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Hominin fossil evidence in the Turkana Basin in Kenya from ca. 4.1
to 1.4 Ma samples two archaic early hominin genera and records
some of the early evolutionary history of Paranthropus and Homo.
Stable carbon isotopes in fossil tooth enamel are used to estimate
the fraction of diet derived from C3 or C4 resources in these hom-
inin taxa. The earliest hominin species in the Turkana Basin, Aus-
tralopithecus anamensis, derived nearly all of its diet from C3

resources. Subsequently, by ca. 3.3 Ma, the later Kenyanthropus
platyops had a very wide dietary range—from virtually a purely C3

resource-based diet to one dominated by C4 resources. By ca. 2 Ma,
hominins in the Turkana Basin had split into two distinct groups:
specimens attributable to the genus Homo provide evidence for
a diet with a ca. 65/35 ratio of C3- to C4-based resources, whereas
P. boisei had a higher fraction of C4-based diet (ca. 25/75 ratio).
Homo sp. increased the fraction of C4-based resources in the diet
through ca. 1.5 Ma, whereas P. boisei maintained its high depen-
dency on C4-derived resources.

Theropithecus | hominid

Many approaches have been used to reconstruct the diet of
early hominins. Some of the methods focus on the func-

tional morphology of the masticatory system, others focus on
tooth wear (both macroscopic and microscopic), and yet others
focus on the physicochemical signatures that an animal’s diet
leaves within its hard tissues (1, 2). Chemical methods include the
use of strontium/calcium and barium/calcium ratios (3, 4), but this
study focuses on the analysis of stable isotopes of carbon (5–9).
Modern tropical ecosystems differ from those ecosystems that

predate the late Miocene. Tropical grasses were rare until the late
Miocene, when they greatly expanded in abundance; therefore, by
the latest Miocene and Pliocene, many mammals had changed
their diets, and some had become dependent on this relatively new
dietary resource (10, 11). The study of this dietary evolution is
based on the difference in carbon isotope ratios of plants that use
either the C3 or C4 photosynthetic pathway (12). Plants using the
C3 pathway have δ13C values that range between ca. −24‰ and
−32‰ (13); the more positive values are associated with xeric
environments, intermediate values are associated with mesic
environments, and the most negative values are associated with
closed canopy environments (14, 15). Plants using the C4 pathway
have δ13C values that range from about −10‰ to −14‰, with
more positive values associated with mesic environments and
more negative values associated with more xeric environments
(16). In the tropics, C3 plants are primarily trees, shrubs, and
nongrassy herbs and forbs; C4 plants are primarily grasses and
sedges, with some rare dicots. A third photosynthetic pathway,
Crassulacean acid metabolism, has δ13C values similar to C4 plants
in the tropics; Crassulacean acid metabolism plants are mostly
succulents in the African tropics and make up a minor but poten-
tially important dietary resource in some circumstances. Carbon

isotope values of animal tissues (e.g., bioapatite) are enriched in 13C
compared with the diet; for large herbivorous mammals, bioapatite
is enriched ca. 12–14‰ relative to dietary materials (5, 17, 18).
Thus, the δ13C of fossil tooth enamel can distinguish between

diets that are predominantly based on C3 resources (leaves and
fruits from trees and shrubs along with nongrassy forbs and herbs
and their fruits) and diets that are predominantly based on C4
resources (primarily grasses or sedges). Meat and most other or-
ganic tissues are only slightly enriched in 13C compared with the
plant-derived diet (19). Stable carbon isotopes in tooth enamel are
unable to distinguish between plant- and meat-based (or insect-
based) diet, but they can be used to trace the diet back to the ul-
timate resource: C3 or C4 plants.
The Turkana Basin has an excellent, well-dated record (20–23)

