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Abstract

Cardiac excitation—contraction coupling occurs primarily at the sites of transverse (T)-tubule/sarcoplasmic reticulum

junctions. The orderly T-tubule network guarantees the instantaneous excitation and synchronous activation of nearly

all Ca" release sites throughout the large ventricular myocyte. Because of the critical roles played by T-tubules and the

array of channels and transporters localized to the T-tubule membrane network, T-tubule architecture has recently

become an area of considerable research interest in the cardiovascular field. This review will focus on the current

knowledge regarding normal T-tubule structure and function in the heart, T-tubule remodelling in the transition

from compensated hypertrophy to heart failure, and the impact of T-tubule remodelling on myocyte Ca*" handling

function. In the last section, we discuss the molecular mechanisms underlying T-tubule remodelling in heart disease.

This article is part of the Spotlight Issue on: T-tubules and ryanodine receptor microdomain signalling in cardiac

hypertrophy and failure.

1. Introduction

Cardiac excitation—contraction (E—C) coupling is the central mechanism
governing the heart muscle to generate sufficient contractile force and
pump adequate blood to the whole body.1 Atthe cellular level in ventricu-
lar myocytes, normal E—C coupling involves precise communication, i.e.
local control of Ca**-induced Ca®" release (CICR), between voltage-
gated L-type Ca®" channels (LTCCs) located mainly on the T-tubule
membrane and Ca®' release channels/ryanodine receptor channels
(RyRs) on the sarcoplasmic reticulum (SR).>™ The highly organized
T-tubule network forms tight physical couplings with the terminal cister-
nae of SR, termed dyads, at Z-line regions throughout the entire
myocyte.® These organized fine dyadic Ca®* release apparatus are
essential for local control of CICR, synchrony of SR Ca**" release, and
Ca”" release stability during each heartbeat. The synchronized Ca®"
release during each membrane excitation allows co-ordinated contrac-
tion among the many contractile units within each large working ventricu-
lar myocyte. Ultimately, synchronized myofilament contraction within and
among millions of working ventricular myocytes will permit the heart
muscle to contract and generate the maximal contractile force with the
least energy cost. Thus, the organized T-tubule structure is critical for
normal E—C coupling and cardiac function.

2. T-tubule structure

The first evidence that clearly showed the existence of transversely
oriented continuous tubules in mammalian heart muscle was from

light microscopy studies by Nystrom in 1897 (see Huxley, The
Croonian Lecture, 19677). In that pioneering work, India ink was
injected into the heart muscle to track the extracellular space (analo-
gous to Sulphorhodamine B that is used with fluorescence micros-
copy). Nystrom detected dark lines transversely crossing the
cardiac fibres at an interval equal to that of the striations. More
than 60 years passed until, using electron microscopy (EM), Lindner
(1957) identified T-tubules in canine ventricular myocardial cells.®
Further studies clearly demonstrated the presence of the T-tubule
system in myocardial cells of the rat, guinea pig, rabbit, cat, sheep,
and human.®°~"? Concomitantly, the existence of T-tubules was
documented in the skeletal muscle. Among the ultrastructural
studies that were conducted in skeletal muscle in the 1960s,
Franzini-Armstrong and Porter' provided the most convincing evi-
dence, using improved fixation methods and fish muscle fibres,
clearly defining that the T-tubule system is an entity of the fine mem-
brane continuous with the sarcolemma, distinct from the SR but
uniquely associated with the SR. Her landmark findings indicated
that the T-tubule system might play a prominent role in the fast intra-
cellular conduction of the excitatory impulse, providing clear ultra-
structural evidence that supported observations made by the Nobel
Laureate Huxley and his colleague Taylor in 1955." In Huxley and
Taylor’s seminal work on an isolated intact fibre of frog striated
muscle, they used a micropipette electrode to achieve local sub-
threshold depolarization of the cell membrane and observed fast,
transverse, two-dimensional conduction of excitation towards the
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central axis, which they concluded to be too fast to be mediated by
simple chemical diffusion.™ This work led to their hypothesis that a
special membrane structure continuous with surface sarcolemma
must be involved in relaying the signal to the SR, which we now
define as E—C coupling. Since these early endeavours, we have gar-
nered an understanding of the structure and function of T-tubules
in the skeletal and cardiac muscle.

