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SUMMARY
This paper brings into serious question the validity of empirically based weighting in random
effects Meta-Analysis. These methods treat sample sizes as non-random, whereas they need to be
part of the random effects analysis. It will be demonstrated that empirical weighting risks
substantial bias. Two alternate methods are proposed. The first estimates the arithmetic mean of
the population of study effect sizes per the classical model for random effects meta-analysis. We
show that anything other than an unweighted mean of study effect sizes will risk serious bias for
this targeted parameter. The second method estimates a patient level effect size, something quite
different from the first. To prevent inconsistent estimation for this population parameter, the study
effect sizes must be weighted in proportion to their total sample sizes for the trial. The two
approaches will be presented for a meta-analysis of a nasal decongestant, while at the same time
will produce counter-intuitive results for the DerSimonian-Laird approach, the most popular
empirically based weighted method. It is concluded that all past publications based on empirically
weighted random effects meta-analysis should be revisited to see if the qualitative conclusions
hold up under the methods proposed herein. It is also recommended that empirically based
weighted random effects meta-analysis not be used in the future, unless strong cautions about the
assumptions underlying these analyses are stated, and at a minimum, some form of secondary
analysis based on the principles set forth in this article be provided to supplement the primary
analysis.
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1. INTRODUCTION
Given that the DerSimonian-Laird (DSL) [1] method for random effects meta-analysis has
been widely used for well over 20 years, and is often taught in classes in Epidemiology and
Biostatistics, it does not seem possible that in general, empirically based methods for
weighting effect sizes (including DSL), per the classical random effects model for meta-
analysis, could be flawed. As biostatisticians, we are aware that the optimal linear
combination of unbiased estimates is to weight them inversely proportional to the square of
their standard errors. That is what the DSL method tries to emulate-on the surface a worthy
objective. The major issue that these methods fail to address is that the weights themselves
are volatile random variables. For example, when we “draw a study out of the hat”, we
obtain not only random effect sizes, but also random study sizes, ergo random precision
within studies. The ultimate weights may be correlated with these effect sizes, thereby
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producing serious bias. This is something we shall witness and see how this can ruin the
DSL approach for its intended model.

In Section 2, we shall advocate an unweighted approach for estimating the arithmetic mean
of study effect sizes. The classical random effects model has as its primary parameter the
“mean of means”. There is nothing in the model about the means that suggest one is trying
to estimate a weighted combination of these means. We shall see that if one uses any
empirically based weighting system, bias will occur unless the empirical normalized weights
and individual study effect size estimates are uncorrelated. To expect this in advance seems
to be a leap of faith. We shall also show that the unweighted estimate can be viewed as a
bias corrected weighted estimate, irrespective of the weighting system selected! In Section
3, we shall provide a method to estimate a patient level mean effect size. This will weight
study effect sizes in proportion to their total sample size. This targeted population parameter
is different from the one addressed in Section 2. Section 4 will deal with a real dataset from
Kollar and colleagues [2]. By tweaking the data for the DSL method, we shall see a highly
counterintuitive result where increasing the standard errors by a common multiple of 3.0
will switch the DSL result from a non-significant result to a significant result! In ANOVA,
such a tweak would decrease the value of the F-statistic by a factor of 9.0, assuring that a
much higher p-value would occur. Section 5 is devoted to a discussion of the implications of
this article in practical terms. In addition, we shall rebut a letter of Wacksman and Kollar
[3], where they dispute conclusions of Shuster, Jones, and Salmon [4], on whether the data
in [2] represent efficacy or not.

2. CLASSICAL STUDY POPULATION MODEL: ESTIMATION OF MEAN
STUDY EFFECT SIZE

The classical random effects model, such as that posed in DerSimonian and Laird [1],
presumes that studies form a random sample from a very large population of potential
studies, and that within studies, we have unbiased estimates of the study-specific effect
sizes. This produces the classical model:

(1)

where (a) θj is the difference between the true effect size for study j and the overall true
target population effect size μ, and satisfies E(θj)=0 and (b) εj is the random error associated
within study j, and satisfies E(εj)=0. Note that j identifies the study, j=1,2,…,M.

The weighted estimate is given by

where

with the study weights Wj, random variables, derived from the data including sample sizes.
(Note that the DSL paper uses a bit different notation, but it can be reduced to this
formulation by taking their weights, which do not sum to 1.0, and dividing each by their sum
of weights.)