of hominin fossils from ca. 4 Ma to the present. Thus, the diets of
the hominin taxa represented at sites within the Turkana Basin
(Fig. 1) can be used to study dietary preferences within the hom-
inin clade across this time interval. All samples come from col-
lections held at the National Museums of Kenya in Nairobi. We
analyzed 110 teeth from 94 different individual hominins for their
stable carbon isotopes. For practical reasons, we could not always
sample specimens with unambiguous taxonomic assignments, and
in some cases, we could sample only associated material. There-
fore, we discuss the results in the context of generic rather than
specific taxonomic attributions. The genera that we discuss include
Australopithecus (ca. 4 Ma), Kenyanthropus (ca. 3–3.6 Ma), Para-
nthropus (ca. 2.5–1.4 Ma), and Homo (ca. 2.3–0.01 Ma). We use
the taxonomy favored by Wood (24) and Wood and Leakey (25),
although we make no distinction among earlier Homo species (e.g.,
H. habilis and H. rudolfensis) because of the limitations of the size
and quality of the sample. We then compare the results of our
analysis of hominins from sites in the Turkana Basin with data from
hominins recovered at other locations in eastern and southernAfrica.

Results
In this section, we present the results of the stable isotope analyses.
We group the Turkana Basin hominin specimens by their geo-
logical age (Fig. 2 and Table S1) and discuss the taxa represented
in each of the major age groupings.
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Intraindividual Variation. For 10 individuals, stable isotope ratios
were measured on two to five postcanine teeth. Comparison of the
results (Table S1) shows that these individuals have a narrow range
of δ13C and δ18O values among the teeth sampled, with average
ranges of 1.0‰ and 0.7‰, respectively. Such a narrow range
indicates that these individuals had a fairly homogeneous diet in
terms of C3- vs. C4-derived resources across the time period rep-
resented by the development of the teeth sampled for each of the
10 individuals (i.e., based on timescales appropriate to isotope
attenuation during enamel maturation). Comparison with other
large mammals suggests that molar enamel in early hominins has
an isotope maturation interval on the order of 1 or 2 y. Tooth
enamel maturation involves an initial stage of bioapatite forma-
tion followed by a long period, the isotope maturation interval,
wherein the enamel continues to increase in density and in-
corporate stable isotopes into the bioapatite structure (26).
Therefore, the δ13C values of individual teeth, as discussed below,
seem to provide a reliable but time-integrated signal reflecting the
diet of each of the individuals analyzed.

Temporal Samples. 4.2–4.0 Ma. Fossil evidence of Au. anamensis is
found in ca. 4.0- to 4.2-Ma-old strata in the Turkana Basin; 17
teeth from 12 different individuals were analyzed (Table S1).
Au. anamensis has a relatively narrow range of δ13C values, indi-
cating a diet that is C3-based. The average δ13C value of−10.7± 0.8‰

corresponds to a δ13C diet value of about −25‰ based on an
estimated isotopic enrichment (diet bioapatite) for primates of
14‰ (Methods). Such a δ13C value is compatible with either a
100% C3 diet in a mesic to xeric environment or a diet that has
both C3- and C4-derived foods but with the latter making up only
ca. 10% of the diet. For comparison, modern browsers (Giraffa
camelopardalis) (9) from the semiarid region of Tsavo, Kenya,
have δ13C1750 values of −11.2 ± 1.1‰ (δ13C1750 refers to isotope
values corrected for the anthropogenic addition of 13C-depleted
CO2 to Earth’s atmosphere) (Methods), whereas gorillas (Gorilla
beringei) from densely forested environments in eastern Demo-
cratic Republic of Congo have δ13C1750 values of −13.5 ± 1.2‰
(n = 1) (Table S1). Tooth enamel from modern baboons (Papio)
from Kenya and Ethiopia has δ13C1750 values that average −9.1 ±
3.1‰ (n = 19) and range from ca. −13‰ to ca. −2‰; baboons
from forested regions in Democratic Republic of Congo have
δ13C1750 values that average −12.2 ± 2.3‰ (n = 5) (Methods and
Table S1).
Thus, the δ13C results for Au. anamensis suggest either a C3-