It is now well known that T-tubules are physical extensions and
orderly invaginations of the surface membrane that are continuous
with the extracellular space and extend deep into the interior of
mammalian ventricular myocytes.””™"? They are perpendicular to
the surface or external sarcolemma, are transverse to the longitudinal
axis of myocytes, and appear to have a radial ‘spoke-like’ organization
in transverse sections.”>?" They are regularly arrayed along the Z-line
regions, forming a highly organized, elaborate tubular network. The
majority of T-tubules are within 0.5 um from the Z-lines.'"**%?
Besides the primary transversal components of T-tubule membrane,
longitudinal elements running across from one Z-line to another
are also present, with some reports that longitudinal elements
occur at a much lower proportion in normal healthy ventricular
cells,”"®?*?* and others that longitudinal elements are frequent in
healthy myocytes.”**® Quantitative measurements based on confocal
microscopy approximate T-tubule diameters to be ~250 nm in rat

myocytes®® and ~400 nm in rabbit and human.*** A recent study
using stimulated emission depletion (STED) imaging technique indi-
cated that the T-tubule diameter is ~200 nm in murine myocytes.”
(Note: the smaller T-tubule diameter detected by STED imaging
could be due to a better spatial resolution offered by this technique
than confocal microscopy). The lumens of T-tubules have notable var-
iations in size (even within the same species).”*® Although the
volume density of the T-tubule system is only 1—3%,*>%% it represents
about one-third of the entire cell-membrane area’***° (Figure 1).

It is believed that T-tubule density varies among ventricular myo-
cytes from different species. Early EM work and recent confocal
imaging studies suggested that rodents (mouse, rat), which have faster
heart rates, have a higher T-tubule density in ventricular myocytes rela-
tive to larger mammalian myocytes (i.e. rabbit, pig, and human), but the
difference is not related to cell or heart size.>"*? In contrast, mammalian
atrial myocytes have a heterogeneous distribution of the tubular system,
with the longitudinal components more prominent,®> > (see review by
Katherine Dibb and colleagues in this issue). In Purkinje fibres of the
conduction system, early EM studies found a lack of T-tubules.*”~*
However, work by Franzini-Armstrong and colleagues as well as
others demonstrated that T-tubules are occasionally present in all Pur-
kinje fibres and form dyadic associations with the SR, with the fre-
quency of T-tubules varying depending on the size of the animal.*"**

Figure 1 Ultrastructure and organization of T-tubules in cardiac muscle (myocytes). (A) Electron micrograph of a transverse section of cat cardiac
muscle showing four T-tubules extending inward from the periphery of the fibre (x 32 000). (B) Electron micrograph of a longitudinal section of cat
papillary muscle showing two T-tubules and multiple junctional couplings between T-tubules and terminal cisternae of SR, as indicated by the arrows
(x40 000; reproduced with permission from Fawcett and McNutt®). (C) A confocal fluorescence image of the T-tubules in an isolated living rat ven-
tricular myocyte stained with lipophilic membrane marker Di-8 ANEPPS. (D) 3D projection of the T-tubule network from 30 sequential sections (at
0.2 pwm per section) of confocal images from the same myocyte. (E) Schematic drawing of the T-tubule system in a ventricular myocyte, viewed from

the transverse section.
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As an additional note, the cardiac myocytes of reptiles, birds, and fish
are devoid of a T-tubule system in both atria and ventricles.'® The fol-
lowing discussion will focus on mammalian ventricular myocytes.

3. T-tubule function: synchronous
Ca?* release

Ciritical to E—C coupling function is the spatial relationship between
T-tubules and the SR where Ca®" release channels or RyRs are
located (Figure 2). In normal ventricular myocytes, about 80% of
LTCCs localize to the T-tubules.*® T-tubules and the junctional com-
ponents of SR (jSRs) juxtapose and form the dyadic junctions. Both
ultrastructural and functional studies have suggested that dyadic junc-
tions are much more abundant in the T-tubules than at the surface
membrane, e.g. in rat ~75% of dyads are in T-tubule region compared

3144 indicating the importance

with ~25% at the surface sarcolemma,
of the T-tubule membrane in controlling CICR and E-C coupling
function. The much lower density of dyadic junctions in the external
or surface sarcolemma may be associated with other Ca*"-dependent
processes.*

In ventricular myocytes, CICR is an elaborate ‘local control’ process
between LTCCs on the T-tubules and RyRs on the SR. Under normal
conditions, CICR occurs synchronously throughout the myocytes,
producing whole-cell Ca*" transients. Due to the spatial and temporal
summation of thousands of synchronously firing local release events
(i.e. Ca*" sparks)>* and rapid diffusion of Ca®* ions, the whole-cell
Ca®" transients usually manifest as uniform, evenly distributed Ca**
signals.*® This synchronization of Ca*" release from individual Ca**
release sites during E—C coupling was not observed until a new fluor-
escent technique was developed in combination with high spatio-

temporal resolution confocal microscopy.*’*® With an admixture of

Figure 2 Cartoon of local Ca** micro-domain and major proteins
concentrated in the dyadic junction. The local Ca*" micro-domain
includes primarily (L-type) Ca’t channels and opposing RyRs
within a 12—15 nm distance between T-tubule and SR membrane,
forming functional Ca®>" release units (CRU). Other important com-
ponents such as Na'/Ca®!t exchanger, Na'/K™-ATPase, and
[3-adrenergic receptor (3-AR) are also condensed on the T-tubules.

