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Electronic states at domain walls in bilayer graphene are studied
by analyzing their four- and two-band continuum models, by per-
forming numerical calculations on the lattice, and by using quantum
geometric arguments. The continuum theories explain the distinct
electronic properties of boundary modes localized near domain
walls formed by interlayer electric field reversal, by interlayer
stacking reversal, and by simultaneous reversal of both quantities.
Boundary mode properties are related to topological transitions
and gap closures, which occur in the bulk Hamiltonian parameter
space. The important role played by intervalley coupling effects
not directly captured by the continuum model is addressed using
lattice calculations for specific domain wall structures.

topological states | topological defects | layer-stacking walls |
few-layer graphene

The electronic properties of few layer graphene systems de-
pend sensitively on the atomic registry between neighboring

layers (1) with important consequences for applications in
graphene-based electronics. Unlike single-layer graphene, bilayer
graphene (BLG) with AB stacking is converted from a semimetal
to a small gap semiconductor by the application of a perpendic-
ular electric field (2–6). This occurs because (i) the interlayer
hybridization of orbitals on eclipsed lattice sites breaks the sub-
lattice symmetry on each layer, replacing the pseudorelativistic
description of single layer graphene by a theory in which two
quadratically dispersing chiral bands touch at discrete points in
momentum space (2, 7), and (ii) the perpendicular electric field
further breaks inversion symmetry, creating a semiconductor by
gapping these low-energy degrees of freedom. The possibility of
exploiting this type of field tunable gap is being vigorously pursued
in ultraclean dual-gated devices (8–11).
It has been appreciated that this field-induced gap admits a

topological interpretation (12, 13). The low-energy theory for
BLG can be represented by an effective two-band model from
which it is readily seen that inversion-symmetry breaking induces
large momentum-space Berry curvatures (13, 14). The Berry cur-
vatures have opposite signs near the two inequivalent Brillouin-
zone corners (valleys) at which gaps are opened, so the integral of
the Berry curvature over the full Brillouin zone is zero. None-
theless, the integral of the Berry curvature within a single valley is
nonzero, and this allows a topological analysis of the valley-projected
electronic spectrum. This idea has been developed in a continuum
analysis of the subgap electronic states bound to a BLG domain
wall formed by a sign reversal of the interlayer electric field (12,
15–19). These electric-field walls (EFWs) are predicted to bind
pairs of subgap chiral copropagating boundary modes, an in-
teresting feature that can be related to the change in sign across
a domain wall of a valley-projected topological index.
In this article, we examine the related BLG domain wall

problem in which the interlayer electric field is uniform but the
layer stacking switches from AB to BA registry. This version of
the problem changes the boundary conditions for matching the
electronic states of the two bounding phases and requires that we
augment the two-band model of BLG (2, 12, 13) by accounting
for all four of its sublattice degrees of freedom. Nonetheless, we

find that layer-stacking walls (LSWs) bind electronic states with
the same chiral structure as for the EFW studied previously. Here,
we make this connection explicit by mapping the two problems
onto each other within a family of four-band BLG Hamiltonians.
Our results demonstrate that the topological transition in a LSW
structure is associated with a finite momentum gap closure in the
parameter space of four-band BLG Hamiltonians. We construct
a phase diagram (Fig. 1) that identifies the different types of
topologically protected states that are possible in BLG samples
in which both the interlayer electric field and the layer stacking
order vary in space. This analysis identifies yet a third type of
domain wall in which the two pairs of chiral modes within a
single valley are coupled, gapping the spectrum and annihilating
boundary modes. Our results are supported by a continuum
analysis of the domain wall states, lattice calculations for specific
defect structures, and analysis using quantum geometrical argu-
ments. Taken together, these elements provide a general framework
for understanding the origin of the valley-projected topological
states in BLG, and their fate in the presence of intervalley scattering.

