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Abstract
A four-dimensional deformable image registration (4D DIR) algorithm, referred to as 4D local
trajectory modeling (4DLTM), is presented and applied to thoracic 4D computed tomography
(4DCT) image sets. The theoretical framework on which this algorithm is built exploits the
incremental continuity present in 4DCT component images to calculate a dense set of
parameterized voxel trajectories through space as functions of time. The spatial accuracy of the
4DLTM algorithm is compared with an alternative registration approach in which component
phase to phase (CPP) DIR is utilized to determine the full displacement between maximum inhale
and exhale images. A publically available DIR reference database (http://www.dir-lab.com) is
utilized for the spatial accuracy assessment. The database consists of ten 4DCT image sets and
corresponding manually identified landmark points between the maximum phases. A subset of
points are propagated through the expiratory 4DCT component images. Cubic polynomials were
found to provide sufficient flexibility and spatial accuracy for describing the point trajectories
through the expiratory phases. The resulting average spatial error between the maximum phases
was 1.25 mm for the 4DLTM and 1.44 mm for the CPP. The 4DLTM method captures the long-
range motion between 4DCT extremes with high spatial accuracy.
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1. Introduction
Four dimensional computed tomography (4DCT), developed for radiotherapy treatment
planning, is an imaging technique that allows for the acquisition of time-varying 3D image
sequences of the thorax through the respiratory cycle (Vedam et al., 2003; Pan et al., 2004;
Ford et al., 2003). 4DCT images contain motion and acquisition related artifacts, are noisy
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due to low radiation dose acquisition techniques, and are acquired at lower spatial
resolution. The resulting 4DCT image set also contains the respiratory-induced CT
characteristics of the pulmonary parenchyma that reflect the regional changes in air content
(Guerrero et al., 2006; Reinhardt et al., 2008). Since the lungs expand and contract non-
uniformly with breathing, extracting quantitative motion or physiological information from
4DCT image sets requires deformable image registration (DIR).

Two categories of DIR algorithms exist divided by the data on which they operate, image
content (e.g. image features, landmark-based, segmentation-based, etc.) or voxel properties
(Maintz and Viergever, 1998). Li refers to this dichotomy as geometric versus intensity
approaches and introduces a hybrid approach combining the two (Li et al., 2008). The DIR
algorithms that utilize sets of registered landmark point pairs and interpolation schemes to
determine the displacement vectors between image pairs are examples of image content
based DIR (Schaefer et al., 2006; Kaus et al., 2007; Al-Mayah et al., 2008; Bookstein,
1989). Landmark pairs are determined from each of the two images either manually or using
an automated method. An interpolation scheme is applied to the point pairs to determine the
displacement of all voxels within the region (or organ) of interest. These point-based
approaches have the advantage that they avoid the problem of solving large systems of
equations, and are independent of the image content. However, manually selecting
corresponding points is impractical for clinical use and automating their selection has thus
far proven unreliable.

Deformable model methods are an example of intensity approaches in which a mathematical
model is derived to represent the displacement between images in terms of a partial
differential equation (PDE). PDEs analogous to fluid flow equations, compressible or
incompressible, form the basis of the optical flow class of methods first described by Horn
and Schunck (Horn and Schunck, 1981). Surveys of these methods are available in the
literature (Barron et al., 1994; Beauchemin and Barron, 1995). Sarrut (Sarrut, 2006) surveys
a number of DIR methods suitable for computing deformations between pairs of 3D CT
images of the lungs. Compressible flow equations have been used in prior studies to model
the apparent displacement of lung tissue due to respiratory motion in 4DCT images
(Castillo, 2007; Li et al., 2008; Castillo et al., 2009a). It is known for optical flow algorithms
that small displacements result in reduced spatial error versus large displacements due to
many factors including the linear approximations made in their formulation (Barron et al.,
1994). Approaches designed to work with larger displacements, such as the algorithm
proposed by Lucas and Kinades (Lucas and Kanade, 1981), have greater accuracy with
smaller displacements. Remeshing or down sampling the original images and smoothing to
reduce the spatial frequency content of the images, are methods utilized to extend the
displacement range to the displacements found between the maximum inhale/exhale 4DCT
components. However, smaller displacements are present in the 4DCT components between
the maximum inhale/exhale images and may be utilized advantageously.

A 4D DIR algorithm should simultaneously consider all phases of the 4D image set and
constrain the spatiotemporal attributes of the displacement fields concurrently during the
registration process. Klein et al used 4D DIR to sum 4D cardiac PET images into a single
3D motion compensated composite image volume (Klein and Huesman, 2002). They
calculated the displacement from each image to a reference image using the incremental
motion fields between adjacent time frames, then combined the incremental steps following
the displacement trajectories to form long distance displacements. Their implementation
alternated between optimization of incremental and long distance displacements in an ad hoc
approach. Computational memory constraints limited Klein et al in their implementation to
only minimize cost functions associated with the motion field between individual pairs of
image volumes at any point in the calculation. Other approaches to 4D DIR have been
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reported. Sundar et al (Sundar et al., 2009) report on using the hierarchical attribute
matching mechanism 4D DIR algorithm to estimate myocardial motion from cine MRI
cardiac images. The original 4D image sequence was registered with a fictitious image
sequence consisting of replicated end-diastolic images, the sequential net displacements
from end-diastole were determined. Schreibmann et al utilized an automated 4D-4D DIR
algorithm to find the spatiotemporal match between two 4D data sets, registering 4DCT to
4D cone beam CT and temporally separated 4DCT to 4DCT (Schreibmann et al., 2008).