a fast, low-affinity Ca®>" indicator (Oregon Green 488 BAPTA 5N)
and a high affinity, but slow Ca®" chelator (EGTA) in the pipette
recording solution, localized discrete SR Ca*" release events, dubbed
‘Ca®" spikes’, were visualized at individual T-tubule/SR junctions. At a
full-blown depolarization (e.g. depolarization to O mV from resting
membrane potential), Ca>" spikes occur almost at the same time
from all different T-tubule/SR junctions, revealing the highly synchron-
ous nature of Ca* release events during E-C coupling (Figure 3A
and B).*” In combination with loose seal patch clamp and confocal
Ca*" imaging techniques, it has been further demonstrated that Ca**
sparks can be activated by Ca®" influx from a single L-type Ca*"
channel, namely ‘Ca®* sparklets’ (Figure 3C and D).> This work provided
the first direct visual evidence validating the ‘local control theory’ of
cardiac E~C coupling, that is, local Ca*™ entry via LTCCs across the
T-tubule membrane triggers local Ca®" release from adjacent RyRs.
The highly organized T-tubule network and intricate coupling
between T-tubules and jSRs provide the ultrastructural basis for local
control of CICR. (For a complete view of various terms on local
Ca®" events, please refer to Table 1 of Cheng and Lederer®.)

4. T-tubule remodelling in heart
failure

T-tubule alterations were first observed in diseased hearts by EM.
Earlier work by Page and McCallister*® showed that, in a rat pressure
overload hypertrophy model (10 days after aortic constriction), the
area of T-tubule membrane is increased in hypertrophied myocytes
and accordingly the ratio of total sarcolemmal area to cell volume
remains constant. These findings were extended by subsequent EM
studies from Maron et al,*® which included analysis of biopsies from
human hypertrophied cardiomyopathies of various causes, including
aortic stenosis, aortic regurgitation, obstructive LV outflow, etc.
They identified irregularly shaped or dilated T-tubules in hypertro-
phied cells and loss of T-tubules in degenerating cells.*® Similar
T-tubule alternations (dilation and loss of T-tubules) were also
revealed in patient hearts with end-stage dilated or ischaemic cardio-
myopathy.2**">2 Although these early EM studies provided high-
resolution visualization of myocyte ultrastructure, application of EM
is limited both by the sophisticated technique, including sample pro-
cessing, and by the inability to view in a single image the complete
T-tubule system of a myocyte.

The appreciation of T-tubule remodelling in heart disease was
boosted during the last decade by the application of laser scanning
confocal microscopy and the use of fluorescent lipophilic membrane
markers. Among these, He et al.> were the first to identify and quan-
tify the significant loss of T-tubule density in failing ventricular myo-
cytes in an experimental pacing-induced canine heart failure model,
though the overall organized pattern of the T-tubule network is not
altered in this model. Similar findings using the same model were
reported from this group.®* Interestingly, in a spontaneously hyper-
tensive rat model, distinct changes in the T-tubule system in failing
myocytes were found, specifically, a dramatic re-organization of the
T-tubule system characterized by a loss of transverse elements but
a gain in longitudinal elements, giving rise to an overall chaotic appear-
ance of the T-tubule network (Figure 4).”> These visual observations
from confocal images were confirmed by computational analysis in-
cluding 2D Fourier analysis of the power of the T-tubule structure,
which represents the global regularity of the T-tubule network, and
calculation of the densities of transversal and longitudinal elements
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Figure 3 Synchrony of local Ca®" release during E~C coupling. (A) Ca*" spikes recorded in ventricular myocyte under whole-cell voltage-clamp
condition, and 4 mM EGTA and 1 mM Oregon Green 488 BAPTA 5N in patch pipette solution. The confocal scan line was placed along the longi-
tudinal axis of myocyte. Discrete Ca*" spikes were evoked synchronously from all T-tubule/SR junctions upon membrane depolarization to 0 mV
from a holding potential of —70 mV. (B) Surface plot of Ca*" spikes shown in (A). (C and D) Sparklet—spark coupling—a direct visualization of
local control of CICR. (C) LTCC Ca®" influx mediated sparklets (the low-amplitude events, pink arrows) and triggered sparks (the high-amplitude
events) recorded under loose-seal patch-clamp conditions. Note that not every sparklet can trigger a spark. (D) Surface plot of sparklet—spark coup-
ling. The arrow indicates a sparklet foot that triggered a spark (from Wang et al.®).