dominated diet or a diet with a small C4 component. Published
δ13C values for Ardipithecus ramidus are similar: −10.2 ± 1.0‰
(n = 5) (27). Intertaxon comparison using ANOVA shows that the
diets ofAu. anamensis,Ar. ramidus, and modernG. camelopardalis
(Tsavo) are indistinguishable in δ13C space, but the diets of all
three taxa are significantly different (P < 0.0001) from G. beringei
from forested habitats (Fig. S1 and Table S1). As is seen below, the
diet of Au. anamensis differs from the diet of all later hominins
from the Turkana Basin.
3.4–3.0 Ma. K. platyops is found in the Turkana Basin between ca.
3.0 and 3.4 Ma (28). The only hominin recovered from deposits of
similar age in theAwash region of Ethiopia isAu. afarensis (29); 21
teeth from 18 different individuals assigned to K. platyops were
analyzed. The observed range in δ13C of this sample (average =
−6.2± 2.7, n= 20;maximum=−2.7, minimum=−11.1) is broader
than any other hominin included in this study. The only other
hominins with such a large range of values are Au. afarensis (av-
erage = −7.5 ± 2.6, n = 20; maximum = −2.9, minimum = −13.0)
(30) and Au. africanus (average = −6.5 ± 2.3, n = 23; maximum =
−1.8, minimum = −11.3) (data in refs. 6, 8, and 31). Compared
with modern taxa with a similar sample size, the range and SD for
K. platyops is broad and large, respectively (14, 32). The δ13C
values for the 18 K. platyops individuals are normally distributed,
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Fig. 1. Age distribution of hominins from East Africa. Isotopic values of
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and the Akaike Information Criterion (33, 34) does not support
a bimodal distribution for this population.
One hominin individual (KNM-ER 5431 F) in this time range

is assigned to Homininae indet. It is of about the same age as the
K. platyops samples discussed above, and its δ13C value (−4.3‰)
is within the range of K. platyops.
Modern Papio in East Africa has a similarly wide range of

δ13C1750 values; Papio from the Laikipia region of Kenya have
values similar to the higher observed values.
2.5–2.3 Ma. Six teeth from five individual hominins in this time
range were analyzed in this study. Four individuals attributed to
P. aethiopicus had δ13C values ranging between−0.3‰ and−5.1‰.
Three of these individuals (KNM-WT 16005, KNM-WT 38351,
and KNM-WT 38353) have a very narrow range of δ13C values—
from −4.4‰ to −5.1‰. The fourth individual attributed to
P. aethiopicus, KNM-WT 17000, is an outlier compared with the
other three Paranthropus of this age range. Taken together,
P. aethiopicus has a diet with a consistently high C4 component (ca.
50% or greater) in this time interval.
One specimen has been assigned toHomo sp. indet. (KNM-WT

42718) (35), and it gave a δ13C value of −7.2‰, which is outside
the range of the P. aethiopicus specimens of the same age, al-
though the sample size of P. aethiopicus from this time interval
(n = 4 individuals) is small.
1.99–1.67 Ma. The sample from this temporal interval includes two
morphologically distinctive hominin taxa, P. boisei and Homo sp.
indet.; 13 teeth from 13 different individual P. boisei specimens
have an average δ13C value of −1.6 ± 1.0‰ ranging from 0.2‰
to −3.4‰. These values represent a diet dominated by C4
resources (i.e., a C3/C4-based resources ratio of ca. 25/75). The 16
Homo sp. indet. specimens have δ13C values significantly different
(P < 0.001, ANOVA, Tukey posthoc) from the P. boisei individ-
uals in the same age range (−7.0 ± 1.5‰, n = 16; i.e., a C3/C4-
based resources ratio of ca. 65/35).
Two specimens in this time interval have proven difficult to

classify. One of these specimens, KNM-ER 1482 (a taxonomically
enigmatic mandible) (24, 36, 37), has a δ13C value of −0.4‰. The
other, KNM-ER 2607 (a taxonomically enigmatic lower molar
fragment) (24, 36, 38), has a δ13C value of −9.2‰.
1.65–1.45 Ma. Both P. boisei and Homo sp. indet. are represented
among the specimens from this time interval. The P. boisei indi-
viduals (n = 14) have an average δ13C value (−0.9 ± 1.2‰) that
does not differ statistically from the P. boisei individuals in the
1.99–1.67 Ma time range. The −0.9 ± 1.2‰ value corresponds to
a C3/C4-based resources ratio of ca. 20/80.
Ten Homo sp. indet. specimens in this age range have an av-