For the evaluation of DIR algorithms, image similarity and expert determined landmarks
point pairs have each been proposed as standard methods (Sharpe and Brock, 2008; Castillo
et al., 2009b). However, investigators have found image similarity does not guarantee good
spatial registration of the underlying anatomy (Crum et al., 2003; Shen and Davatzikos,
2002; Castillo et al., 2009b; Li et al., 2008). Similarity measures operate in the intensity
domain and not in the spatial domain, thus, they do not evaluate the correctness of
registration, the magnitude of registration errors, and the spatial distribution of errors. A
number of recent studies have utilized sets of expert-determined landmark features to
evaluate DIR spatial accuracy in the lung. The uncertainty of spatial error estimates was
found to be inversely proportional to the square root of the number of landmark point pairs
and directly proportional to the standard deviation of the spatial errors (Castillo et al.,
2009b). The number of landmark points required to achieve a desired uncertainty in the
spatial error estimate can be estimated from the desired uncertainty and the expected
standard deviation between cases. Comparative evaluation based on fewer than the required
validation landmarks results in misrepresentation of the relative spatial accuracy. For
thorough and unbiased characterization of DIR spatial accuracy performance, it is necessary
to ensure that the validation landmark sets adequately sample the volume of interest not only
spatially, but also in terms of the clinically relevant variables that could potentially affect
DIR output. A large number of landmark points also makes possible estimates of the average
spatial error with sub-voxel accuracy.

In this study, we develop and validate a DIR approach based on the idea of recovering
parameterized voxel trajectories which represent the paths taken by voxels though space as
functions of time. The method utilizes the full set of expiratory phase 4DCT component
image data simultaneously while performing the calculation, and inherently determines the
displacement between the maximum exhale/inhale pair. The numerical implementation of
the method approximates image intensity values on a variable grid by 3D cubic-splines
(removing local discontinuities), which reduces the effects of image noise and artifacts in
the calculation of local derivatives. Next, utilizing a cubic path assumption, the
parameterized trajectory of each voxel is calculated by performing a nonlinear least squares
fit to a local compressible flow equation. These values are retained only for those voxel that
achieve a goodness of fit criteria. The displacements for those voxels that do not achieve the
criteria are determined using neighboring values and moving least squares interpolation
(Schaefer et al., 2006). The bulk of the computational workload is represented by a series of
small, nonlinear least squares problems which are solved in parallel by a gradient-based
optimization routine, utilizing the smooth b-spline image representations. We utilize
manually selected large landmark point pairs to characterize the performance of our 4D
DIR, referred to as 4D local trajectory modeling (4DLTM), and compare it with a
component phase to phase (CPP) 3D DIR.

This paper is organized as follows: sections 2-4 describe the mathematical theory and
implementation of our 4D DIR. Section 5 discusses the image acquisition and expert-
determined landmark validation sets. Sections 6 and 7 provide the demonstration of
improved spatial accuracy using anatomic pulmonary landmarks. The 4D method is
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compared with two 3D methods currently in use. Finally, our future work is discussed in
section 7 and our conclusions in section 8.

2. Registration Across 4D Image Sets: Trajectory Modeling
DIR methods designed to register image pairs typically utilize modeling approaches based
on an Eulerian coordinate system. This approach is natural given the voxel grid
discretization inherent to image volumes, and the fact that a single image pair provides only
a small amount of information from which to determine the registration. As such, the
simplest general entity with the ability to encode the registration of a single voxel, that is, a
three dimensional displacement vector, is the quantity most often sought after by current
methods.

However, registration across a 4D image set requires knowledge of each voxel's spatial
location at each time step in the sequence. The simplest approach for computing this type of
registration is to apply any standard 3D image registration method to each temporally
sequential image pair in the set. The result is one full displacement field for each image in
the sequence. The mapping relating the position of any given voxels in the first image to its
counterpart in the last image is then determined by “connecting the dots”, that is, by
following the piecewise linear path given by temporally traversing the calculated
displacement fields. The main strength as well as the main drawback to the sequential
registrations approach is the decoupling of the 4D registration problem into several 3D
registration problems. Though the decoupling reduces the complexity of the full 4D
problem, the approach fails to utilize all available temporal information as a whole.
Consequently, errors in the registration at any particular time step result in a deviation from
the correct trajectory, and propagate through the remaining time steps.

Registration across a 4D image set is essentially the recovery of each voxel's spatial
trajectory as a function of time. Within this context, it is natural to adopt a Lagrangian
coordinate framework.

The temporal image set we wish to register is assumed to be a collection of snap shots taken
from an unknown density function:

(1)

where x(ξ, t)∈ ℝ3 is the Lagrangian coordinate of the particle located at ξ for t = 0, and Ω is
the region of interest captured by the image set. Specifically, the function x(ξ, t) represents
the trajectory of the particle originally located at ξ, through Ω as a function of time (Figure
1). Naturally, knowledge of the path implies knowledge of the displacement vector d(ξ):

The goal now is to develop an image registration framework based on recovering the path
x(ξ,t). The first step in this process is identifying a parametric class of functions with the
capacity to capture the true physical behavior of thoracic 4DCT voxel motion, while at the
same time remaining simplistic enough for the associated parameter recovery to remain
computationally tractable.
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As stated earlier, image pair registration is based on calculating displacement vectors.
Accordingly, most existing DIR methods assume voxel trajectories are straight lines:

(2)

However, such a restricted motion may not be appropriate for modeling thoracic voxel
motion (see Figure 2). On the other hand, 4DCT image acquisition inherently is noisy and
results in image artifacts due to respiratory variation. There is also the potential to over fit
the trajectories when using high order polynomials. Over fitting in the presence of image
noise and artifacts can cause physically nonrealistic trajectories (Figure 3). The choice of the
parameterization also depends on the amount of temporal image information available. For
example, given only an image pair, the linear path/displacement approach is appropriate
since image information at intermediate time steps is not available, and a high order
parameterization cannot be fully utilized. In the best case scenario where the exact position
of the voxel is known at each time step, a well-posed polynomial curve fitting to the position
data requires that the number of time steps be greater than the degree of the polynomial
space.

