoidably turn turbulent at a Re distinctly below the natural
transition point (Re= 6;500) of this pipe, as shown for a 100-ppm
solution in Fig. 2 A and C (solid triangles).
In contrast to the higher concentrations, the flow is intermittent

here, consisting of localized turbulent regions (i.e., puffs) in-
terspersed by nonlaminar, weakly fluctuating regions. As the Re is
further increased, the spatial intermittency disappears andgivesway
to a uniformly fluctuating state and the friction values approach the
MDR asymptote. The onset of instability is plotted in Fig. 3A as
function of polymer concentration. Above the red curve in Fig. 3A,

the flow has become unstable and the friction factor begins to ap-
proach theMDR asymptote. The green data points in Fig. 3Amark
theappearanceof turbulentpuffs shown inFig. 1A (i.e., the threshold
where the puff t1/2 exceeds t = 760 advective time units, which cor-
responds to the time for puffs to travel from the injection point to the
observation point). For parameter settings between the red and
green datasets in Fig. 3A, ordinary turbulence can be triggered
by finite-amplitude perturbations, and the flow is hence hysteretic.
On further increaseof theRe, once the red curve inFig. 3A is crossed,
the flow will become unstable regardless of initial conditions.

Fig. 1. Survival probability of turbulence. At the lowest Re at which turbulence
can be observed in pipes, it has the form of localized structures that decay
following a memoryless process (34, 35). The influence of polymers on this
process is investigated for various concentrations. To create turbulence, the
laminar flow was perturbed by an impulsive injection (of the same fluid) for 20
ms with sufficient amplitude to create a turbulent puff. The flow was then
monitored at the exit of the pipe 760 D downstream by means of visual in-
spection using the same method as described by Hof et al. (34). Although for
laminar flow, the fluid exits the pipe smoothly and follows a parabolic path,
turbulent fluid (resulting from the different velocity profile) will exit the pipe at
a different angle, causing a downward deflection and temporary distortion of
the outflowing jet. By continuously monitoring the outflow, the survival
probability of turbulent puffs was determined as a function of the Re. (A)
Survival probabilities decrease for increasing polymer concentrations, and the
survival probability found in the Newtonian case is only recovered at a larger Re.
With increasing polymer concentration, the typical S-shape of the probability
distributions becomes more pronounced. (B) Re with a 50% survival probability
at the 760 D observation point as a function of polymer concentration.
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Finally, experiments were carried out in pipes with diameters
of D= 2 mm and D= 10 mm (blue and red data points in Fig. 3B).
When plotting the stability thresholds observed in the three pipes
in terms of shear rate vs. polymer concentration, all datasets
collapse. The latter observation shows that the elasto-inertial
instability scales with the shear rate and not with the Re (18).
Hence, in tubes with a larger diameter, the instability will occur at
a large Re and typically will be obscured by Newtonian turbulence.
Inversely, on microscales, this instability will occur at a very low Re,
opening new avenues for mixing in microchannels. Until recently,
elastic turbulence and strong mixing had only been reported in
curved channels (25, 36, 37), which are linearly unstable.
To gain further insights into the nature of the EIT, we con-

ducted DNS of channel flow for a non-Newtonian fluid using
a constitutive model extensively utilized in the simulation of
polymer drag reduction. The numerical methods and rheological

parameters are similar to those used in simulations of MDR (38,
39) (details are provided in SI Text). Great care was taken to
resolve all flow scales relevant to the dynamics of such complex
fluids requiring spatial and temporal resolutions significantly
larger than for Newtonian turbulence. Each simulation is initially
perturbed in such way that transition in Newtonian flow occurs at
Re= 6;000, based on the bulk velocity Ub and channel height H.
In qualitative agreement with the experiments, we find that

instability develops at a much lower Re in polymeric flows, which,
again, directly leads to the MDR asymptote, as shown in Fig. 4A
for Re= 1;000. Whereas the corresponding Newtonian flow is
perfectly laminar, Fig. 4B shows pressure fluctuations on the
lower wall of the channel, with a strong yet chaotic organization.
Closer inspection of the numerical data at the lowest simu-

lated Re, Re = 1,000, reveals (Fig. 4B) an interesting topological
structure of EIT. Even though the flow is dominated by the mean

