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We show that a drop of liquid a few hundred microns in diameter
placed under a solid, elastic, thinfilm (∼10μmthick) causes it to bulge
by tens of microns. The deformed shape is governed by equilibrium
of tensionsexertedby thevarious interfaces and the solidfilm, a form
of Neumann’s triangle. Unlike Young’s equation, which specifies the
contact angles at the junction of two fluids and a (rigid) solid, and is
fundamentally underdetermined, both tensions in the solid film can
be determined here if the liquid–vapor surface tension is known in-
dependently. Tensions in the solid film have a contribution from
elastic stretch and a constant residual component. The residual com-
ponent, extracted by extrapolation to films of vanishing thickness
and supported by analysis of the elastic deformation, is interpreted
as the solid–fluid surface tension, demonstrating that compliant thin-
film structures can be used to measure solid surface tensions.
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When two immiscible liquids are brought into contact in air, at
the point where the liquid–liquid and two liquid–vapor

interfaces meet, the angles between these interfaces are governed by
equilibrium of the three surface tensions. The geometric construc-
tion representing equilibrium of three surface tensions is known as
Neumann’s triangle (1). If one of the surface tensions is measured
independently, Neumann’s triangle can be used to obtain the other
two. By contrast, for a liquid droplet resting on a rigid solid sub-
strate, there is typically only one condition that relates two surface
energies and the liquid–vapor surface tension, the well-known
Young’s equation (1–3). For most solids, the component of the
liquid surface tension normal to the surface causes negligible de-
formation and is ignored. Although the liquid–vapor surface tension
is straightforward to measure separately, it still leaves Young’s
equation as a single relationship with two unknown quantities.
That liquid surface tension can cause significant deformation

in a compliant elastic solid has been known for some time (1, 4–6
and reviewed in ref. 7). Lester (8) and Rusanov (9) first solved
the problem for deformation due to the normal component of
the surface tension. Recently, Style et al. (10) showed that within
a region governed by the elastocapillary length, γ/E, where E is
Young’s modulus and γ is surface tension, a ridge forms with
a local shape governed by Neumann’s triangle for the two fluids
and solid, allowing determination of the solid–fluid surface ten-
sions. The height of the ridge is approximately the elastocapillary
length (11); for an elastomeric material with a modulus of a few
kilopascals, this is a few microns. Therefore, depending on the
measurement resolution, deformation due to the normal compo-
nent of surface tension can be easily measured only for sufficiently
compliant materials, with a modulus in the tens of kilopascals or
lower, using optical measurement techniques.
However, the characteristic length scale for the deformation of

a solid due to surface tension, γ/E, can be amplified dramatically
by proper choice of geometry (5, 12), for example, by using
cantilevers (13) or films (12). In this work, we show that liquid
drops placed under a compliant film with a modulus of several
megapascals induce deflections of the solid film in the tens of
microns, which is observable by the naked eye. The combina-
tion of the liquid, solid film, and ambient air form a Neumann’s

triangle, with the film playing the role of an interface between the
fluids. [An early experiment involving liquid drops on a compliant
graphite sheet was performed by Metois (14).] This allows direct
determination of the tensions, which can be decomposed further
into contributions from stretch and surface tension.
Although surface stress in stiff solids has long been a subject of

theoretical and experimental investigation (13, 15–17), it has always
been difficult to measure (1, 18), primarily because γ/E is typically
a very small quantity. For compliant materials, this elastocapillary
length can be many microns; thus, its effects are more significant
and easily measured. Examples include the foregoing one on con-
tact line deformation (6, 10, 19), mechanical instabilities in a gel
(20), adhesion instabilities (21, 22), limitation on shape replication
by compliant materials (23), flattening of a surface due to surface
tension (12), effect on surface creasing (24), influence on cavitation
rheology (25), and deformation of a compliant cylinder immersed
in a liquid (26). By using a thin-film geometry, we circumvent the
existing limitations in surface tension measurements and present
a method for measuring the surface tension in relatively stiff solids.