In this study, we will consider general polynomials up to degree N for voxel trajectory
modeling, where N + 1 is the number of 3D images in the 4D set. Representing the motion
of each component with a one dimensional Nth order polynomial parameterizes x(ξ,t) with
3N coefficients.

(3)

Note that linear paths (2) are contained within the full space of paths described by equation
(3).

3. Trajectory Recovery via Compressible Flow
In addition to the voxel trajectory model, as is the case for all DIR methods, an image
intensity model is required to relate the intensity of a voxel at the initial time step to its
intensity at all other times. The simplest and most commonly employed models are based on
the assumption that each voxel's intensity is constant with respect to time:

(4)

an idea first proposed by Horn and Schunck for the original optical flow method. For
instance, coupling the constant intensity assumption with linear path trajectories reduces
equation (4) to the familiar intensity matching criteria:

(5)

The original optical flow method of Horn and Schunck (Horn and Schunck, 1981) utilizes
the partial differential equation obtained by differentiating equation (4) with respect to time,
commonly referred to as the optical flow equation:
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(6)

where v(x) is voxel velocity.

However, a more general assumption is that mass is conserved:

This property is modeled by the continuity (conservation of mass) equation:

(7)

and is derived elsewhere in the literature (Leveque, 2002; Song and Leahy, 1991).
Substituting the optical flow equation (6) into the conservation of mass equation (7) implies
that the velocity field is divergence free:

or equivalently, that the flow modeled by equations (5) and (6) is incompressible, whereas
equation (7) represents compressible flow. Though slightly more complicated, intensity
models based on equation (7) have the virtue of accounting for voxel intensity variations
without a priori manipulation of the data (as in (Sarrut et al., 2006)), and are suitable for a
more general class of registration problems.

3D Optical flow DIR methods based on partial differential equations (6) or (7) determine the
registration by computing a velocity field describing the apparent motion depicted in an
image pair. Assuming the time step between image pairs to be unity, the voxel velocity
vector is equivalent to the displacement vector. In the case of trajectory modeling, a
compressible flow model given in terms of x(t) is obtained by converting equation (7) into
its integrated form.

Substituting equation (6) into equation (7) results in the ordinary differential equation:

the solution of which is given by:

(8)

as described in Corpetti et al (Corpetti et al., 2002). Note that for incompressible flow, the
velocity field is divergence free and equation (8) is equivalent to equation(4).
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We decouple the integral of the divergence from the exponential by applying the natural log
to both sides of the equation, which yields our compressible flow, voxel trajectory DIR
model for a given initial voxel location ξ:

(9)

where

For the case where x(t) is restricted to a class of functions parameterized by a vector q,
formulation (9) includes the parameterization variables:

(10)

Equation (9) defines the relationship between the initial intensity of a voxel ξ and its
intensity at any time t, under the assumption that mass is conserved. However, given the
inherent noise typical of 4DCT and the density fluctuations caused by perfusion, equation
(10) should not be enforced as a hard constraint. Rather, describing x(q; ξ, t) as a least
squares fit to equation (9) is more appropriate:

(11)

In general, equation (11) does not provide enough information to uniquely determine x(q;
ξ,t). Moreover, equation (11) only depends on the image information located on the path
x(ξ,t). Augmenting the formulation to incorporate local neighborhood information improves
the model and results in a well-posed, nonlinear least squares problem, the solution of which
is the solution to the trajectory recovery problem for the initial voxel location ξ:

(12)

where δs(ξ, γ) is a Gaussian centered on ξ with standard deviation s, evaluated at γ.

Calculating a parameterized trajectory for the initial point ξ based on formulation (12),
utilizes all available spatial and temporal image information from a local neighborhood
centered on ξ. In addition, the Gaussian δ acts as a window function that easily allows for
the development of a local DIR methodology where the full DIR is calculated by solving a
series of smaller, simpler registration problems, similar to the Lucas and Kanade method
(Lucas and Kanade, 1981) and the linear local compressible method described in Castillo et
al (Castillo et al., 2009a).

4. Numerical Implementation
Our numerical implementation is based on recovering polynomial path trajectories (3) from
4D image sets by applying a Levenberg-Marqurdt, gradient-based, nonlinear least squares
solver to a discretized version of problem (12) for a subset of all voxel locations chosen
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from a coarse grid. A full DIR is computed from the coarse grid via moving least squares
interpolation (Schaefer et al., 2006). In this way, the registration is computationally tractable
despite the size of thoracic 4DCT image sets, and the methodology easily lends itself to an
efficient, parallel implementation.

However, two key issues must be addressed with this approach. First, the gradient based
optimization routine requires image information from non-grid locations. Consequently, a
smooth, continuous representation of each image in the 4D set is required. Second, due to
the nonlinear nature of the formulation, it is possible for the optimization routine to get stuck
in local minima. This problem is alleviated by supplying the optimization routine with a
dependable initial guess of the solution. For this purpose, we have also implemented a
pairwise, displacement recovery method based on (12). The initial guess for the cubic
problem is then the piecewise linear trajectory provided by applying the pairwise algorithm
to each temporally sequential image pair.

4.1. Image Representation
The image set we wish to register is assumed to contain snapshots, ρk(x), of the unknown
density function ρ(x(t),t):

(13)

A smooth representation of the image can be obtained via interpolation. Cubic b-splines are
a popular choice for image interpolation due to their inherent smoothness properties and the
minimal computational overheard resulting from their compact support. Thus, for each
image in the set ρk, we compute an associated cubic b-spline representation Pk.

4.2. Trajectory Recovery for General Parameterization
The discretized analog to problem (12) is based solely on the discretization inherent to the
image set. Specifically, for a particular voxel ξj, the discretized trajectory formulation is
given by:

(14)

where Ωj is an isotropic box centered on ξj, and wi is computed from the Gaussian
distribution δs. The lengths of the box are chosen to be equal to 2/3 the standard deviation s.
Thus, the contributions from voxels outside Ωj are negligible.