Two-Band Continuum Formulation
The electronic states for BLG can be represented by four-
component wave functions Ψ= ðψAT

;ψBT
;ψAB

;ψBB
Þ, where ψ de-

notes the atomic orbital centered on the A or B sites of the top or
bottom layer. At low energies, the Hamiltonian can be expanded
for small q around the two inequivalent Brillouin zone corners:
HðνK + qÞ with ν= ± 1 denoting K and K′. Using Pauli matrices
σ to represent operators that act on the sublattice degree of free-
dom within a layer and τ to represent operators acting on the layer
degree of freedom, the BLG Hamiltonian can separated into
layer diagonal and layer off-diagonal contributions by writing
H=H0 + Hint. We find that for AB stacked BLG in which the A
sites of top layer hybridize with the B sites of the bottom layer,
H0 = νqxσxτ0 + qyσyτ0 and Hint = γðσxτx − σyτyÞ=2 with γ = γ1=Zv,
where energies are normalized by Zv, γ1 is the nearest-interlayer-
neighbor hopping amplitude, and v is the electron velocity in an
isolated layer. For the reversed BA stacking order, the interlayer
coupling term becomes Hint = γðσxτx + σyτyÞ=2. When present, an
electric potential difference V adds Δσ0τz with Δ=V=2Zv to the
Hamiltonian.
When γ � Δ, it is convenient to eliminate the high energy

degrees of freedom at ± γ to arrive at an effective low-energy two-
band model (2) as follows:

~Hν = gνðqÞ · ~σ; [1]

where the ~σ matrices act on two component spinors ðψBT
;ψAB

Þ in
the low-energy subspace for AB BLG and gνðqÞ= ð−ðq2x − q2y Þ=γ;
2νqxqy=γ;ΔÞ. Eq. 1 admits a geometrical interpretation in which
the negative energy eigenstates are spinors aligned with −gνðqÞ,
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and the filled band has a momentum space Berry curvature
(13, 14) as follows:

ΩνðqÞ= −2νγΔ q2�
q4 + γ2Δ2�3=2: [2]

Because of the ν dependence in Eq. 2 the integral of ΩνðqÞ
over the full Brillouin zone is zero and the filled valence band
carries total Chern number N = 0 as required by time reversal
symmetry. However, for small Δ, the Berry curvature is strongly
peaked at the gap minima near K and K′. Consequently, the
integral of ΩνðqÞ over an individual valley is accurately defined
and the “valley Chern number” Nν = − ν  sgnðΔÞ= ±1. The
valley Chern number changes by ΔNν = ± 2 across an EFW,
which can be associated with the appearance of pairs of valley-
projected edge modes copropagating along the boundary.
These chiral modes have been obtained by analytic solution
of the low-energy two-band model in the presence of a sharp
EFW and by numerical solution for a spatially varying ΔðrÞ
that smoothly connects two electric-field reversed states (12).
As noted in previous work (13, 15), the introduction of a valley
Chern number in this context is approximate because strictly
speaking the construction does not map the full periodic Bril-
louin zone onto the parameter space of ~Hν. Nonetheless, when
Δ is small and intervalley scattering is absent the computed
change ΔNν can be interpreted as a topological quantity, because
ΩνðqÞ is integrated over a closed surface produced by “gluing
together” two integrals for the individual Nν along a common
boundary.

Layer Stacking Walls
We now turn to the case of a LSW at which the bilayer registry
reverses from local AB to local BA with Δ held constant. Crossing
a LSW changes the interlayer coupling matrix Hint and switches
the orbitals that span its low-energy subspace. In this case,
evaluation of the Berry curvature requires consideration of all
four degrees of freedom in the bilayer Dirac problem. Alterna-
tively, one can identity the topological origin of LSW modes by

examining the residual phase twists induced at large momentum
q in the eigenstates of the generalized Hamiltonian,

HLSW =Δτz + νqxσx + qyσy +
γ

2
�
σxτx − μσyτy

�
; [3]

which reduces to the AB  ðBAÞ forms when μ→ 1ð−1Þ. For
q � jΔj; γ degenerate single layer states ΨμνðqÞ= ðψμν;T ;ψμν;BÞ
deep in the filled band with energies E= − jqj are split by Δ
and are mixed by γ in the projected Hamiltonian,