Results and Discussion
To study quantitatively the liquid surface tension-induced de-
formation on a thin solid film, we used simple geometry consisting
of polydimethylsiloxane (PDMS) thin films ranging from 9 to 40 μm
in thickness (t) suspended on PDMS substrates with holes typically
8 mm in diameter (Fig. 1A). We placed a droplet on the underside
of the thin film and measured the surface profile of the top surface
of the film via optical profilometry. The forces on the thin film are
the droplet’s surface tension and Laplace pressure, as depicted in
Fig. 1A, as well as gravity.We find that these forces cause significant
film deformation (Fig. 1 C and D). In all previous studies of de-
formation due to a liquid drop (7), the deformation is cusp-like in
the direction of the droplet’s line surface tension force. However,
for our suspended thin-film geometry, deformation is mainly in the
opposite direction, that is, in the direction of the Laplace pressure P
(Fig. 1B). (The action of gravity causes overall deflection opposite
to the Laplace pressure; however, our drops are sufficiently small
that this deflection only shifts the datum for deflection, but not
the shape of the deformed film, as shown below.)
Fig. 1C shows the surface profile for a drop of deionized water

(DI) under an 11.0-μm thick PDMS film. Observe that the film
bulges to a height of about 30 μm for an ∼350-μm radius drop.
Although the PDMS used in this work is three orders of magnitude
stiffer than the silicone gel used by Style et al. (10), the flexibility of
the film results in deformation one order of magnitude greater
than they reported. Fig. 1A shows schematically the nature of the
deformed shape, along with the liquid drop; this is reminiscent of
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Neumann’s construction (Fig. 1B) but with a solid elastic film
playing the role of two of the interfaces. Assuming that the solid
elastic film supports tensions σI just outside the droplet and σII
inside it, equilibrium of tensions (in newtons per meter) in the
radial and axial directions at the contact line requires

σI = σII cosϕ+ σlv cosðθ−ϕÞ; [1]

σII sinϕ= σlv sinðθ−ϕÞ; [2]

where θ is the internal angle between the solid film and the
droplet surface at the contact line (it is also is the wetting angle
that the liquid makes on a flat PDMS substrate) and ϕ is the
angle of thin-film deflection at the contact line (Fig. 1B). Here,
σI and σII are the total tensions in the film just outside and inside
the contact line (in newtons per meter). As argued later, the
value of tension has contributions due to stretch of the film
and the sum of the solid surface tensions at the two film surfaces.
In the limit of vanishing film thickness, the values of tensions
approach the sum of the surface tensions of the two film surfaces.
If the liquid–vapor surface tension σlv is measured indepen-
dently, Eqs. 1 and 2 can be used to obtain tensions σI and σII .
Eqs. 1 and 2 are based on the assumption that the film behaves like

amembrane, supporting mainly in-plane tension. Because the elastic
film has finite thickness and the drop has finite weight, a natural
question arises about the influence of bending and gravity. To in-
vestigate this, we have analyzed the case where bending, in-plane
tension, and gravity are all present [details are provided in SI Text,
and previous related analyses are provided by Fortes (27) and Kern
andMüller (28)]. The blue line in Fig. 1C shows excellent agreement
between the theoretical prediction and experimental measurement
of deformed shape for a film of thickness 11 μm. The tension, σII ,
was estimated independently as described below. Other parameters
were measured or are known independently. The red line, overlaid
on the same plot, is the theoretical prediction (within a vertical

offset) for the case where bending and gravity are neglected. Note
that the shape of the membrane near its axis of symmetry is captured
very well by either theoretical model (i.e., we may conclude that the
membrane does mainly support tension and that its radius of cur-
vature at the axis of symmetry is insensitive to bending and gravity).
More quantitatively, we have established theoretically (SI Text)

that agreement between prediction based on membrane theory
and measured shape is expected, except in a small boundary layer
near r = c, the position of the contact line, if the parameterffiffiffi
«