erage δ13C value of −4.3 ± 1.1‰ (i.e., a C3/C4-based resource
ratio of ca. 45/55). The Homo sp. indet. individuals in this age
range differ significantly from the coeval P. boisei sample
(ANOVA, Tukey posthoc test, P < 0.001), and they also differ
from Homo sp. indet. individuals from the earlier (1.99–1.67 Ma)
time range in that there is a ca. 20% increase in the C4 diet
component (ANOVA, Tukey posthoc test, P < 0.001).
Two specimens that cannot be easily assigned to either Homo

sp. indet. or Paranthropus, KNM-ER 2593 and KNM-ER 42705,
were both found in the Area 6/6A region near Ileret, where many
P. boisei specimens have been recovered. They have δ13C values
similar to the values of Paranthropus from Area 6/6A and may
well be attributable to this genus.
0.01 Ma. Five teeth from four individual hominins from the Galana
Boi Formation (Holocene) have an average δ13C value of −4.8 ±
2.3‰ (i.e., a C3/C4-based resources ratio of ca. 50/50). These
values are not significantly different from the earlier Homo sp.
indet. samples.
Oxygen isotopes. The range of variation of the stable oxygen iso-
topes (δ18O) among the groups discussed above is between 0.7‰
and −1.8‰ (the individual range is from ca. +4‰ to −4‰); SDs
within each group are ca. ±1.5‰. These values and ranges of

variation are equivalent to water-dependent species such as suids
and elephantids (39) as well as carnivores and omnivores. δ18O as
a function of time comparing the different hominins is shown in
Fig. S2.

Discussion
Diets of Early Hominins: C3- and C4-Based Resources.We use the terms
C3- and C4-based resources throughout our discussion, because
our isotopic method cannot distinguish between a plant-based
diet, a meat-based diet, and an omnivorous diet. Thus, based on
isotopes alone, we consider that the diets of the early hominins
that we have investigated could be primarily herbaceous (C3 and
C4 plants), or they could be a secondary C3- or C4-based diet, an
apparent C3- or C4-based diet, or an omnivorous diet. A sec-
ondary C3- or C4-based diet could be a meat- or insect-based diet
(in which the δ13C values are derived from the basal herbaceous
diet of the prey). An apparent C4-based diet is one based on
aquatic resources in which algae have elevated δ13C values be-
cause of bicarbonate uptake during photosynthesis (40); for this
example, algae or fish then have δ13C values with an apparent C4
component (41, 42). Lastly, an omnivorous diet is a combination
of the above resources: primary herbaceous diet along with sec-
ondary C3- or C4-derived components (i.e., meat or insects) or
apparent components (i.e., aquatic).
The stable carbon isotope signature of a meat-based diet

depends on the nature of the prey: small bovid herbivores less than
ca. 10 kg (e.g., dik-dik and other neotragines) tend to be browsers
and have C3-based diets (14, 32), whereas large herbivores can
have diets that are C3-based (browsers such as most tragelephines,
black rhinos, and giraffes), C4-based (grazers such as warthogs,
zebra, alcelaphines, reducines, and bovines), or mixed (e.g., im-
pala, and some gazelles). Thus, the size of prey may be important
in considering possible secondary diet C3 or C4 resources. Other
small mammals (e.g., hyrax, lagomorphs, or rodents) could have
been an important dietary resource and would contribute to iso-
tope mixing lines between C3- and C4-based end member values.

Evolution of Hominin Diets Between 4 and 1.4 Ma in Eastern Africa.
The earliest hominin taxon sampled in this study, the ca. 4 Ma
Au. anamensis, has a diet comprised primarily of C3-based resources
(an average ca. 90/10 ratio of C3/C4 diet resources with a range
from 100/0 to 80/20 for C3/C4-based resources). This finding is not
entirely unexpected, because the diets of the obvious outgroups for
hominins, Pan and Gorilla, are both predominantly C3-based (43–
45). It is impossible to refute the hypothesis that some C4
resources contributed to the diet of these Au. anamensis individ-
uals, and we do not attempt to do so. The observed δ13C range of
Au. anamensis is narrow, and it is similar to the slightly older
Ar. ramidus found in the Awash region of Ethiopia (27). A diet with
this carbon stable isotope signature is likely dominated by plant
foods. The only alternative is a diet based onmeat/insect resources
based on animals that themselves consume almost entirely C3
resources. However, note that initial surveys of fossil mammals
from the Turkana region show that, by 7 Ma and on, most herbi-
vores in the Turkana Basin had C4-based diets (10, 11, 46, 47).
Thus, Au. anamensis would have to have been a very specialized
hunter if meat were a significant portion of the diet, because the
prey would have to have been exclusively C3 consumers.
By 3.5 Ma, the diet of the hominins that we sampled had ex-