Without loss of generality, from the model, the Yj can be considered independent identically
distributed random variables, but the Wj, are correlated because they sum to unity. If you
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have a problem with the independent, identical distribution of the Y’s, note that we can
randomly pick labels for j in the study pairs (Wj,Yj) j=1,2,…,M, and by doing that, we will
not affect μ*. Next, we note

(2)

Equation (2) is a direct consequence of (1) and the fact that the exchangeable weights satisfy
ΣWj=1, making E(Yj)= μ and E(Wj)=1/M.

Now this in turn implies that

(3)

Conclusions about empirically based weights
Equation (3) tells one that if the estimated effect sizes and the empirically derived study
weights are correlated, the summary estimate of effect size derived from the random effects
analysis (e.g. DerSimonian and Laird [1]) is biased. At a very minimum, to use empirically
based weights, one must clearly state the assumption that the weights are not correlated with
the individual study effect sizes. Alternatively, as suggested by a colleague, Dr. Keith
Muller, a bias corrected estimate μc for μ might be obtained from equation (3) by
subtracting M times the sample covariance of Wj and Yj from the quantity μ*. Note that in
(4) below, we use M as the denominator in the sample covariance, not the more common
(M-1).

(4)

Hence, the unweighted estimate can be viewed as a bias corrected weighted estimate,
however the weights are formulated. We believe this argument seals any possible
controversy in favor of the use of unweighted estimation for this classical model.

Note that if the weights are non-random (not derived from the sample size information or
any other part of the data), then indeed μ* is unbiased. Of course, the optimal fixed (non-
random) weights to minimize the variance would be Wj =1/M, ergo, an unweighted analysis.

3. A PATIENT-BASED POPULATION MODEL
An attractive alternative to the classical model (1) is the following based on individual
patient expectation, rather than based upon study expectation. In this patient population
model, every past and future subject belongs to a conceptual or real clinical trial, and as in
(1) we assume that a random sample of clinical trials is observed. The parameter that may be
of interest is the mean effect size for the patients, namely the expected patient difference
between the outcomes for the treatments. This is represented as

(5)

where Yj is per (1) and Nj is the total number of patients in the j-th trial sampled.

It needs to be stressed that ν and μ are completely different parameters, and the primary
parameter of interest should be identified at the design point of the study.

We shall estimate ν by the ratio estimate
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(6)

For a large sample of M studies, based on the “Delta Method” per Serfling [5], ν* has the
following asymptotic normal distribution (AN):

(7)

where the asymptotic variance is given by

(8)

where Uj= NjYj

A consistent estimator σ*2 for σ2 can be obtained using the sample variances and
covariances in place of the actual variances and covariances for Uj and Nj, respectively.

Note that if one estimated ν but replaced the weights in (6) by any weighting system other
than proportional to the total sample size for the trial, there is no reason to believe that the
resulting estimate would be consistent for ν. Nonparametrically, the method in (6) is valid
when the number of studies is large, and its validity does not depend upon balanced
randomization between the treatment arms in parallel studies.

4. ANOTHER LOOK AT THE KOLLAR META-ANALYSIS [2]
In order to illustrate the various methods, we shall line up four methods side by side. The
Kollar et. al. meta analysis [2] contrasted the efficacy in terms of nasal airway resistance
(NAR) in seven small randomized crossover studies, with respect to a single dose of
phenylephrine 10 mg compared with placebo to treat nasal congestion. While the number of
studies might not meet the requirements for asymptotic approximations, these studies do
offer an excellent platform to assess the methods. As in Kollar and colleagues [2], we shall
look at each of eight time points separately. Table I provides the summary statistics for the
seven studies and eight time points. As a surrogate for the standard error, we used 25% of
the length of the confidence interval for effect size as given in Table III of Kollar and
colleagues [2]..

Table II provides the estimated effect size, standard errors, and in the random effect
analyses, two-sided P-values for testing the effect size is zero. P-values are calculated from
the t-distribution with degrees of freedom equal to one less than the number of studies
involved. This is a conservative adjustment to the asymptotically equivalent normal
distribution cut points to account for the small number of studies. Fixed effects analysis use
weights inversely proportional to the standard error. The random effects analyses are (1)
unweighted per section 2, (2) DerSimonian and Laird [1], and (3) weighted by sample size
per Section 3. The DerSimonian-Laird approach applies to the same model as the
unweighted, and is therefore not seen as a competitor to the method that weights by sample
size.