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=σIIc2

p
� 1, where E is the Young’s modulus, I is the

area moment of inertia, and c is the radius of the contact line. We
retained data only for cases where, a posteriori,

ffiffiffi
«

p
≤ 0:25. For

example, the tensions were lowest in value when we conducted
experiments with Dimethyl Sulfoxide (DMSO). In this case, for
film thicknesses of 9, 25, and 40 μm,

ffiffiffi
«

p
takes the values 0.07,

0.25, and 0.42, respectively, for a drop with a radius of 0.5 mm.
For this reason, we discarded all the data for 40-μm thick films.
Thus, we can neglect the influence of bending and gravity on

the film shape near the axis of symmetry, where the film supports
mainly biaxial tension. (We also independently confirmed, by
direct computation based on measured deflection, that shear
forces in the film are small compared with measured tension; SI
Text). Let R be the radius of curvature at the axis of symmetry.
Using the geometric relation sinϕ= c=R, Eq. 2 is rewritten as

σII =
Rσlv
c

sinðθ−ϕÞ; [3]

in terms of measurable parameters. We obtain R by fitting a sphere
to a small region near the center of deformation for various values
of c (SI Text). The angle θ is measured independently via contact
angle experiments on a flat PDMS slab, whereas the angle ϕ is
measured by averaging angles from line scans of the vertical de-
flection at the contact line. Based on known values of the liquid
surface tension of the liquids used in this work (29), Eq. 3 provides
the tension in the region where the solid film is in contact with the

Fig. 1. Extraction of tension by measurement of deformation due to a drop placed under a solid film. (A) Schematic of experimental setup for surface tension
experiments. The droplet is placed on the underside of a circular thin film that is 8 mm in diameter, with thickness in the range of 9–40 μm. (B) Schematic
drawing shows the balance of forces near the axis of symmetry and at the triple line. Laplace pressure is denoted by P. Note that deformation is mainly in the
direction of P, whereas all previous measurements of deformation due to a drop show the formation of a cusp in the direction of surface tension, opposed to
P. θ is the internal angle between the film surface and the liquid drop, and ϕ is the angle of the deflected shape. (C) Comparison of measured and theoretical
surface profiles. There is virtually no difference in the calculated shape of the deformed membrane near the axis of symmetry with or without bending and
gravity, consistent with the assumption that the membrane essentially supports only in-plane tension. (D) Profile of the top surface of an 11.0-μm thick
membrane with a drop on the underside showing a bulge of tens of microns.
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liquid drop, σII . The radial equilibrium (Eq. 1) then gives us the
tension in the film just outside the contact line, σI .
Fig. 2A shows the time evolution during evaporation of the de-

formed shape of the bulge for DI on an 11-μm thin film. The effects
of gravity and bending result in vertical offsets that affect neither the
measurement of the radius of curvature nor the angles used to cal-
culate tension by Eq. 3 (SI Text). Fig. 2B shows, for a given drop size,
that the deformed shape depends strongly on the type of liquid (in
this case, the vertical offsets were removed to provide a common
baseline for comparison). In our experiments, we use DI, ethylene
glycol (EG), and Dimethyl Sufoxide (DMSO). These liquids were
chosen because they are the least capable of absorbing into PDMS,
essentially eliminating deformations due to swelling of the elastomer
(30). In addition, we performed experiments with drying drops of

these liquids on a flat PDMS slab and observed no measurable de-
formation in regions previously exposed to the liquid (at a resolution
of ∼2 nm), supporting the conclusion that swelling was negligible.
Fig. 2C shows the radius of curvature, R, as a function of the

position of the contact line, c, for the three liquids on an 11-μm
thick film. Fig. 2C (Inset) shows the ratio of R/c as a function of c.
We observe that the radius of curvature decreases linearly as a
function of droplet contact radius and that the ratio is approxi-
mately a constant. Indeed, Eq. 3 implies that R/c is a material
constant as long as ϕ is determined by Eq. 2, which assumes that
the film outside the contact zone is flat. This would not be the case
if bending were significant, and it further supports the assumption
that the membrane supports mainly in-plane tension. In our
experiments, we find that R/c is no longer constant either when