panded to include significant C4 resources. The diet of K. platyops
shows a broad range, with some individuals having strongly C3-
based diets and others having C4-dominated diets. The range of
values for 18 K. platyops individuals corresponds to δ13C diet av-
erage values of ca. −25‰ to −17‰; the average K. platyops diet
corresponds to a C3/C4-based resources ratio of ca. 60/40, but the
range of the C3/C4-based resources ratio, 95/5 to 35/65, is wide.
This wide range of dietary C3 vs. C4 resources suggests that
K. platyops expanded into a dietary niche hitherto unexploited by
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hominins in the Turkana Basin. δ13C values of Au. afarensis (30),
another hominin taxon in East Africa of similar age, and Au.
africanus in southern Africa of less certain age (6, 8, 31) similarly
have a wide range of δ13C values. The work by Sponheimer et al.
(48) discusses these similarities and differences in more detail.
One individual in the small sample of P. aethiopicus, the KNM-

WT 17000 cranium (49), deserves special comment. Its left M2 has
a δ13C value of −0.3‰, indicating a C4-dominated diet (ca. 15/85
for the C3/C4 diet ratio), which is a diet similar to the P. boisei
sample in the later time range. The dietary breadth within Para-
nthropus by ca. 2.3 Ma needs to be investigated with additional
samples and analyses.
Between 2.0 and 1.4 Ma, numerous P. boisei and Homo sp.

indet. specimens show that the diets of the two genera were dis-
tinct, with Paranthropus having a diet comprised of a 20/80 C3/C4
diet ratio, whereas Homo sp. indet. shows C3/C4-derived ratio
values that range from 25/75 to 45/55. Previous comparisons with
southern African fossils suggest that P. boisei from East Africa had
a diet that was much narrower in terms of C3/C4 resources than
P. robustus from southern Africa (9), with a wide range of δ13C
values that indicates a much broader dietary niche.
The taxonomically enigmatic mandible KNM-ER 1482 (50) has

a δ13C value of −0.4‰, which is intriguing. It has shifted even
farther in the direction of being dependent on C4 resources than
most P. boisei. Its mandibular and dental morphology offers little
or no evidence to assign it to P. boisei. Indeed, some have sug-
gested that it may belong to the same taxon as the KNM-ER 1470
cranium (50) and the KNM-ER 62000 maxilla (51). If this proves
to be the case, then within the same region, there may be at least
two hominin taxa, almost certainly in different lineages, that have
shifted to a diet dominated by C4 resources.

Paleoecology of the Koobi Fora and Nachukui Formations. Pre-
cessional climatic cycles of ca. 20,000 y duration are widely rec-
ognized in marine and lacustrine sequences in tropical latitudes.
Between insolation maxima and minima (separated by ca. 10,000
y), there are significant changes in rainfall and ecology. Fluvial
strata present challenges for quantitative paleoenvironmental in-
terpretation at timescales less than 20,000 y because of their
abrupt and discontinuous mode of deposition. A discrete sedi-
mentary package associated with a particular insolation cycle still
does not reveal whether a fossil was deposited at maximum,
minimum, or intermediate insolation. Furthermore, matching a
fossil with the paleoenvironment in which it lived requires knowing
the part of a cycle that a paleoenvironmental indicator (e.g.,
paleosol carbonate, mineralogy, indicator fossil, or biomarker)
records. A vertebrate fossil from the base of a 20,000-y fining up-
ward sequence may have lived during a climatic milieu different
from the climate under which carbonate formed in a paleosol at the
top of the same sequence. In most situations, it is not feasible to
relate a fossil from fluvial sediments to a particular part of a pre-
cessional cycle, and it is certainly not possible using legacy collec-
tions or surface finds. Nonetheless, long-term ecological changes
can be discerned through the 3-Ma record considered here.
Stable isotopes also provide important constraints on the pa-