of the T-tubules.”® Subsequently, many other groups using other
animal heart failure models have also reported profound T-tubule re-
modelling in single isolated failing myocytes (Table 1).21:2425:32:55-67
Similar alterations were also observed in atrial myocytes following
rapid pacing.*>*® Taken together, these studies provide clear evidence
that T-tubule remodelling is a common pathological alteration in
failing myocytes of almost all origins examined to date, including dif-
ferent animal heart failure models of different species/aetiologies,
and human heart failure patients with different background diseases.
The major common characteristics of T-tubule alterations from
these studies include the following: (i) loss of T-tubules (or reduction
in T-tubule density); (ii) disorganization or disruption of the orderly
arrayed T-tubule network; (iii) a decrease in transversal elements
and an increase in longitudinal elements; and (iv) an increase in
T-tubule diameter (or T-tubule dilation). These studies led to the
current paradigm that T-tubule remodelling is a principal problem in
many forms of cardiac disease that share the common end-stage of
heart failure. It should be noted that one study found minor and insig-
nificant changes in T-tubule structure in single myocytes isolated from

end-stage human failing hearts compared with control samples from

rejected healthy donor hearts.®®

5. T-tubule remodelling in the
transition from hypertrophy to
heart failure

Although a majority of studies agree that there is remarkable remod-
elling within the T-tubule system in myocytes isolated from failing
hearts, it is arguable that the disruptive T-tubule remodelling might
be a consequence of complex molecular and biochemical changes
during heart failure. It is therefore imperative to investigate the evolu-
tion of T-tubule remodelling during the development of heart failure,
in other words, how early T-tubule remodelling initiates in the
process of progression from hypertrophy to heart failure. Previous
studies from other groups have been performed in isolated single
myocytes, though enzymatic dissociation of myocytes may impair

69

the T-tubule membrane of healthy cells.”” Myocytes at the
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Table | T-tubule remodelling examined in human heart failure or experimental animal models (in chronological order)

Species/imodel of disease

Samples studied

Methods

Findings on T-tubule remodelling

Reference

Rat, pressure overload
hypertrophy (aortic
constriction)

Human, HCM of varied causes
(aortic stenosis, etc.)

Human, end-stage DCM

Human, end-stage DCM

Human, end-stage DCM/ICM

Dog, rapid pacing-induced HF
(ventricular pacing, 4—5 weeks)

Dog, rapid pacing-induced HF
(ventricular pacing, 4—6 weeks)

Rat, spontaneously hypertension
(~20 months old)

Mouse, Ml (ligation of LCA, 1 week
or 3 weeks)

Rat, MI (ligation of LCA, 6 weeks)

Pig, Regional Ml (severe stenosis
Of circumflex LCA, 6 weeks)
Human, end-stage DCM, ICM, and

HCM; Rat Ml (16 weeks)

Sheep, rapid pacing-induced HF
(RV-apex pacing, 4 weeks)

Sheep, persistent AF (129 + 39
days, induced by intra-atrial
pacing)

Human, end-stage DCM, ICM, and
HCM

Mouse, diabetic cardiomyopathy
(db/db, 20 weeks old)

Rat, mechanical unloading
(4 weeks)

Rat, pressure overload (aortic
constriction, ~8—12 weeks)

Rat with metabolic syndrome:
exercise induces concentric
hypertrophy (8 weeks); or
normal rats post-Ml/exercise

Mouse, HF (inducible
Junctophilin-2 knockdown)

Human, DCM

Frozen LV tissues

Fixed LV or ventricular
septum biopsy samples

Fixed LV tissues (frozen
sections)

Fixed LV tissues (frozen
sections)

Frozen LV tissues

Isolated LV myocytes

Isolated LV myocytes

Isolated LV myocytes

Isolated myocytes (septum,
remote from Ml zone).