Fig. 2. Stability and friction scaling. (A) For the Newtonian case (black symbols), turbulence can first be triggered by perturbations for Re of about 2,000,
where fluctuations increase rapidly. The quantity plotted is the fluctuation in pressure that was measured differentially between two pressure taps (1-mm
holes in the pipe wall) separated by 3 D in the streamwise direction and located approximately 250 D from the pipe exit. (B) For a 100-ppm polymer solution
(red data points), turbulence cannot be triggered below Re= 2;200 (transition delay). At Re= 3;200, however, instability occurs (even in the absence of
perturbations), and this instability is caused solely by the presence of the polymers. At higher polymer concentrations (B; 500 ppm here), this instability occurs
at a much lower Re and the hysteresis typical for Newtonian turbulence has disappeared (A and C). The flow already becomes unstable at Re= 800 (regardless
of the presence of additional perturbations). From here (with an increasing Re), the flow directly approaches the MDR friction scaling (D; also for a con-
centration of 500 ppm).
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shear, polymers are extended (large values of
ffiffiffiffiffiffiffiffiffiffi
trðCÞp

=L see
Numerical Methods and SI Text) in sheet-like regions of large
streamwise (x) and spanwise (z) dimensions. The sheets are
stretched at an upward angle from the streamwise direction,
indicative of extensional flow topology. These sheets also produce
larger polymer extension than the surrounding mean shear does;
an increase of the effective flow viscosity, through extensional vis-
cosity, is therefore confined to these very sheets. The response
of the flow is observed in pressure fluctuations, shown in con-
tours of wall pressure on the bottom wall of Fig. 4B. Fig. 4C
shows isosurfaces of positive and negative Q, where Q=
−ð1=2Þ  ∇ · ð∇ · ðu⊗ uÞÞ is the second invariant of the velocity
gradient tensor and also a measure of the local flow topology
(40). As shown, the flow is structured in alternating regions of
rotational flows (Q> 0) and extensional/compressional flows
(Q< 0). These regions are aligned in the spanwise direction and
appear to have a large spanwise coherence scale of about one-
third to one-half of the domain span. Note that this spanwise
orientation is markedly different from Newtonian turbulence,
where the dynamics are dominated by vortices oriented in the

streamwise direction. At a larger Re, simulations show that after
EIT sets in, flows contain streamwise–oriented as well as span-
wise–oriented vortical structures. However, as the MDR as-
ymptote is approached, with an increasing Wi, streamwise
vortices are suppressed and the flow is dominated by spanwise
structures, as in the case with a low Re shown in Fig. 4B.
Analogous to Newtonian turbulence also in the present sim-

ulations, perturbations of finite amplitude are required to trigger
turbulence (albeit considerably smaller amplitude perturbations
suffice). This suggests that as in Newtonian linearly stable shear
flows (e.g., pipes), a self-sustaining mechanism is required to
keep the turbulent motion alive. Whereas no hysteresis has been
observed for the transition to EIT in the experiments (Fig. 2 B
and D), this does not necessarily rule out that the instability may
still be subcritical. If, as simulations suggest, very small (com-
pared with the Newtonian case) finite-amplitude perturbations
do indeed trigger turbulence, it may prove to be very difficult to
reduce disturbance levels in experiments sufficiently to observe
hysteresis. We propose that the underlying EIT is hence a self-
sustaining cycle, wherein small-velocity perturbations cause the
formation of sheets of extended polymers through convective
transport. The flow response, through pressure, sustains velocity
fluctuations, thereby closing the cycle.

Discussion and Conclusions
In summary, we have shown that small amounts of polymer
added to a Newtonian solvent delay the transition point where
Newtonian type turbulence can first be observed (i.e., resulting
from a perturbation). At the same time, however, an elastic in-
stability occurs at higher shear rates. At larger polymer con-
centrations, this elastic instability occurs at a Re sufficiently
smaller than the transition in Newtonian pipe flow. In this regime
of high elasticity, experimental measurements of friction factors
for different polymer concentrations and different pipe diame-
ters show that after this instability sets in, the friction factor
follows the characteristic MDR friction law. This behavior is also
confirmed by our numerical simulations, as can be seen from
Figs. 2D and 4A. When we increase the Re further in our nu-
merical simulations, we observe that the mean velocity profile
approaches the Virk asymptote (Fig. 5A) and that the Reynolds
stress becomes vanishingly small (Fig. 5B) at a large Wi. Both
features are often quoted as the major characteristics of the
MDR state (6, 16, 41). Our observation indicates that the MDR
state is continuously linked to the EIT that we have discovered at
relatively small Re.
It is noteworthy that the key elements of the mechanism of