The DSL method tries to estimate the effect size by weighting the Yj in (1) by the inverse of
its variance: ideally

(9)
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Of course Var(εj), the within study variance of the estimator is estimated by the square of
the standard error for the j-th study, SEj

2 The DSL method estimates the between study
variation Var(θj) by Δ2, (See [1] for details). This quantity depends heavily upon the
diversity of the studies, as measured by the Cochran Q chi-square statistic.

The DSL weights are therefore defined by

(10)

(11)

When the diversity is “small”, with the chi-square statistic below the degrees of freedom, the
DSL and the fixed effects analysis will yield identical estimates. When the diversity leads to
chi-square tending to infinity, the DSL will correspond closely to the unweighted analysis.
The problem is that the Cochran Q chi-square statistic depends heavily on the sample sizes
in the population of trials. Hence if we had two populations of trials, with study per study
identical study target population means (θj) in (1), but every study in population B had ten
times the sample size of the one corresponding to population A, the diversity of population
B will be perceived as far greater than population A, and hence the DSL estimate will tend
to be closer to the unweighted mean in population B and closer to the fixed effects mean in
population A. If the target parameters of the fixed and unweighted scenarios are
systematically different, the DSL estimates in populations A and B will be consistent for
different numbers, when they should logically be estimating the same number. Neither of the
estimates proposed in Sections 2 and 3 have this issue. We shall illustrate this in detail for
the 45 minute data in Tables I and II, while at the same time demonstrating a highly
counterintuitive property of the DSL estimate.

Table III gives the normalized weights for the DSL estimates by study for the actual
standard error, and for standard errors tweaked to be exactly three times the originals.
Intuitively, one would certainly expect that the p-value would by higher under the tweaked
model. If this would happen in a one-way ANOVA setting, the F-statistic would be reduced
by a factor of 9.0, making the p-value much higher than in the original setting. Yet the DSL
point estimate moves radically from being relatively close to the equal weight estimate (DSL
=−1.33, equal weight =−1.13) for the actual standard errors to being relatively close to the
fixed effect estimate (DSL =−2.87, fixed effect =−3.54) for the tweaked triple standard
errors. Curiously, this tweak converted a non-significant result to a significant result.

To illustrate numerically that the unweighted estimate can be viewed as a bias corrected
weighted estimate, consider the tweaked weights in Table III against the Point estimates at
45 minutes from Table I. Note that the correlation coefficient between these weights and
point estimates is high at −0.87, leading to a covariance of −0.2484. The bias correction of
M times the covariance (M=7 studies) is 7(−0.2484)=−1.74 and hence μc =
−2.87−{7*(−0.2484)}=−1.13, the unweighted estimate. Note that the bias correction is
major.

Note that while the author wrote his own software for the computations involved in this
paper, with the help of Dr. Alexander Wagenaar, the DSL method was cross-checked via the
Comprehensive Meta-Analysis package. See http://www.meta-analysis.com/. Its default
random effects method is DSL.
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5. DISCUSSION
The major conclusion that can be reached from this article is that when one uses empirically
based weighting to conduct a random effects meta-analysis, it is dangerous to ignore the
sampling errors involved in the weights. We argue that all such past articles need to be
reexamined to determine if their conclusions hold up qualitatively. Although some of these
articles may contain a fixed effects analysis, with or without diagnostics for homogeneity,
we reject these as viable alternatives to new random effects analyses in terms of their
conclusions. It is true that the fixed effects supplementary analyses validly test the null
hypothesis that all effect sizes are zero (ergo a fixed effect). But this hypothesis is far too
narrow for practical application. Random effects proponents allow for null situations where
the effect sizes have a non-trivial probability distribution, with both positive and negative
effect sizes. Diagnostic testing for homogeneity of effect sizes should be deemed as
completely irrelevant to this question. First, these tests have very low power. As
statisticians, it is improper to accept a null hypothesis as true, unless a very tight confidence
set about the null hypothesized value is obtained. This will not occur in meta-analysis.
Second, the error properties must be assessed from before the point where the diagnostic test
creates two analytic branches. The type I error is only conditional on the assumption that the
correct path was taken, and therefore risks being incorrectly assessed.