Isolated myocytes Fixed
tissues (from LV
non-infarcted area)

Isolated myocytes from Ml
adjacent (border) region

Isolated myocytes from
human or rat HF hearts

Isolated left-atrial myocytes

Isolated right atrial myocytes

Isolated LV myocytes
Isolated LV myocytes

Isolated LV myocytes

Langendorff-perfused intact
hearts

Isolated LV myocytes

Isolated LV myocytes or
fixed LV tissues (for EM)

Fixed, frozen LV tissues

EM

EM

EM/Confocal
immunofluoresence

EM/confocal
immunofluorescence
Confocal

Confocal

Confocal

Confocal

Confocal/EM

Confocal

Confocal and ion
conductance
microscope

Confocal

Confocal

Two-photon
Confocal

Confocal, ion
conductance
microscope

Confocal

Confocal

Confocal/EM

Confocal

Increased T-tubule membrane area

Irregularly shaped or dilated T-tubules
in hypertrophied cells; loss of
T-tubules in degenerating cells

Numerous, dilated T-tubules in
hypertrophied, or T-tubule loss in
degenerative cells

T-tubule dilation

Increase in size and number of T-tubules
More longitudinal orientated
elements

Regional loss, with normally organized
pattern

Regional loss, with normally organized
pattern

T-tubule disorganization, loss in
transverse elements and increase
in longitudinal elements
Overall chaotic appearance

Slightly disorganized 1 week post-MI
Profound disorganization 3 weeks
post-Ml

Disorganized pattern, decreased
T-tubule density, fewer T-tubule
regions associated with SR

Reduction in T-tubule density

Loss of T-tubule openings; decrease
in T-tubule density

Extensive disruption and loss of atrial
T-tubules

Reduction in atrial T-tubule density and
loss of T-tubule organization

Only small, but not significant changes
in T-tubule network

Decrease in T-tubule density

T-tubule disorganization, disruption of
T-tubule openings

Discrete T-tubule loss in hypertrophied
hearts, progressive loss and
disorganization from hypertrophy
to HF, penetration from LV to RV

Loss of T-tubules in pathological
remodelling; intact T-tubule
structure in physiological
hypertrophy

Severe T-tubule disorganization;
disrupted T- tubule/SR junctions

Reduction in orderly pattern, less
uniform with more transverse
components; dilation

Page and
McCallister,*
1973

Maron et al,*°,
1975

Schaper et al.,”
1991

Kostin et al,?°
1998

Kaprielian et al®?,
2000

He et al,>3, 2001

Balijepalli et al.**
2003

Song et al.,”* 2006

Louch et al,>®

2006

Swift et al,>® 2008

Heinzel et al,*
2008

Lyon et al,>” 2009

Dibb et al.*® 2009

Lenaerts et al.*®
2009

Ohler et al,®® 2009
St@len et al.,67
2009

Ibrahim et a
2010

l.,59

Wei et al.*° 2010

Kemi et al,®' 2011

van Oort et al.®
2011

Crossman et al.”’
2011

Continued
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Table | Continued

Species/model of disease

Samples studied

Methods

Findings on T-tubule remodelling

Reference

Mouse, HF (PI3K p110 o/ single

or double knockout)

Rat, RV failure (induced by
monocrotaline, 25 days)

Mouse, Ml (5 weeks)

Dog, dyssynchronous HF (6 weeks
after right atrial pacing with
ablation of left bundle branch)

Rat, Ml (12—16 weeks)

Mouse, Ml (4 or 8 weeks)

Langendorff-perfused intact
hearts or isolated
myocytes

Langendorff-perfused intact
hearts

Langendorff-perfused intact
hearts

Fixed, isolated LV myocytes
(anterior and lateral)

Isolated LV myocytes, fixed
LV tissues

Isolated myocytes

Confocal

Confocal

Confocal

Confocal
immunofluorescence

EM, confocal, and ion
conductance
microscope

STED and confocal

Severe T-tubule loss and
disorganization in both LV and RV
myocytes

Severe T-tubule loss and
disorganization of RV myocytes

Remarkable remodelling in Ml border
zone; moderate remodelling in Ml
remote zone (LV)

Dramatic remodelling in lateral
myocytes (depletion in the centre,
more longitudinal components in the
cell periphery)

T-tubule density reduction; T-tubule
regularity

Disruption; dilation

Increased area of T-tubule

cross-sections; increase in

Wau et al,® 2011

Xie et al,""* 2012

Chen et al,'"

2012

Sachse et al,**
2012

Ibrahim et al.®
2012; Lyon
et al,*°2012

Wagner et al”
2012

Mouse, HF (Serca2 knockout, 7 Isolated LV/septum EM, confocal
weeks after tamoxifen myocytes, fixed hearts
induction)

Mouse, HF (chronic Gaq Langendorff-perfused intact ~ Confocal
over-expression) hearts

Rat, pressure overload HF (Aortic  Fixed, isolated myocytes EM

constriction, 9—-11 weeks)