leoecology of the Turkana Basin. The earliest hominins reported
here, from ca. 3 to 4 Ma, lived in an environment that was pre-
dominantly ca. 40–60% woody cover, which was determined from
paleosol δ13C values (52, 53). For this period, the soil carbon
contribution from C3 woody plants, C3 forbs and herbs, and C4
grasses would be ca. 60–40%, 15–20%, and 25–40%, respectively
(Fig. 2B and Fig. S3). Such a habitat would be a grassy woodland,
grassy shrubland, or grassy bushland (54). Sedimentological evi-
dence (55) shows that the proto-Omo river was present throughout
this period; this river likely had a riparian forest (>80 woody cover)
that may have been hundreds of meters wide;Δ47 measurements on
paleosols indicate that the region had soil temperatures between 30
°C and 40 °C (56), indicating a regional temperature regime similar

to the temperature regime of today. Thus, this region had a riparian
corridor with cooler temperature and little to no C4 resource
availability, but close by, the woodland/shrubland/bushland was
a more open habitat with significant C4 resources and much higher
daily temperatures than in the riparian corridor. These paleoeco-
logical conditions suggest that, based on dietary considerations, Au.
anamensis may have been restricted to a narrow riparian corridor,
whereas K. platyopsmust have ventured into open habitats to obtain
C4 dietary resources. Thus far, fossils of K. platyops are associated
with alluvial fans of a large lateral streamon thewestern basinmargin
interfingering with deposits of the ancestral Omo River.

Fig. 3. Images of KNM-ER 45502 before and after sampling. (A) Top view of
tooth before sampling. (B) View of the tooth with sample powder (1.8 mg)
after sampling. (C) Sample before sampling; the box shows the area chosen
for sampling (E). (D) Sample after sampling (same view as C); the boxed area
is the close-up view shown in F. (E) Close-up view of the area sampled for
stable isotope analysis before sampling. The red arrow shows the broken
enamel surface to be sampled. (F) The same area as E but after sampling. The
red arrow points to the surface sampled.
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Woody cover diminished in the region over time; between ca.
2.0 and 1.4Ma, woody cover was 20–40% based on δ13C in paleosols
(52). Such an ecosystem is equivalent to wooded grassland with
soil contributions of C3 woody plants, C3 forbs and herbs, and C4
grasses of ca. 40–20%, 20–30%, and 40–50%, respectively (Fig.
2B); areas of true grassland [<10% woody cover in the United
Nations Educational, Scientific, and Cultural Organization ter-
minology (54)] were uncommon, at least on the timescale of
paleosol formation (>1,000 y). This change represents a great
increase in the availability of C4 plants forHomo and Paranthropus
compared with the earlierAustralopithecus andKenyanthropus and
a significant opening of the landscape. The 2.0- to 1.4-Ma interval
had intermittent lakes fed by the proto-Omo River; however, it
may have been diverted to the Nile drainage for some periods
during this interval (55). Geochemical and mineralogic evidence
shows that some of these lakes were alkaline (56); Δ47 evidence
from paleosols indicates high mean annual temperatures, similar
to the temperatures of today (57).
Thus, from 4.1 to 1.4 Ma, the region had abundant C4 resources

available in the 30-km broad grassy woodland/shrubland to wooded
grasslands that bordered narrow (hundreds of meters wide) ripar-
ian forests or woodlands associated with the proto-Omo River.

Comparison of Hominin Diets to Theropithecus. Theropithecus was
another large-bodied primate in the Turkana Basin at this time.
Stable isotope measurements of tooth enamel show that Ther-
opithecus was a heavy C4 consumer by 4 Ma, with ca. 65% C4
resources contributing to the diet (58). Throughout the period
from 4 to 1Ma, Theropithecus had a diet that was as much or more
C4-based than any hominin. Paranthropus, from 1.4 to 2.0 Ma, had
a diet that was ca. 75%C4-based, whereas the coevalTheropithecus
had a diet that was ca. 75–85% C4-based (58).