H−
ν = − jqjλ0 +Δλz −

νγ

4
�
eiμνϕλ+ + e−iμνϕλ−

�
; [4]

where λ are 2× 2 Pauli matrices acting in the Ψμν subspace and
ϕ= arctanðqy=qxÞ. For large q, the eigenstates Ψμν;± written in
the original four orbital basis are as follows:

Ψμν;± =
eiαμν;± ðϕÞ

2
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 ; [5]
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Fig. 1. A phase diagram illustrating the distinct valley-projected topological
phases of BLG and the critical lines that separate them. A sign change of Δ
denotes a reversal of the interlayer electric field. A sign change of μ denotes
a transition from AB to BA interlayer registry. The spectrum is gapped except
along the lines Δ= 0 and μ= 0.

Fig. 2. Propagating chiral boundary modes (red) near the K (Upper) and K′
(Lower) points calculated using the four-band continuum model for a do-
main wall separating regions with local AB and BA stacking registry in the
presence of a uniform layer-potential difference Δ. The shaded regions show
the support of the continuous bulk spectrum as a function of momentum q
parallel to the domain wall. The results were obtained for the parameter
values Δ= 0:05;   γ = 0:1.
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where ξ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2=4+Δ2

q
, and we explicitly display the overall Uð1Þ

phases αμν;± . Using Eq. 5, we calculate the momentum space
Berry connection as follows:

Aμν;± = Im 
�
ψ ±

��∂ϕψ ±

�
=
ð1− μÞν

2
±
μνΔ
2ξ

+
∂αμν;±
∂ϕ

: [6]

The change in the valley Chern numbers upon passing from the
μ= 1 to μ= − 1 states is obtained from the loop integral of the trace
of −μAμν;± over μ and band indices ± , which reads as follows:

ΔNν = 2  ν+m−1;ν;+ +m−1;ν;− −m1;ν;+ −m1;ν;−: [7]

Here, mμν;± are integer valued winding numbers of the overall
phases αμν;± . The Δ dependence of this result vanishes after
tracing over the filled bands, demonstrating that the valley Chern
number in BLG is shared among all of the occupied bands rather
than being confined just to its low-energy states as is often as-
sumed. ΔNν is a topological index provided that the difference is
evaluated in the same gauge for the two bounding phases, which
requires that m−1;ν;± =m1;ν;± for this boundary. It follows that
ΔNν = 2  ν and therefore that a domain wall separating insulating
regions with local AB and BA registry will also confine pairs of
valley-projected chiral modes propagating along the boundary
with opposite velocities in the two valleys. Fig. 2 confirms this
result by showing the spectra calculated by matching the full

four-component wave functions of Eq. 3 across a sharp boundary
where μ switches from 1 to −1.
Using Eq. 5, we find that at large q the wave functions on the

two sides of the LSW are related by a gauge transformation,

Ψμ;±↦ eiμνð1−τzÞϕΨμ;± ; [8]

with a different phase twist induced in each layer. It follows from
the accumulation of internal phases in the two layers that ΔNν =
2μν. EFW walls, where the sign of the potential difference be-
tween layers Δ switches but the atomic registry μ does not change,
can be analyzed similarly. Although Δ does not appear explicitly
in ΔNν in Eq. 7, there is an implicit dependence through the
Uð1Þ phase prefactors. We find the following:

HLSW ð−Δ; μÞ= τx  HLSW ðΔ;− μÞ  τx  ; [9]

i.e., that a sign reversal in Δ can be absorbed in a sign change of μ
combined with a change of basis. Using this construction, the
negative-energy eigenstates at large q on the two sides of the
EFW are related by the following Uð1Þ gauge transformation:

Ψμ;±↦∓νeiμνϕΨμ;± ; [10]

which produces the same overall ΔNν = 2μν for the EFW. Eqs.
8–10 compactly express the relationship between these two
different types of domain wall in the four-band theory. This is
also illustrated in Fig. 3, which compares the valley K spectra
computed for an EFW and a LSW showing their common
chiral boundary modes.
In the LSW case, unlike the EFW case, analyzing the continuity

of wave functions across the interface requires consideration of all
four bands. The common topological origin of the domain wall
spectra therefore becomes apparent only in a four-band contin-
uum theory. Nevertheless, by integrating out the high-energy
bands at energies of ∼ ± γ, we are able to construct a two-band
effective model away from the domain wall in which for either
caseΔNν is assigned to a sign change of the Berry curvature of the
lower band. In this approach, Eq. 1 reads gνðqÞ= ð−ðq2x − q2y Þ=γ;
2μνqxqy=γ;ΔÞ with ~σ layer Pauli matrices that act on different
spinors in the μ= ± 1 cases: on ðψBT

;ψAB
Þ for μ= 1 and on

ðψAT
;ψBB

Þ for μ= − 1. Because of inversion symmetry breaking, the
valence band acquires a momentum space Berry curvature (13, 14),

Fig. 3. (Upper) Comparison of valley K domain wall spectra for electric-field
and layer-stacking walls. Both walls support a pair of copropagating chiral
modes. (Lower) Interface spectrum calculated with a four-band theory for
a topologically compensated boundary at which both layer stacking and
electric field change sign. In this case, the boundary spectrum is completely
gapped even in a continuum model.

Fig. 4. Bulk band structures of three forms of BLG. (Left) BLG with uniform
AB registry and no interlayer electric field characterized by quadratic
touching between its two low energy bands. (Center) The field-induced
gapped phase in which the BLG degeneracy is lifted by an interlayer electric
field. (Right) A critical state with nonzero interlayer electric field where gap
closure occurs at μ= 0 as BLG crosses from AB to BA registry. The zero energy
gap closures in the left and right panels separate four distinct gapped phases
of BLG as shown in Fig. 1.
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ΩνðqÞ= −2μνγ  Δ  q2�
q4 + γ2Δ2�3=2; [11]

which integrates over a single valley to −μνsgnðΔÞ. Obviously,
the valley Chern number changes by two across either an EFW
or a LSW. Based on the bulk-boundary correspondence, pairs
of valley-projected edge modes should copropagate along the
interface.

Phase Diagram
The Δ− μ plane phase diagram in Fig. 1 identifies distinct BLG
topological phases. Phase boundaries occur along the μ and Δ
axes where the spectrum of HLSW ðΔ; μÞ undergoes gap closures
at E= 0. HLSW ðΔ= 0; μ= 1Þ describes an ungapped BLG system
in which quadratic band crossing occurs exactly at q= 0, as seen
in Fig. 4, Left. The gaps that open for the case of Δ≠ 0 and
μ= ± 1 are the electric field induced gaps easily understood
within a two-band model. The boundary with Δ≠ 0 and μ= 0
also has a gap closure, but it occurs at two finite momenta
qx = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 + γ2=4

q
along the qy = 0 line where band crossing is

possible because σx is a constant of the motion. For deviations
in either qx or qy, the degeneracies at the band-crossing points
are lifted at linear order, implying the conical gap closure illus-
trated in Fig. 4, Right. When μ≠ ± 1, the original quadratic gap
closure fissions into a pair of linear Dirac singularities each of
which carries one-half of the original winding number. Trajecto-
ries in the Hamiltonian parameter space that connect these to-
pologically distinct ground states and involve different parameter
values can shift the momenta at which the gap closures occur, but
cannot eliminate them. For example, when Δ≠ 0 but γ = 0 in
Eq. 3 the layers decouple and the gap closure at E= 0 degen-
erates to a closed Fermi ring with radius Δ.
Fig. 1 also illustrates the possibility of a third type of com-

pensated domain structure (labeled c) at which both the layer
registry and interlayer electric field are reversed. Variation of
local band parameters along this line connects two bilayer states
that are distinct but have ΔNν = 0. As illustrated in Fig. 3, Lower,
spectra obtained by matching solutions across this compensated
domain wall demonstrate that it hosts two pairs counter propa-
gating modes within the same valley, which hybridize and com-
pletely gap the spectrum.