Mouse, teletholin (Tcap) knockout
(3-8 months)

Isolated myocytes

Confocal and ion
conductance
microscope

longitudinal and decrease in
transversal elements

Increased T-tubule density, increased Swift et al,>* 2012
abundance of longitudinal T-tubules

(newly grown T-tubules)

Heterogeneous spatial disorganization: ~ Tao et al,'®® 2012
loss of transverse elements and gain
in longitudinal elements, overall

mesh-like appearance

Reduction in both volume density and ~ Wu et al,""® 2012
surface area of total T-tubules, and

T-tubules coupled with junctional SR

Progressive T-tubule loss and lbrahim et al.,'*
irregularity with ageing; profound 2013
T-tubule loss and disorganization
following pressure overload

AF, atrial fibrillation; EM, electron microscopy; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; HF, heart failure; ICD, ischaemic cardiomyopathy; LCA, left coronary

artery; LV, left ventricle; MI, myocardial infarction; RV, right ventricle.

hypertrophied stage may undergo subtle changes in the T-tubule
network, which could be indistinguishable from controls in isolated
myocytes. Therefore, it was necessary to develop a new imaging tech-
nique to detect T-tubule structure with higher sensitivity and less
damage. With this in mind, we developed an in situ T-tubule confocal
imaging technique by combining the Langendorff perfusion system
with laser scanning confocal microscopy (Figures 5 and 6). In doing
so, a fluorescent dye-loaded intact heart can be imaged in situ for
T-tubule ultrastructure or other structures that can be visualized
using fluorescent dyes in living cells, with minimal damage to the myo-
cytes. In a pressure overload hypertrophy — heart failure rat model,
this novel advanced in situ confocal imaging provided convincing evi-
dence that T-tubule remodelling is a real phenomenon in failing
hearts,® rather than the previously postulated experimental artefact
related to the isolation of failing cardiomyocytes.*” Moreover, this in
situ imaging approach revealed that T-tubule remodelling is not just
a manifestation of end-stage heart failure.®® Instead, the remodelling
of T-tubules starts much earlier in the disease spectrum, even prior
to echocardiographically detectable LV systolic dysfunction. The
T-tubule system in the LV undergoes progressive deterioration from
compensated hypertrophy through early heart failure to advanced

heart failure.®® With progression from compensated hypertrophy to
early and late heart failure, T-tubule remodelling spreads from the
LV to the RV. These findings that T-tubule remodelling occurs prior
to the onset of heart failure suggest that T-tubule remodelling is
not a secondary modification after heart failure, but instead is an im-
portant early event during heart-failure progression. Data from this
study also showed that T-tubule integrity highly correlates with
cardiac ejection fraction of diseased hearts, indicating T-tubule integ-
rity is a crucial determinant of cardiac function.®® Taken together,
these studies strongly suggest that maladaptive T-tubule remodelling
is a causal event that drives the transition from compensated hyper-
trophy to heart failure.

6. T-tubule remodelling leads to
defective E-C coupling in heart
failure

To date, accumulating evidence supports that alterations in T-tubule
structure are an important factor in Ca®* handling dysfunction in car-
diomyocytes. Under non-diseased conditions, such as in ventricular
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Figure 4 Ca’' handling defects and T-tubule remodelling in failing myocytes. (A and B) Field-stimulated Ca*" transients (1 Hz) in isolated myocytes
from a control Wistar-Kyoto (WKY) rat and failing spontaneously hypertension rat (SHR/HF), respectively. Control healthy myocyte exhibits uniform,
synchronous and stable Ca®* transients from beat to beat. The failing myocyte displays dyssynchronous Ca”" release at different regions of the cell. As
shown by these arrows, Ca>" releases are delayed at fixed locations on every beat. (C—F) T-tubule disorganization in a ventricular myocyte from a
failing SHR heart (SHR/HF, D and F), compared with the organized T-tubule network from a WKY control myocyte (C and E). (From Song et al.>®)

Figure 5 3D reconstruction of epicardial myocyte T-tubule
network in situ. Confocal images (25 confocal stacks at 0.2 wm inter-
val) were acquired in situ from Langendorff-perfused intact healthy
heart, demonstrating the periodically organized T-tubule structure
in normal myocytes. (From Wei et al.®°)

myocytes with chemically induced detubulation, electrical stimulation-
elicited Ca”" release is severely hampered. When T-tubules are almost
completely depleted, the rise of Ca®* upon stimulation begins at the
cell periphery and is gradually propagated to the centre of myocytes,
resulting in a loss of synchronous Ca”" release.”®”" In another case,

ventricular myocytes in culture have been shown to progressively
lose T-tubules with time, which subsequently causes spatially non-
uniform or dyssynchronous SR Ca®" release.”>”* These studies pro-
vided crucial insights into the influence of T-tubule alterations on
myocyte Ca*" handling function in disease.