Modern Primates as Analogs for Hominin Diets. Modern gorilla and
chimpanzees have diets that are entirely or almost entirely C3-
based (data in Table S2 and refs. 43–45). Only the earliest hominin
in this study could be interpreted as having had a C3-based diet
with minimal (if any) C4 components; the δ13C of Au. anamensis is
more positive than gorillas or chimpanzees from closed canopy
forests, but it is compatible with a pure C3 diet from riparian
forests or open habitats.
Modern baboons (P. anubis and P. hamadryas) have a wide

range of δ13C1750 values, showing diet strategies that range from
essentially pure C3-based (e.g., from Neshisar NP) (Table S2) to
dominated by C3-based resources but with measureable C4-based
resources (Gona, Olorgesailie, Tsavo, and Turkana) (Table S2) to
subequal with respect to C3- and C4-based resources (e.g., Laikipia
region) (Table S2). Baboons have been suggested as an important
study analog for early hominins (59, 60); thus future studies of
baboon diets, coupled with stable isotope analyses, will be a fruit-
ful avenue of research.

Conclusions
Within the past 4 Ma, the earliest dietary isotope evidence from
hominins in the Turkana Basin comes from a single species,

Au. anamensis, with a diet dominated by C3 resources but pos-
sibly with a small component of C4-derived resources. By ca. 3.5
Ma, at least one hominin taxon, Kenyanthropus, in the Turkana
Basin had a diet with a broad range of C3/C4-based resources. By
the 1.99- to 1.67-Ma time period, at least two morphologically
highly distinctive hominin taxa, P. boisei and Homo sp. indet.,
had shifted in the direction of consuming higher but different
proportions of C4 resources. We cannot determine from the
stable isotopes by themselves what the C4 resources were that
caused this shift in diet.

Methods
Hominin teeth from the National Museums of Kenya were sampled using
a high-speed rotary drill to obtain powder (ca. 2–5 mg) from each sample.
Only hominin teeth with broken surfaces were sampled; sampling was from
the exposed broken enamel (Fig. 3). Enamel powder from modern gorilla
(G. beringei) was obtained from archived samples in Kahuzi-Biega National
Park and the Centre de Research National en Sciences Naturelles (CRNS)-
Lwiro, Democratic Republic of Congo; most gorilla samples were young adults
that had been killed by poachers. Other modern primates were from Dem-
ocratic Republic of Congo and Kenya. All samples were treated with 0.1 M
buffered acetic acid for 30 min to remove secondary carbonates; we had
about 50% recovery during this treatment.

Fossil samples (ca. 500 μg) were reacted with 105% phosphoric acid at 90 °C
in silver capsules on an isotope ratio mass spectrometer after cryogenic se-
paration of CO2 at the University of Utah Stable Isotope Ratio Facility for
Environmental Research (SIRFER). Modern samples from Democratic Republic
of Congo were analyzed in the Archaeology Department at the University of
Cape Town using a Kiel device coupled to an isotope ratio mass spectrometer.
Results are reported using the standard per million (‰) notation, where

δ13C=
�
Rsample=Rstandard − 1

�
× 1; 000

and Rsample and Rstandard are the 13C/12C ratios in the sample and standard,
respectively (Vienna–Pee Dee Belemnite is the standard for carbon isotope
measurements). Corrections for temperature-dependent isotope fraction-
ation in oxygen were made using modern and fossil internal reference
materials that had been reacted at 25 °C (61). For comparative purposes,
modern mammals have had their δ13C values adjusted to compensate for
recent changes in atmospheric δ13C values (62, 63); these values are referred
to in the text as δ13C1750. We use the year of death to calculate the δ13C1750

value; this date will result in a maximum correction, because tooth enamel
likely formed ca. 10 y before death for these individuals.

Age estimates for each hominin use the correlations and chronology of
the >350 volcanic ashes in the basin (20–23, 64); taxonomic assignments are
in refs. 24 and 25.

SI Methods has additional information on isotope enrichment factors in
mammals, stratigraphic information and age estimates for individual hom-
inins (Table S3), statistical treatment, taxonomic assignments, and biome
classifications used in this work.
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