Fig. 2. Extraction of tension in the film from its measured deformation. (A) Time evolution during drying of the deformed shape of the bulge for DI. The
deflection data have an arbitrary vertical offset that does not affect the measurement of the radius of curvature or the angles. (B) Bulge shape for different
liquids on the same PDMS film and approximately the same drop radius (the deflection data have been shifted to a common datum of zero). SDBS, Sodium
Dodecylbenzenesulfonate. (C) As the drop dries, its radius, c, reduces; the radius of curvature of the bulged film reduces in proportion. (Inset) Consistent
with Eq. 3, the ratio R/c remains constant until the edge of the drop starts to pin. (D) Estimated value of tension in the solid film, σII , remains approximately
constant as the drop dries, consistent with Eqs. 1–3.

Fig. 3. Extrapolation of film tension to zero thickness yields surface tension. (A) Film tension in the region in contact with liquid as a function of film
thickness. We find that all three cases exhibit a nonzero intercept, which we interpret as the surface tension. (Inset) There is a systematic difference on the
same sample depending on the type of liquid in contact with the film. The data plotted here therefore represent the difference in film tension simply due to
a change of the liquid in contact with the solid. (B) Film tension in the region immediately outside the contact line as a function of film thickness.
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the film is so thick that bending matters (SI Text) or when the
contact line pins permanently and the contact angle decreases as
the liquid evaporates away completely. Data in either case are dis-
carded. Fig. 2D shows the measured tension σII as a function of
contact radius for a film 11-μm thick during the phase when the
contact line retracts freely. The finding that measured tension is
approximately independent of the contact radius again supports
the assumption that the film deforms as a membrane (i.e., it mainly
supports only tension). (For a sufficiently thick film, where bending
is expected to be important, Fig. S4 shows that the extracted ten-
sion is no longer independent of drop radius.) For a given film
thickness and liquid, we performed three droplet experiments on
three separate samples. The reported tension value is the average
of the tension over three-drop radii from the three experiments.
The tension in the solid film depends distinctly on the fluid used
and is ranked according to the liquid–vapor surface tensions (78.3,
46.5, and 43.2 mN/m for DI, EG, and DMSO, respectively; ref. 29).
The experiments and their analysis discussed so far allow us to

compute the tensions in the parts of the film inside and outside the
liquid droplet. These tensions can arise due to the surface tension of
the fluid–solid interfaces, stretching of the elastic film, and, po-
tentially, bulk residual stresses. To separate out the contribution of
tension due to stretching, wemeasured tension (newtons permeter)
as a function of film thickness for three different liquids: DI, EG,
and DMSO. Fig. 3A plots tension in the region of the film exposed
to the liquid, and Fig. 3B plots tension in the region immediately
outside the drop. We find that the measured tensions increase
significantly with film thickness, presumably due to increasing
contributions from film stretching. Extrapolation by straight-line
fits to zero thickness yields values that we interpret as the surface
tension. The values we obtain are shown in Tables 1–3. (In SI Text,
we outline a model confirming that, in the limit of small film
thickness, the contribution to tension due to stretch vanishes, sup-
porting the interpretation of the intercept as the surface tension.)
Intercept values for absolute tension and for the difference in

tension between DI and EG or DMSO both show a significant
dependence of tension inside the contact on the liquid used.
These two observations support the notion that intercepts can be
interpreted as surface tensions (σSL for the solid/liquid inter-
face and σSV for the solid/vapor interface, respectively). Fig. 3A
(Inset) shows the difference in tension values inside the contact
radius between experiments performed with DI and those per-
formed with EG and DMSO. That there is a systematic differ-
ence in the intercept tension for the same sample (PDMS film),
depending on the liquid, rules out the possibility of bulk residual
stress playing an important role and further supports the asser-
tion that we are measuring surface tension.