Fragility of Boundary Modes
The continuum model is able to explain the topological origin of
the gapless interface modes. However, the short-range physics
near the domain wall, which may be of essential significance, is

not captured in the continuum Hamiltonian. Importantly, the
single-valley physics that protects the chiral domain wall sol-
utions can be preempted by sufficiently strong large-momentum
scattering that acts to recouple states in the two valleys. In fact,
Fig. 2 suggests that these single-valley domain wall modes ul-
timately reconnect with each other. What is critical is whether
valley is a good quantum number. If it is not in the bulk, then
there is no well defined topological invariant even at low-en-
ergy. If it is broken on the boundary, then there are no well
controlled physical consequences even if one can define the
bulk invariant. To study this further, we construct a specific
lattice model and use it to investigate how both lattice and
interfacial effects, which couple the two valleys, influence the
domain wall modes.
As depicted in Fig. 5, we consider the simplest LSW, i.e., a

grain boundary separating BLG into left and right domains. Near
the LSW, the lattices are continuous in one layer but fractured
along a zigzag edge in the other. This introduces additional
zigzag boundaries in the broken layer and allows switching of the
bulk stacking order from BTAB (μ= − 1) on the left to ATBB
(μ= 1) on the right. For comparison, we first calculate the band
structures for the case of uniform gapped BLG and for the
case of gapped BLG with an EFW at which stacking order is
preserved. As expected and shown in Fig. 6 A and B, quantum
valley Hall edge states (13) and two flat bands appear at the
outer zigzag edges in uniformly gapped BLG. In the sample
with an EFW, there is an additional pair of copropagating
chiral gapless modes, which emerge at each valley. Fig. 6C
shows the situation for a LSW with a uniform interlayer electric
field; surprisingly, there are three instead of two gapless modes
per valley in this case.
We investigate this problem further by studying the depen-

dence on the tunneling amplitude tc across the LSW shown as
the dashed lines in Fig. 5. Without tunneling (Fig. 7A), the
boundary mode spectrum yields two copies of the gapped BLG
spectrum shown in Fig. 6A, and thus there are two chiral gapless
modes in each valley as anticipated by the continuum model. The
flat bands represent the states localized on the grain boundary
lines BLI

B and ARI
B in Fig. 5. The leading effect of turning on the

tunneling is that the pair of degenerate flat bands (magenta
bands in Fig. 7) are split and become dispersive, as described in
Fig. 7 B and C. When the tunneling is larger than the electric
field induced gap, the flat band split downward is pushed down
to the valence band and becomes the third gapless mode shown
in Fig. 6C.
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Fig. 5. The simplest LSW separating BLG into a left (L) domain with BTAB

stacking (μ= − 1) and a right (R) domain with ATBB stacking (μ= 1). When
the BLG is uniformly gapped, gapless modes emerge along the outer zigzag
edges (E) as well as along the LSW interfaces (I). The lattices are continuous
in the bottom (B) layer but have a straight crack in the top (T) layer. The
dashed lines denote the tunneling between the domains within the con-
tinuous layer.
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Fig. 6. Gapless modes for (A) uniform gapped BLG, for (B) gapped BLG with
an EFW, and for (C) gapped BLG with a LSW as depicted in Fig. 5. The yellow
states localize on the outer zigzag boundary and they are doubly de-
generate in B and C. The green states localize on the EFW in B and on the
LSW in C. In C, the green (magenta) LSW states localize on the broken
(continuous) layer. To illustrate these different cases, we chose the following
parameter values: t = 1, γ1 = 0:3, and V=2= 0:25.
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The other two gapless modes (green bands in Fig. 7) localized
on the grain boundary of the broken layer are almost degenerate
due to the inversion symmetry between the lines BLI

T and ARI
T in

Fig. 5. This degeneracy is exact at ka= π and can be lifted by
breaking the inversion symmetry between the left and right
domains. We further find that a local potential Uloc on BLI

T or ARI
T

can raise and lower the energies of the green bands. Similarly,
a line potential on BLI