EIT (nonlinear advection of stress, stretching by flow and flow
response via pressure) are common features to many viscoelastic
fluids. Although EIT is possibly related to elastic turbulence,
inertia cannot be neglected in our case, and there are no curved
streamlines that would cause linear instability. Our observations
infer that this type of fluid motion replaces ordinary turbulence
and dominates the dynamics in elastic fluids at sufficiently large
shear rates.

Materials and Methods
Experimental Methods. Experiments were carried out in a pipe made of
∼ 1:2-m-long precision bore segments with an inner diameter of D=
ð4± 0:01Þ mm and a total length of about L=D= 900. The flow was gravity
driven, and the fluid temperature was controlled so that the flow rate could
be held constant, typically to within ± 0:2% [details of a similar setup can be
found in a study by de Lozar and Hof (42)]. The sample solutions were either
pure water or different amounts of polyacrylamide with a molecular weight
of 5×106 amu (PAAm; Sigma–Aldrich) in water. The shear viscosity increased
with the polymer concentration, and almost no shear thinning was ob-
served; however, a pronounced elastic behavior was found in the elonga-
tional flow of a capillary break-up elongational rheometer. The rheological
characterization is given in SI Text. A carefully designed inlet of the pipe
allowed us to keep flows of pure water laminar up to Re∼ 6; 500 (natural

Fig. 3. Transition threshold to EIT is plotted for different concentrations
(red squares). The red line is a guide for the eye. The green circles mark the
transition delay to ordinary turbulence (Fig. 1B). Consequently, for concen-
trations below 200 ppm, the elasto-inertial instability sets in at a Re at which
ordinary turbulence can already occur, whereas in the D= 4-mm pipe, the
elasto-inertial instability is found only above 200 ppm. (B) Red squares mark
the critical shear rate for the onset of EIT in the 4-mm pipe (same as red
squares in A). In addition, shear rates ( _γ = 8U=D) were determined for the
flow in a D= 10-mm pipe and a D= 2-mm pipe. In these cases, the transition
occurs at the same critical shear rate. Hence, unlike ordinary turbulence, the
onset of EIT is not governed by the Re but, instead, by the shear rate.
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transition point for this pipe). Here, the Re is defined as Re=UD=ν, where U
is the mean flow speed and ν is the kinematic viscosity. Although laminar
(Newtonian) pipe flow is stable for all Re, turbulence of appreciable lifetime
can be triggered by perturbations of finite amplitude once the Re
approaches 2,000 (34, 43). In the present setup, turbulence was triggered by
injecting fluid through a small hole in the pipe wall situated 140 D from the
inlet; alternatively, for continuous triggering of turbulence, an obstacle
(∼ 2-cm-long ∼1-mm-thick twisted wire) could be placed downstream of
the inlet.

Numerical Methods. Theflow is governed by the incompressible Navier–Stokes
equations with the addition of a viscoelastic stress using the Finitely Ex-
tensible Nonlinear Elastic-Peterlin (FENE-P) model:

∂tu+u ·∇u= −∇p+
β

Re
∇2u+

1− β

Re
∇ ·T; [1]

∇ ·u= 0; [2]

in a rectangular domain with periodic boundary conditions in the streamwise
and spanwise directions, and no slip at the walls, where u is the velocity
vector and p is the pressure. The flow is driven by a bulk force to maintain
a constant mass flow rate. The velocity and length scales used to form the Re
and to normalize the flow variables are the bulk velocity and the height of