Evaluation of the image terms present in equation (10) is straightforward given the b-spline
images Pk. The difficulty lies in calculating

(15)

For fixed t, the Eulerian position of the particle ξ is given by g = x(q; ξ,t) and
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Approximating the divergence with forward finite differences yields:

(16)

where ei is the unit coordinate vector. Since the path x(ξ,t) is assumed to have a simple
parameterized form, the values for the velocity components at the location g are easily
obtained by differentiating x(ξ,t) with respect to time. However, approximation (16) cannot
be fully localized without removing its dependence on the velocity information from
neighboring voxels, namely the νi(g + ei) terms.

The introduction of an auxiliary scalar function φ(t), accounting for the velocity information
from neighboring voxels at time t, is the cost of the localization:

(17)

Substituting the divergence approximation (17) and the b-spline image representations into
the compressible flow trajectory formulation (10) gives:

(18)

Note that the development of a numerical method based on (18) requires that the auxiliary
function φ(t) also be parameterized by a vector variable qφ. For the case where polynomials
are utilized to model the trajectory components as well as the auxiliary function, the integral
can be computed analytically and reduced to an inner product between the unknown
parameter vector

and a vector ak containing multiples of powers of tk. Thus, for the polynomial case, the
general formulation (12) reduces to the following nonlinear least squares problem:

(19)

where ci =ln(P0(ξi)).

4 .3 Linear Path Recovery for Pairwise Image Registration
For a linear path trajectory x(ξ,t) = td(ξ), the associated velocity of x(ξ,t) is constant with
respect to time and equivalent to the displacement vector d. Moreover, for a pairwise DIR
there are only two time steps to consider, t = 0 and t = 1. In this case, knowledge of the
auxiliary function φ is only required at t = 1, and can therefore be considered an unknown
constant as opposed to an unknown function. Applying these conditions to problem (18)
results in the linear path compressible flow problem:
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(20)

with a = (1,−1,−1,−1)T, d̂ = (φ,d1,d2,d3)T, and c = P0(ξ). The pairwise linear path
registration of the voxel ξ is then represented by the solution to problem (20). Problem (20)
is a standard nonlinear least squares problem, for which many solvers are available. Given
the simplicity of the objective function and the b-spline image representation, gradient
information can be easily calculated analytically and supplied to the solver.

4.4 Polynomial Path Recovery for Registration Across a 4D Image Set
Nth degree polynomial trajectory recovery is based on the nonlinear least squares problem
(19) and the parameterization q given by the trajectory model (3). The auxiliary scalar
function φ (t) is also parameterized as an Nth degree polynomial:

(21)

Thus, recovering the trajectory for a given voxel ξ requires solving problem (19) for the 4N
+1 total unknowns parameters contained in the associated q̂ corresponding to the Nth degree
polynomial path parameterization. Given the nonlinear nature of problem (19), it is possible
for optimization routines to converge to local minima. This issue can be addressed by
supplying a dependable initial guess to the optimization routine. The piecewise linear path
given by solving problem (20) for each temporally sequential image pair serves as this initial
guess. Our polynomial path trajectory recovery method software is written in C++, utilizing
the Levenberg-Marquardt method implementation provided by the MINPACK FORTRAN
library to solve problem (20).

The full 4DLT registration method solves problem (19) for each voxel on a coarse grid
subset of all image voxels. The magnitude of the objective function is monitored after
convergence of the optimization routine to ensure the quality of the solution. If the
optimization routine converges to an unacceptable local minimum, the solution for that
voxel is disregarded. A displacement field relating the voxels in the first image to those in
the last image is extracted from the trajectory recovery by first evaluating x(q; ξ, 1) for each
voxel in the coarse grid subset. The “holes” in the coarse grid solution caused by local
minima are then filled in by a moving least squares interpolation utilizing information from
voxels with reliable solution to problem (19). A full resolution, dense displacement field is
then created form the coarse grid via standard interpolation, such as trilinear or moving least
squares.

5. Materials and Methods
5.1. 4DCT image data

Ten patients, treated for thoracic malignancies (esophagus or lung cancer) in the Department
of Radiation Oncology at The University of Texas M. D. Anderson Cancer Center, who
received 4DCT imaging as part of their treatment planning were selected from the patient
database for this retrospective study. The patient identifiers were removed in accordance
with the retrospective study protocol approved by our Institutional Review Board (RCR
03-0800). Each patient had undergone a treatment planning session where a 4DCT image of
the entire thorax and upper abdomen was obtained at 2.5-mm slice spacing on a PET/CT
scanner (Discovery ST; GE Medical Systems, Waukesha, WI) with a 70-cm bore (Figure 2).
The images had been acquired with the patients in the supine position with normal resting
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breathing. The 4DCT acquisition technique using the respiratory signal from the Real-Time
Position Management Respiratory Gating System (Varian Medical Systems, Palo Alto, CA)
has been previously described (Pan et al., 2004). Five of the 4DCT image sets (labeled
patients 1 – 5 below) were cropped to include the entire ribcage and sub-sampled in the
transverse plain (Castillo et al., 2009b). The patient and 4D image characteristics of the ten
cases utilized in this study are given in table 1.

5.2. Displacement test data
Measurements of DIR spatial accuracy for each case were obtained using manually
identified sets of prominent anatomical landmark feature pairs identified across multiple
consecutive respiratory phase images, from the maximum inhalation phase (designated T00)
to the maximum exhalation phase (designated T50). A Matlab-based software interface
named APRIL (Assisted Point Registration of Internal Landmarks), previously described
(Castillo et al., 2009b), was utilized to facilitate manual selection of landmark feature pairs
between volumetric images. Basic features of the software include separate window and
level settings for each display, visualization of equivalent voxel locations in the orthogonal
plains, and interactive tools for segmentation of lung voxels from the image data. To
determine corresponding feature points the user must manually designate the feature
correspondence via mouse click on the target image. For all cases, a reference set of
pulmonary landmark feature pairs was generated using the maximum inhale/exhale
component phase images from the 4DCT set. No implanted fiducials or added contrast
agents were used to aid in the selection of landmark features, which typically included
vessel and bronchial bifurcations. Source feature points were selected systematically on the
10 test image pairs by an expert in thoracic imaging, beginning at the apex of the lung.