B or ARI
B can change the energies of the

magenta bands. In view of these results we propose a criterion
controlled by a hierarchy of energy scales to determine the
number of fragile gapless modes in the atomically abrupt LSW
shown in Fig. 5:

Uloc −
V
2
< −

Δgap

2
; [12]

Uloc +
V
2
± tc < −

Δgap

2
; [13]

where Δgap=2 is one-half size of the field-induced gap, which
saturates if V exceeds a critical value (6). As described in Fig.
7A, the two green bands are independent of tc and connect the
two valleys at energy of ∼ −V=2. When a positive (negative)
Uloc on BLI

T or ARI
T is turned on, the corresponding green band

will respond by shifting in energy. Eq. 12 is therefore the condi-
tion for the appearance of this gapless channel. The two magenta
bands also connect the two valleys and become flat at energy
∼V=2 when tc = 0. Turning on tc will lift their degeneracy and
pin their energies to V=2± tc at ka= π. As in the case for green
bands, a positive (negative) Uloc on BLI

B or ARI
B could move one

magenta band upward (downward) whose emergence in the gap
is related to fulfilling Eq. 13.
When the LSW is made smooth in the sense that it does not

produce sufficiently strong intervalley coupling, the tunneling
amplitudes near the domain wall in both layers are almost the
same as the pristine ones. In such a case, the tunneling between
the left and right domains in the broken (continuous) layer would
strongly split the two green (magenta) bands at ka= π. As a result,
only one green and one magenta bands in Fig. 7 survive in the
band gap, recovering our earlier continuum results.

Discussion
This article provides a general framework for understanding
valley-projected chiral domain wall modes in BLG and their
fate in the presence of possible lattice-scale potentials that acts
to recouple states in the two valleys. We conclude that gapless
interface modes at a LSW are topologically stable when the
potential difference between layers is the dominant energy scale
and the valley index can be regarded as a good quantum number.
In this case, the valley Chern number provides a useful index for
interpreting the valley-projected spectra. Domain walls where
the electric field is reversed and where the layer stacking is re-
versed each induce phase twists in the manifold of occupied
states, which, although distinct in these two situations, confine
pairs of valley-projected chiral modes in the domain wall. In-
terestingly, even in the valley-projected problem, these modes
can be gapped by their interaction within defects where both the
perpendicular field and stacking order are allowed to vary in
space. Furthermore, the topological protection of the domain
wall modes can be preempted entirely by sufficiently strong lat-
tice-scale physics. In this situation, the valley Chern number no
longer characterizes the spectral properties and in the general
case the number of domain wall modes can be any integer from
0 to 4 depending on the criteria like that implied by Eqs. 12 and
13. The valley-projected topological-state analysis of BLG is il-
lustrative of similar physics that occurs in all chiral multilayer
graphene systems (6, 13) and is sensitive to stacking order, and to
perpendicular electric fields.
ABA-ABC stacking domain walls are occasionally obtained in

exfoliated trilayer graphene samples (20) and similar LSWs in
bilayer and thicker chiral graphene are also experimentally ac-
cessible. A key difference is that the weak topological invariant
(valley Chern number) cannot be defined on the ABA trilayer
domain where the system is not gapped (20) even under a large
perpendicular electric field. LSWs can be imaged by transmission
electron microscopy, visualized by optical microscopy, and pro-
bed by scanning tunneling microscopy (STM) and transport
experiments. When the STM tip crosses the LSW, sharp field-
induced features in the local density of state at the gap edges
should be suppressed due to the dispersive domain wall modes.
In the presence of a perpendicular electric field, the conductance
in a sample with a single LSW depends very sensitively on the
orientation of the sample and on the positions of the contacts.
Along a LSW, the Landauer conductance, in the absence of in-
tervalley scattering, may reach Ne2=h, where N is the number of
nearly perfect transmission channels (17) in each valley. In
a sample with many LSWs or with strong intervalley scattering,
the conductance may be much smaller than e2=h due to back-
scattering within and between the LSWs.

Note Added in Proof. After the completion of this work, a com-
plementary preprint (21) and an experimental study (22) which
cover closely related material have appeared.
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