Impaired E—C coupling, characterized by a reduction in the ampli-
tude of Ca®" release and slowed kinetics, including both time to peak
and decay rate of Ca®™ transients, is a hallmark of heart failure.”*~"”
Decreased SR Ca®" content due to SERCA down-regulation,”® % re-
duction in Ca®" influx through LTCCs2*®” NCX upregulation,®®~*
and metabolic inhibition”>~%® are among the mechanisms responsible
for altered E—C coupling and Ca>™ homeostasis during heart failure.
The contribution of structural alterations to cardiac E-C coupling
dysfunction was not appreciated until the seminal work led by
Lederer et al’” In that study, it was first proposed that defective
E—C coupling is likely due to a change in the relationship between
RyRs on the SR and LTCCs on T-tubules, although no direct evidence
was provided.”” Later, dyssynchronous Ca>" sparks were documen-
ted in failing myocytes following myocardial infarction; however, the
mechanism causing dyssynchrony of SR Ca>" release was not com-
pletely understood.®” As summarized in Table 1, in the last 10
years, evidence from isolated ventricular myocytes and intact hearts
suggests that T-tubule loss and/or disorganization is a significant and
common event in advanced heart failure of different aetiologies and
results in dyssynchronous Ca®" release and impaired contrac-

: 21,23,32,35,53-55,57,58,63,64
tion.
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Figure 6 Progressive T-tubule remodelling of left-ventricular myocytes in pressure overload rat cardiomyopathy. (A—D) Representative T-tubule
images from left ventricle (LV) of age-matched sham-operated heart (A), hypertrophy (B), early HF (C), and advanced HF (D). At hypertrophy
stage, discrete T-tubule loss (green arrows) was often observed with slight T-tubule disorganization (B). In moderately decompensated heart, LV myo-
cytes exhibited widely impaired T-tubule system (C). At advanced HF stage, myocytes lost majority of T-tubules with striated pattern almost vanished
(D). Each yellow framed inset is a zoom-in view of an area 40 x40 pm? from associated images. (E) A gradual reduction in TTpower (an index of
T-tubule regularity) with heart disease progression. (F) Cardiac global function (ejection fraction) correlates well with T-tubule integrity. LV, left ven-

tricle; EF, ejection fraction. (From Wei et al.%%)

The re-organization of T-tubule structure alters the spatial organ-
ization between LTCCs and RyRs, leading to a reduction in
co-localization between RyRs and LTCCs, an increase in orphaned
RyRs, the loss of local control of RyRs by LTCCs, and therefore
decreased E—C coupling efficacy and increased dyssynchrony of SR
Ca®" release in failing myocytes.”® Specifically, evidence from the
study using spontaneously hypertensive rats revealed that, when
uncoupled RyRs due to T-tubule disruption are not activated by
LTCCs upon membrane depolarization, those uncoupled RyRs can

be activated later by Ca*" diffused from neighbouring functionally
normal release sites, causing propagative or secondary CICR. The sec-
ondary CICR is much slower compared with the primary Ca®"
release directly triggered by Ca*" influx across the 12 nm gap, thus
producing dyssynchronous Ca®" release (Figure 4B).%* Similar findings
supporting the above interpretation/mechanism have been observed
in larger animal models. For example, work from Sipido’s group in
an ischaemic cardiomyopathy pig model reported that T-tubule loss
is associated with reduced synchrony of Ca>" release and reduced
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Figure 7 Schematic chart depicting the consequences of T-tubule remodelling and the relationship with heart failure and Ca*"-dependent arrhyth-
mogenesis. Myocyte T-tubule remodelling leads to alterations at multiple levels, including ultrastructural, electrical, and signal transduction changes,
collectively contributing to the progression of cardiac failure and the genesis of fatal arrhythmias.

efficiency of the coupling of Ca*" influx to Ca*" release.®? T-tubule
remodelling and Ca®" release dysfunction have also been observed
in atrial myocytes from a rapid-pacing-induced sheep heart-failure

model.>®

These experimental findings are supported by computation-
al modelling in which T-tubule re-organization reduces the synchrony
of Ca*" spark production, leading to the appearance of late Ca**
sparks and a greater non-uniformity of intracellular Ca*".*’ In addition
to its influence on the activation process of Ca*" release, T-tubule re-
modelling also affects Na*/Ca>" exchanger (NCX)-mediated Ca**
removal process, slowing the kinetics of Ca** decay during diastole
and thus impairing myocardial relaxation. This occurs because NCX
is preferentially located to T-tubules (Figure 2) and is the major sarco-
lemmal Ca*" efflux mechanism in cardiomyocytes (Figure 2).3%73100101