For the first 5 test image pairs the expert selected >10 features points for each lung per axial
slice, these images were described in our prior publication (Castillo et al., 2009b) and are
available on the Internet (www.dir-lab.com). For the second 5 image pairs, points were
selected with an initial goal of >3 feature points for each lung per axial image slice. This
approach ensured the collection of >1100 validation point pairs for the first 5 cases and
>400 for the subsequent 5 cases. Following feature selection for a given case, all landmark
pairs were visually reviewed by the primary reader a second time and the location adjusted
on the exhale image if necessary. The verification step was required before the initial
registration process, performed by the primary reader, was considered complete. The points
were then used to test the spatial accuracy of DIR algorithms for this study. For each of the
10 cases a subset of 75 landmark features were propagated across the expiratory phases T00
to T50, as shown in the example in Figure 2.

5.3. Polynomial trajectory modeling
The 4DLTM algorithm is applied to the 10 image cases using 1st (linear) through 5th order
(quintic) polynomial trajectory models and evaluated for spatial accuracy over the
landmarks as reported earlier (Castillo et al., 2009b). The spatial accuracy of the 4DLTM
algorithm, using the 5 differing polynomial trajectory models, was compared using the
Friedman rank sum test. This nonparametric test was used to test the equality of the mean
error of the five methods. Next, a rank based pair-wise comparison is made between the best
(and worse) performing method and the remaining methods as well. 4DLTM with cubic
trajectory models is employed for the formal spatial accuracy comparison with the
component phase-to-phase registration approach.

5.4. DIR spatial accuracy assessment
The registration spatial error is defined as the difference between the calculated output and
the designated reference standard displacements. In this case, large sets of manually
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delineated feature pairs serve as the primary validation data. The observer selects at the
voxel level, creating integer displacements between landmark points. To make the
evaluation of manual and calculated landmark registration equivalent, the comparison with
calculated positions is performed on the same integer grid. This is achieved simply by
rounding the final displaced position of each coordinate of interest to the nearest integer. As
described in Castillo et al (Castillo et al., 2009b), we are able to estimate the average error of
each registration algorithm with sub-voxel accuracy due to the large measurement sample
sizes. The mean errors determined from the rounded and floating point DIR positions will,
in a statistical sense, likely be similar. This is due to the fact that on average approximately
equal quantities of test voxels are rounded toward their respective reference target position
as are rounded away.

Point registration error was quantified as the three-dimensional Euclidean distance between
target voxels in the primary data set, and those determined by applying the calculated DIR
transformation to the corresponding source feature location. Mean registration error and
corresponding standard error were determined for both DIR algorithms over the set of
validation landmarks, providing a global measure of spatial accuracy performance for each
case. Mean errors were also determined over the combined set of expert-determined feature
points for all cases. Additionally, errors were assessed separately for individual right-left
(RL), anterior-posterior (AP), and superior-inferior (SI) component directions.

5.5. Statistical methods
The primary endpoint of this study is the comparison of the 4DLTM and the CPP algorithms
mean spatial errors, where the spatial errors are the differences between the calculated and
reference displacements. Summary statistics are provided for individual RL, AP, and SI
component displacements, the 3D Euclidean displacement, and the associated spatial errors.
Other statistical analyses will be carried out as appropriate. Respiratory parameters for the
test cases are also summarized. Continuous variables (lung volumes, tidal volume, and
displacements) were summarized in the form of mean (SD, range). Categorical variables
(tumor location, and tumor histology) were summarized in the form of frequency tables. The
Wilcoxon rank sum test was used to compare the mean spatial errors between the two DIR
algorithms for each, and across all 10 cases. All tests were two-sided with p-values ≤ 0.05
considered significant. Statistical analysis was performed with SAS version 9 (SAS Institute,
Cary, NC) and S-Plus version 7 (Insightful Co., Seattle, WA).

6. Results
6.1. 4DCT image properties

The patient clinical and 4DCT characteristics of the 10 test cases utilized in this study are
given in table 1. Respiratory periods were estimated directly from the RPM respiratory trace
data acquired for each patient at the time of image acquisition. Estimates are seen to range
from ∼2.4 - ∼5.4 sec., suggesting a variable cross-section of breathing patterns included in
the reference data. Tidal volumes were similarly approximated and obtained from binary
mask images of the segmented lung voxels. For each case, lung masks were generated based
on three-dimensional connectivity and global histogram thresholds of [-1000 -250] HU.
Visible airway and esophagus structures were removed from all masks prior to tidal volume
calculation. As described above, the reference data are comprised of both sub-sampled and
full resolution clinical patient images.

Characteristics of the reference landmark data are given in table 2. For the first 5 test image
pairs the expert aimed to select ≥10 features points for each lung per axial slice; these
images were described in our prior publication (Castillo et al., 2009b) and are available on
the Internet (www.dir-lab.com). For the second 5 images pairs, points were selected with an
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initial goal of ≥3 feature points for each lung, per axial image slice (Figure 4a). This
approach resulted in the collection of 8832 individual reference landmark pairs between the
maximum inhale and exhale component phase images for the set of reference image sets.
Estimates of landmark reproducibility were obtained by repeat registration of uniform
subsets of T00 landmark positions for each case. For patient cases 6 -10, three independent
observers manually registered subsets of 150 of the primary landmark features. Each
observer performed the manual registration utilizing the APRIL software, without prior
knowledge of the original registration performed by the primary reader. Mean repeat
registration error (and pooled standard deviation) for the combined set of observers ranged
from 0.70 (0.99) - 1.13 (1.27) mm. Average (and standard deviation) displacement of the
reference landmark features varied substantially among the reference cases, ranging from
4.01 (2.91) - 15.16 (9.11) mm.