The intercept values should be compared with approximately
the sum of the surface energy of the PDMS surfaces on two sides of
the film. This sum should equal about 80–100 mJ/m2 for the case
where one side of the membrane is exposed to DI and the other to
air. Of course, there is no necessity for surface tension and energy
to hold the same value, but one might expect their magnitude to be
similar. With significant confidence, we can accept the hypothesis
that intercept values represent nonzero solid–fluid surface tensions.
With similar confidence, we can conclude that replacing DI by EG
or DMSO causes a significant change in surface tension. We note
that unlike previous experiments with drops on thin films (31) that
showed hoop buckling, we observe no such phenomenon. We as-
cribe this difference to the strong influence of the surface tension
and the geometry of our setup, which keeps hoop stresses tensile.
The argument and method presented so far represent a direct,

model-independent measurement of tension that relies only on
force balance. Once it has been established that thickness is
sufficiently thin, one ought to be able to dispense with the need
for measuring films of different thickness. However, if one wishes
to improve on the accuracy of the method, it may be possible to
estimate the contribution to film tension due to film stretching in
terms of measured parameters. As outlined in SI Text, this
contribution is on the order of Etðh=cÞ2=3.
Conclusion
We studied liquid surface tension-induced deformation of films
with a thickness of several micrometers spanning relatively large
cylindrical holes. The interplay of liquid–vapor surface tension
and tensions in the solid film results in a bulged membrane. Its
equilibrium shape can be analyzed by force balance, a version of
Neumann’s triangle, providing a method for estimating the film
tension by measurement of bulge deformation. In the limit of
vanishing membrane thickness, film tension may be interpreted
as solid–fluid surface tension. The use of a compliant geometry
provides several advantages. Because deflections are quite sig-
nificant, it permits the use of PDMS, which is a relatively stiff
material in this area of research but one that provides many
conveniences. The geometry is straightforward to fabricate, and
the experiment is easy to implement. By using this technique,
one can measure the surface tension of thin films in contact
with both liquid and air. Furthermore, this simple technique can
potentially be used for measurements on a greater variety of
materials by using an elastomeric thin film as a support substrate
for stiffer and thinner (e.g., a few nanometers thick) materials.

Methods
Suspended Circular Thin Film. A Plexiglas mold was used to create poly-
dimethylsiloxane (PDMS) substrates a few millimeters thick with holes that
were 8 mm in diameter. A PDMS (Sylgard 184) liquid thin film was spun onto
a polystyrene-coated silicon wafer. The substrate was placed onto the thin
film, and, together, they were cured at 80 °C for 2 h. To obtain various
film thicknesses, we spin-coated the thin film at speeds in the range 2,000 to
500 rpm to obtain thicknesses in the range of 9–40 μm.

Displacement Measurements and Analyses. Drops were placed below the film.
Deformation was monitored from above using a white-light interferometer
(Zegage; Zygo Corporation) with a resolution of about 2 nm. Datawere extracted
and analyzed using codes written in MATLAB (MathWorks).

Table 1. Tension in the film in the limit of zero thickness,
interpreted as surface tension

Liquid
σII , mN/m [tension inside the drop

(intercept + 90% confidence interval)]

DI 185.3 (124.0, 246.6)
DMSO 87.3 (57.2, 118.2)
PEG 111.3 (76.4, 146.3)

Table 2. Difference in tension in the film inside the drop
extrapolated to zero thickness, interpreted as the difference in
surface tension

Liquid
ΔσII , mN/m

(intercept + 90% confidence interval)

DI-PEG 74.0 (43.1, 104.9)
DI-DMSO 97.6 (59.2, 135.9)

Table 3. Tension in the film just outside the drop extrapolated
to zero thickness, interpreted as surface tension

Liquid
σI, mN/m [tension outside the drop

(intercept + 90% confidence interval)]

DI 192.1 (133.7, 250.5)
DMSO 140.3 (92.5, 188.1)
PEG 181.6 (127.0, 236.2)
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Contact Angle Measurement. Receding contact angles were measured on flat
PDMS substrates by dispensing and withdrawing liquid using a syringe while
monitoring the drop profile through a video camera. Images were sub-
sequently analyzed to measure contact angle.
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