Another issue of fixed effects, typically based on weights inversely proportional to the
square of the standard error, is that often, the meta-analysis is dominated by a small number
of studies. For example, for the data in Table II, Studies 1 and 2 consume 84%, 79%, 78%,
83%, 86%, 78%, 92%, and 95% of the fixed effects weights at times
15,30,45,60,90,120,180, and 240 minutes, respectively. Yet these studies have only 16/113
(10/ 81) of the patients at times <180(180+) minutes.

There are many good reasons to expect that the effect size and weights will be correlated.
For example, in drug development, early smaller studies may be pure (drug only vs.
placebo), while later larger studies may use the drug vs. placebo in an adjuvant setting, with
larger studies expecting a smaller difference in efficacy. For side effects, however, an
adjuvant therapy interaction with the experimental drug may trigger a larger differential,
yielding the opposite correlation. Better designed studies may lower the sampling error,
thereby increasing the weight, while the greater skills of these investigators over those
contributing to less well run studies, may lead to larger advantages for the experimental
therapy over the controls. This is especially problematic in surgery device trials. Unknown
to the meta-analyst, some studies may have been terminated early for efficacy, yielding
smaller weights than those that run to completion. These arguments suggest that these
correlations can be expected, and it is statistically risky to assume they do not exist.

Getting over the use of empirically weighted methods
Assuming the standard model for random effects meta-analysis, we provide three related
arguments that should help practitioners to select one of the methods proposed in Sections 2
or 3 over empirically based weighted methods in random effects meta-analysis. It is true that
weighted methods can do a better job at reducing within study variability. But this is at a
cost of estimating the wrong quantity, according to standard models.

1. Imagine that you were about to publish a random effects meta-analysis, when you
discover that the data you had for one study (the smallest in your collection) was in
fact based on an interim analysis, and that there were far more patients, making it
the largest of the studies. You will reanalyze the data, and the weights will change
considerably. This will change the target population mean value of your estimator.
The expected value of the unweighted estimator would not change.
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2. Think of the parameter we are trying to estimate in a physical sense. Imagine that
we are dealing with a collection of parallel two-treatment randomized drug vs.
placebo studies. The parameter μ represents the expected outcome in the following
experiment. Draw a study at random from the target population of studies. Treat
one patient on drug and one patient on placebo. What is the expected effect size
(treatment-placebo)? Note that all studies are equal partners. When we select the
study, the standard random effects model does not weight the studies to bring this
to a patient level. So neither should the analysis. In fact, it can be argued that
sample sizes are just accidents of fate in the overall context of the meta-analysis.
The parameter ν in Section 3 represents the average effect size at a patient level. It
also has a physical interpretation. For example, in parallel two treatment
randomized studies, it estimates the patient level difference in expectation if you
treated all patients on Treatment A vs. treating all patients on Treatment B.

3. Equal weighting avoids the “Bill Gates/Warren Buffet effect” that was seen in
Kollar et. al. [2] and Nissan-Wolski [6], where a very few studies play a dominant
role. This seems to be contrary to the real spirit of a meta-analysis. Just as in our
electoral system, every “person” has one vote, irrespective of their financial weight.

In Waksman and Kollar [3], the claim is made that the data from Table I demonstrate
efficacy for the decongestant. They argue that a random effects analysis showed significance
at three of the eight time points, and if they dropped the most influential study in terms of
weight, study #2, they still saw a significant difference at five time points. Dropping Study
#2 in fact makes Study #1 the dominant one. But the issue of empirical weighting renders
these analyses as yielding highly biased estimates of effect size, and should be discounted.
As can be seen in Table II, the point estimates for fixed effects and unweighted analyses
differ markedly at several time points, a red flag for correlation between the weights and the
estimated effect sizes, something Waksman and Kollar discount in [3]. Based on our
rigorous analysis at eight time points, and two endpoints, we did not see a single P-value
below 0.05. The 30 minute time point was close, however. We conclude that these crossover
studies do not provide sufficient evidence to conclude that phenylephrine 10 mg has efficacy
with respect to nasal airway resistance.

It needs to be pointed out that the methods of this paper should not be used in rare event
binomial outcomes where relative risk is the endpoint. This is because of the likelihood of
zero events. See Shuster and Colleagues [7], who provide a parallel development for an
unweighted random effects meta-analysis to cover that situation.
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