6.2. Polynomial trajectory modeling
The 4DLTM algorithm was applied to the ten 4DCT image test cases using 1st (linear)
through 5th order (quintic) polynomial trajectory models and evaluated for spatial accuracy
over the 8832 landmark points. The resulting 3D Euclidean mean spatial errors and standard
deviations are summarized in Table 3. The 5 models were compared using the
nonparametric Friedman rank sum test to determine if there was a difference in the mean
spatial error between the five polynomial models. A significant difference was found (p =
6.36×10-6) between the five models. Upon performing a rank based pair-wise test the linear
model performed worse than the other four models. There was no difference between the
remaining four models. We chose the third order (cubic) polynomial model for further
evaluation as a compromise between added flexibility versus simplicity of the model.
Therefore, the cubic model was implemented for the formal spatial accuracy comparison
with the component phase-to-phase registration approach.

6.3. Performance of the CPP algorithm
A qualitative evaluation of the CPP algorithm for one case is illustrated by the error vectors
shown in Figure 4b, which demonstrates the spatial distribution of the errors. Quantitative
spatial accuracy performance of the CPP algorithm is summarized in table 4. For the set of
ten reference cases, mean (and standard deviation) three-dimensional Euclidean magnitude
registration errors ranged from 0.99 (1.12) - 1.96 (2.33) mm. Mean magnitude component
errors were consistently largest in the SI direction, ranging from 0.49 (1.02) - 1.35 (1.62)
mm. Over the combined set of 8832 reference measurements, all mean component errors
were less than 1 mm, while the weighted 3D Euclidean magnitude error (and pooled
standard deviation) was 1.44 (1.54) mm. Figure 5a shows a box plot of registration error
versus landmark displacement magnitude for the set of reference point pairs. Displacement
magnitudes were binned into 4 mm increments, with the plotted data shown overlain each
bin center. Notches indicate the median of error measurements within the associated bin,
while the box edges reflect the 25th and 75th percentiles. ‘Whiskers’ are shown extending to
the most extreme data points not considered outliers, where outlier points are categorized as
those measurements ei in the range ei < q1 − 1.5(q3 − q1) or ei > q3 + 1.5(q3 − q1), with q1
and q3 corresponding to the 25th and 75th percentiles, respectively. Two-tailed Spearman
rank correlation was calculated to quantify correlation between registration error and
landmark displacement magnitude, with ρ = 0.3297 (p-value = 0).

6.4. Performance of the 4DLTM algorithm
A qualitative evaluation of the 4DLTM algorithm for one case is illustrated by the error
vectors shown in Figure 4c, which demonstrates the spatial distribution of the errors.
Quantitative spatial accuracy performance of the cubic 4DLTM algorithm is summarized in
table 4. For the set of ten reference cases, mean (and standard deviation) three-dimensional
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Euclidean magnitude registration errors ranged from 0.86 (1.08) - 1.77 (2.12) mm. Mean
magnitude component errors were consistently largest in the SI direction, ranging from 0.38
(0.95) - 1.08 (2.05) mm. Over the combined set of 8832 reference measurements, all mean
component errors were less than 0.75 mm, while the weighted 3D Euclidean magnitude
error (and pooled standard deviation) was 1.25 (1.43) mm. A box plot of registration error
versus landmark displacement magnitude is shown in Figure 5b for the set of reference
landmark point pairs. Corresponding two-tailed Spearman rank correlation coefficient is ρ =
0.2653 (p-value = 0), indicating weak but statistically significant correlation.

For each case, the 75 sampled 4D reference landmark trajectories were used to evaluate the
registration error at each incremental phase displacement. Figure 6 shows a box plot of the
error range at each step, using the cumulative set of sampled positions for all 10 cases. A
trend toward increasing magnitude error with phase increment is visually apparent,
consistent with the statistically significant correlation between error and displacement
magnitudes described above. Figure 7 shows an illustration of the calculated in-plane motion
fields over an example T00 sagittal slice for each reference case. The calculated trajectories
were plotted for randomly chosen voxel positions within the lung field, and are color-coded
to indicate their temporal sequence. The initial T00→T10 displacements are shown in blue,
while each subsequent displacement gradually changes shade towards dark green. The
recovered motion fields show large variation in overall displacement magnitude, motion
nonlinearity, and temporal distribution of magnitude motion, suggesting adequate flexibility
of the cubic 4DLTM model to accurately measure breathing patterns from clinically
acquired 4DCT patient images.

6.5. Comparison of spatial accuracies
The two-sided Wilcoxon signed rank test was performed for each case in order to assess the
statistical significance of differences between the spatial accuracy performance of the CPP
and cubic 4DLTM algorithms, with p-values for each test shown in table 4. For each case,
the improvement in spatial accuracy achieved by the cubic 4DLTM algorithm was regarded
as statistically significant with p-values ranging from (0 to 6.31 × 10-3). Over the cumulative
set of measurements for all cases, the statistical test yields a double-sided p-value of 0.
However, this approach is not strictly valid because it assumes that each error observation is
independent, which is not true since observations are patient dependent. In order to apply the
statistical test over the cumulative set of measurements across all cases, we instead use the
mean values for each case as the data. In this case, the observations are independent and the
resulting p-value is 0.001953. Although the larger p-value is much more conservative, it still
reflects a statistically significant difference between the two algorithms over the combined
set of data, which is consistent with the results for each individual case.