A

1000 1000010-3

10-2

B

C

Fig. 4. Numerical simulation of EIT in a channel flow. (A) Red, green, and
black lines highlight the laminar, turbulent, and MDR distributions of the
friction factor, respectively, as a function of the Re based on the bulk velocity
and the height of the channel. The simulations are performed in a channel
flow of large transversal dimensions with periodic boundary conditions in
horizontal dimensions. At time t = 0, a perturbation is introduced in the form
of space and time oscillations of blowing and suction at the walls for a fixed,
short duration. The intensity of the perturbations is tailored so that a transi-
tion is triggered at Re= 6;000 for the simulated water flow. Using the same
perturbation, the simulated polymeric channel flow already shows a de-
parture from purely laminarflow at around Re= 750 (red circles). (B) Contours
of pressure fluctuations on the bottom wall and polymer stretch in vertical
planes (Re= 750). (C) Isosurfaces of regions of slightly rotational (orange) or
extensional (cyan) nature (Re= 750), as identified by the second invariant of
the velocity tensor Q (details are provided in SI Text).
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Fig. 5. Profiles of turbulence statistics at the highest simulated Re with the
addition of a higher Wi simulation. For FENE-P fluids (see SI Text), Wi � 1
leads to a universal form of the polymer tensor closely related to the MDR
asymptotic state. Mean velocity profiles in the typical log-linear represen-
tation are shown, where the mean velocity U+ and the distance from the
wall y+ are normalized by skin-friction velocity uτ and kinematic viscosity (A)
vs. profiles of Reynolds shear stress, −uv+ = −uv=u2

τ , as a function of the
distance from the wall normalized by the channel half-height h (B). Statistics
are shown for Re = 6,000; solid blue line,Wi = 100; solid green line,Wi = 700;
solid black line, Newtonian turbulent flow. (A) Virk log-law (6) is denoted by
the dashed orange line. The Virk mean velocity profile is a best fit of high Re
data. The assumption of the existence log-law at a low Re was recently
shown (39) to fail at a low to moderate Re (at least up to Re= 10;000). The
agreement of Wi= 700 is consistent with previous MDR simulations and
experiments. (B) Experiments of Warholic et al. (41) at MDR observe negli-
gible Reynolds shear stress.
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the channel, respectively. The polymer stress tensor T in Eq. 2 is derived from
the following transport equation:

∂tC+u ·∇C=C ·∇u+∇uT ·C−T; [3]

with

T=
1
Wi

ðfðCÞC− IÞ; [4]

fðCÞ= 1
1− trC=L2

; [5]

where C is the conformation tensor and f is the Peterlin function based on
L, the upper limit of polymer extension. The polymer solution is character-
ized by the Wi, which is the ratio of polymer relaxation time to flow scale:
here, it is the inverse of the wall shear. In Eq. 2, the coefficient β is the ratio
of the solvent viscosity to the zero-shear viscosity of the polymer solution.
The numerical method used to solve Eqs. 2 and 3 is described by Dubief et al.
(38) and is briefly introduced here. The flow is discretized on a staggered
grid. Velocity derivatives are computed with second-order, energy-conserv-
ing, finite-difference schemes. The divergence of the polymer stress tensor in
Eq. 3 uses a fourth-order compact central scheme. To accommodate the
sharp gradients arising from Eq. 3, the advection term is discretized with a
third-order compact upwind scheme, supplemented by local artificial dissipa-
tion. The upper boundedness of the polymer conformation tensor is guaranteed

by an algorithm described by Dubief et al. (38). Time advancement uses the
typical fractional step method utilized in most DNSs of turbulence.

The rheological parameters adopted here are consistent with those used
in previous simulations of polymer drag reduction (11, 12, 44–46). We use a
maximum polymer extension of L= 200, β= 0:9, and Wi*= 8. Here, Wi* is the
polymer relaxation time divided by the integral flow time scale (ratio of
the channel half-height to bulk velocity). The increase in Re is achieved by de-
creasing the velocity, while keeping the channel height and bulk velocity con-
stant. The Wi of interest is based on the wall shear of the corresponding
Newtonian flow. Consequently, theWi is equal to 24 in the laminar region and
is 100 for Re= 6;000. The highestWi discussed in Fig. 5 corresponds toWi*= 60.

The computational domain dimensions and resolution are 10 H×H×5 H and
256× 161×256, respectively. For polymer flows, the streamwise Δx+ and span-
wise Δz+ resolutions, normalized by their respective viscous scales, range from
Δx+ ∈ [1.5, 5] and Δz+ ∈ [0.75, 2.5] across the range of Re ∈ [1,000, 6,000]. In
the same range of Re, the minimum and maximum cell sizes in the wall normal
direction are within [0.01, 0.05] and [1.5, 5]. Doubling the dimensions and reso-
lution in transversal directions or increasing the resolution in the wall normal
direction did not yield any appreciable change in statistics.
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