Figure 4a shows an isosurface rendering of the T00 lung volume of an example case (patient
#6), overlain with the corresponding set of 419 reference displacement vectors mapping
landmark features from their T50 to T00 coordinate positions. The GTV located in the left
lower lobe is also shown. The dependence of landmark displacement magnitude with
relative position within the lung is visibly clear in the image. Figures 4(b & c) show the
residual error vectors for the 4DLTM and CPP algorithms, respectively. Visually, both sets
of residual error vectors appear small and approximately uniformly distributed, with the
largest errors occurring in the inferior aspect of the right and left lower lobes. These regions
correspond with the largest displacements. This is consistent with the Spearman correlation
coefficients, which showed small but statistically significant correlation of the registration
errors for both algorithms with landmark displacement magnitude. For the case depicted,
respective mean (and standard deviation) registration errors for 4DLTM and CPP were 1.58
(1.65) and 1.94 (1.72), with p-value = 2.3 × 10-8.
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7. Discussion
Deformable image registration (DIR) is an enabling image analysis tool in radiotherapy
(Sarrut, 2006) with applications to multi-modality image fusion (Kessler, 2006), image
analysis (Pizer et al., 1999), semi-automated image segmentation (Ragan et al., 2005), 4D
dose estimation (Guerrero et al., 2005; Kang et al., 2007), and 4D image-guided
radiotherapy (Keall, 2004). DIR registration between the component phase images of 4D CT
provides a link for extraction of the motion (Guerrero et al., 2004; Yaremko et al., 2008) and
physiological information such as cardiac wall motion or ventilation (Guerrero et al., 2006;
Song and Leahy, 1991). In this study, we derived and validated a 4D DIR algorithm, the
4DLTM algorithm, based on the idea of recovering parameterized voxel trajectories that
represent the paths taken by the voxels through space as functions of time to link all the
expiratory phase component images. The method utilizes a compressible flow voxel
intensity model, and operates on the full set of expiratory phase 4DCT component image
data simultaneously while performing this calculation. The numerical implementation of the
method approximates image intensity values using 3D cubic-splines which reduces the
effects of image noise and artifacts in the calculation of local derivatives. In this
implementation only voxels that achieved a goodness of fit criteria were retained. The
displacements for those voxels that did not achieve the criteria were determined using
neighboring values and a moving least squares interpolation.

The piecewise linear path obtained by registering temporally sequential component phases,
in a manner similar to a methodology described in (Boldea et al., 2008), served as the initial
guess for the polynomial trajectory recovery. Not surprisingly, the polynomial based
trajectory modeling yielded a significant increase in the spatial accuracy over the piecewise
linear initial guess. Specifically, the results of testing polynomial spaces of up to degree 5,
for spatial accuracy performance, indicate that linear paths (2) produce substantially poorer
spatial accuracies than those of higher order polynomials, indicating that voxel trajectories
are nonlinear; i.e. voxels do not travel along a straight line throughout the breath cycle. This
result is based on performing a Friedman rank sum test, which indicated that the mean error
of all methods is not equal with a p-value of 6.36×10-6. The result of a rank based pair-wise
comparison between the linear polynomial performance and the performance of the
remaining polynomial degrees allows us to conclude that linear paths produce a larger error
than the other polynomial spaces with a family wise level of significance of 10%. The
variation in the performance of 4DLTM across the remaining orders was not statistically
significant, a result that is not surprising considering that the space of all quintic
polynomials contains all quadratics, cubics, and quartics. However, based on the registration
results and the examination of expert-determined landmarks across 4D data set, cubic
polynomials provide sufficient flexibility, computational tractability, and high spatial
accuracy for describing the point trajectories through the expiratory phases. The resulting
average spatial error between the maximum 4DCT component phases of 4DLTM with cubic
polynomial trajectory modeling were 1.25 mm for the 4DLTM, while the average spatial
error for piecewise linear paths (CPP method) was 1.44 mm.

Expert-determined sets of anatomical landmark feature pairs have become a common utility
for evaluating DIR spatial accuracy, particularly in the context of clinically-acquired
thoracic images (for example, see (Brock et al., 2005; Pevsner et al., 2006; Rietzel and
Chen, 2006; Sarrut et al., 2006; Boldea et al., 2008; Li et al., 2008; Wu et al., 2008; Castillo
et al., 2009a; Castillo et al., 2009b)). However, variability among reference datasets,
particularly with regard to both the quantity and spatial uniformity of selected landmark
features, can potentially yield numerical results that are misrepresentations of the true spatial
accuracy, from which erroneous conclusions regarding the relative performance
characteristics of multiple algorithms or implementations can be drawn. Thus, the current
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lack of consistency among evaluation strategies confounds formal quantitative comparison
of published numerical DIR spatial accuracy assessments. In addition, inconsistencies
among reference cases, such as arising from individual patient motion characteristics,
motion and image reconstruction artifacts, variable disease states, image size, and voxel
dimension further contribute to the inherent uncertainty associated with conclusions
regarding relative performance drawn from metanalysis of the available literature. The
expert-determined landmark features used to evaluate DIR spatial accuracy in this study
were made publically available on the Internet at our laboratory website (http://www.dir-
lab.com). This DIR reference database consists of ten 4DCT image sets and corresponding
manually identified landmark points between the maximum phases. A subset of points are
propagated through the expiratory 4DCT component images. We hope the availability of
this DIR reference database will allow a common framework on which to compare the
performance of DIR algorithms in the future.

The use of trajectory modeling as a DIR method for thoracic 4DCT images is a natural
extension of prior studies on measuring and modeling lung trajectories, such as those of
Seppendwoolde et al (Seppenwoolde et al., 2002), Shirato et al (Shirato et al., 2004), and
Boldea et al (Boldea et al., 2008). In those studies, a 2-mm gold fiducial was implanted in or
near the lung tumor to perform real-time target tracking for gated radiotherapy treatment
delivery (Shirato et al., 2000). The fiducial tracking was performed using two fluoroscopic
units, capturing the trajectory at a sampling rate of 30 frames per second through the entire
radiotherapy treatment sessions. In Seppendwoolde et al (Seppenwoolde et al., 2002) a
parameterized sinusoidal function was utilized to model the measured lung or tumor motion
trajectories through multiple respiratory cycles. Boldea et al used piecewise linear trajectory
modeling based DIR, an approach that is essentially equivalent to the initial guess we supply
to our 4DLTM algorithm, to extract, evaluate, and quantify motion non-linearity and
hysteresis across 4DCT images (Boldea et al., 2008). They found non-linear and hysteresis
was more pronounced for longer trajectories and achieved average spatial accuracies of
2.3mm and 2.5mm for two 4D based methods. The findings of these studies suggest
improvements in our 4DLTM algorithm should be explored through the use of non-
polynomial models and adaptive modeling. The later, includes the use of differing model
forms for cranial-caudal motion versus transaxial motion and differing forms based on
estimates of regional displacement. Improvement may also result from using the full 4DCT
image set, which would ensure round-trip consistency and allow evaluation of sinusoidal
versus elliptical functions for trajectory models.

The 4DLTM algorithm calculations were all performed in the local neighborhood of each
voxel, as such, the algorithm should readily port to graphics processing units (GPUs) for
improved computational speed. Due to their emerging use as a highly multi-threaded
coprocessor, GPUs are especially well-suited for data-parallel computational problems such
as the 4DLTM presented here. These affordable yet powerful computational resources will
likely find significant use in the radiotherapy clinical environment. GPUs have been
reported to accelerate computational tasks such as cone-beam CT reconstruction, DIR
calculation, and radiation dose calculation by one to two orders of magnitude over CPU
implementations (Sharp et al., 2007; Xu and Mueller, 2007; Samant et al., 2008; Noe et al.,
2008; Hissoiny et al., 2009). We anticipate a significant reduction (20 to 100 times) in
overall computational time for the 4DLTM algorithm on a GPU such as the NVIDIA Tesla.
Calculations times in the less than 2 minutes range on a single PC with GPU would expand
the potential use of the 4DLTM algorithm to many applications.
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8. Conclusions
In this study, a new methodology for DIR based on trajectory modeling (4DLTM) was
developed and evaluated using a publically available 4DCT image and landmark points
database. Polynomials trajectory models from linear through quintic were tested, linear
trajectory modeling performed significantly (p-value = 6.36×10-6) worse than higher order
polynomial models. The 4DLTM DIR algorithm utilizing cubic trajectory modeling was
then compared with piece-wise component phase to phase (CPP) DIR to calculate the
displacement from the maximum exhale to inhale 4DCT component images through the
expiratory phase. The 4DLTM performed significantly better, the resulting average spatial
error between the maximum phases was 1.25 mm for the 4DLTM and 1.44 mm for the CPP.
The 4DLTM method captures the long-range motion between 4DCT extremes resulting in
high spatial accuracy.
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Figure 1. Displacement versus Lagrangian path
The Lagrangian coordinate of the particle located at ξ for t = 0, is given by the function x(ξ,
t), which represents the trajectory of the particle originally located at ξ, through Ω as a
function of time. The displacement vector, d, is the vector difference x(ξ, tfinal) − x(ξ, 0).
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Figure 2. 4D Landmark point trajectories
4D landmark point sets were utilized to test the adequacy of the trajectory model and spatial
accuracy of the DIR algorithms studied. a) The 4DCT image sets used in this study
consisted of the 6 images spanning the expiratory phases from maximum inhalation (T00) to
maximum exhalation (T50). 75 landmark point sets were identified on 10 cases as shown for
the example point. Each 4D landmark point was identified (yellow arrow) for phases T00
through T50 as shown. b) A sample 4D trajectory of the landmark point depicted is plotted.
Note that the T30 and T40 points overlay each other.
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Figure 3. Trajectory modeling with polynomials
4D landmark point sets were utilized to test the adequacy of the trajectory modeling across
the 6 images spanning the expiratory phases (from T00 to T50). a) A linear model of the z-
displacement is shown versus a sample landmark point displacement. b) A cubic model of
the z-displacement is shown versus a sample point. c) A quintic (5th order polynomial)
model of the z-displacement is shown versus a sample landmark point displacement.
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Figure 4. Landmark points and DIR errors
Manually identified landmark point sets were utilized to compare the spatial accuracy of the
DIR algorithms studied. a) 419 manually determined displacement vectors are shown in
anterior (top row) and lateral (bottom row) projection for a sample case. The lung silhouette
is in gray and the gross tumor volume is shown in red. Residual error vectors are also shown
for b) 4DLTM and c) CPP DIR algorithms. Each error vector points from the manually
delineated feature location in the target image to that determined from the respective DIR
transformation.
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Figure 5. Spatial error versus displacement magnitude
The absolute distances between the reference landmark displacement vectors and the a)
4DLTM and the b) CPP algorithms were tallied for the set of 8832 landmarks versus size of
the displacement in 4 mm increments. Though the complete set of landmark measurements
was used to generate the box plots shown, outlier data points have been removed from the
figure for clarity.
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Figure 6. Phase-step registration errors
A box plot is shown illustrating the range of 4DLTM cubic magnitude registration errors at
each phase increment. The 75 sampled 4D reference trajectories for each case were
combined to pool the measured errors, resulting in 750 error measurements for each phase
bin.
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Figure 7. Calculated temporal motion sequences
For each reference case, an example T00 sagittal view is shown with a random sample of the
corresponding in-plane trajectories calculated using the cubic 4DLTM algorithm. The
plotted trajectories are color-coded to indicate their temporal sequence. The initial T00
→T10 displacements are shown in blue, while each subsequent displacement gradually
changes shade towards dark green. The calculated motion sequences are seen to vary widely
across the 10 reference cases, both in time and space. The corresponding quantitative error
assessment for each case is shown in Table 4.
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