T-tubule integrity is crucial for instantaneous action potential
propagation across the whole membrane system of the large
myocyte. Recent investigations in rat failing myocytes post-myocardial
infarction indicate that structural disorganization of the T-tubule
system worsens the electrical coupling between the T-tubule
system and the surface sarcolemma, leading to the failure of action
potential propagation from the surface membrane to T-tubule
system and ensuing triggering of SR Ca®* release.'® It is then sug-
gested that, in addition to orphaned RyRs, Ca*" release units that
are coupled to the dysfunctional T-tubule domain may also fail to
be recruited to release Ca*". Interestingly, in a mouse hypertrophy
model of Gaq overexpression, Rubart and colleagues'® found that
T-tubule remodelling is associated with spatially non-uniform action
potential prolongation and alterations in spatial dispersion of epicar-
dial repolarization, but found no changes in electrical coupling. Never-
theless, these studies provide new insights into our understanding of
the contribution of T-tubule remodelling to defective E—C coupling in
heart failure.

The T-tubule system harbours many important ion channels or
transporters. In addition to those depicted in Figure 2, brain-type
sodium channels and potassium channels (especially the steady-state
component, IKss) are also concentrated at T-tubules.”®* T-tubule re-
modelling could change the distribution or organization of ion

channels and transporters, alter ion exchange between the restricted
T-tubule lumen and the bulk extracellular space, and therefore alter
the shape and duration of action potentials, which in turn would
disturb the synchrony and efficacy of SR Ca** release and Ca®*
removal.'® =17

In addition, T-tubule remodelling causes redistribution and loss of
[B-adrenergic receptors in T-tubules in cardiomyocytes. The impact
of this profound change on myocyte E—C coupling is extensively dis-
cussed in the review by Gorelik and colleagues in this issue.'%8 Briefly,
myocyte T-tubule remodelling leads to alterations at multiple levels,
including (ultra)structural, electrical, and signal transduction, collect-
ively contributing to the progression of cardiac failure and the
genesis of fatal arrhythmias (Figure 7).

7. Molecular mechanisms
of T-tubule remodelling

Junctophilin-2 (JP2) bridges the physical gap between the plasma
membrane and the SR in excitable cells and plays an important role
in the formation of the junctional membrane complex (i.e. the

199 P2 is one of the four

cardiac dyad—T-tubule/SR couplings).
members of the junctophilin protein family (JP1—-4), and the only junc-
tophilin protein expressed in cardiac muscle."” """ Conventional
knockout of |P2 is embryonically lethal, and studies in embryonic myo-
cytes with JP2 deficiency define a critical requirement for JP2 in
normal cardiac function. Specifically, JP2-deficient embryonic myo-
cytes have defective cardiac dyads, including more SR segments
with no T-tubule couplings as well as reduced and unstable intracel-
lular Ca®* transients.'® These pioneering studies identified P2 as a
critical structural factor for normal E-C coupling and cardiac func-

tion. Very recent work by Sachse and colleagues''*'"?

suggests that
cellular strain (including passive stretch and active myocyte contrac-
tion) could affect the geometry of T-tubules. Thus, maintaining a
stable physical relationship between T-tubules and the jSR is critical

for normal E-C coupling function during active myocyte
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contraction—relaxation cycle. From this point of view, we consider
JP2 as an anchoring protein that helps maintain both the static and
dynamic stability of the nano-positioning between T-tubule and jSR.

Given the clear role of JP2 in normal cardiac function, recent work
has evaluated how expression of JP2 changes in response to cardiac
stress, and if changes in JP2 mechanistically contribute to pathological
T-tubule remodelling. Loss of JP2 expression has been documented in
failing human hearts and a variety of heart failure models. For example,
in rat pressure overload models,*®’”""* murine myocardial infarction
model,""® murine hypertrophic or dilated cardiomyopathy models,""®
and human failing hearts,""” expression of JP2 is severely down-
regulated in response to cardiac stress. This loss of JP2 expression
correlates with loss of T-tubule structural integrity.°® Recent studies
in which JP2 was knocked down in either cultured ventricular myo-
cytes or by transgenic expression of a JP2 shRNA in vivo suggest
that loss of JP2 expression is a key mechanism underlying T-tubule
remodelling in failing myocytes. Since JP2 structurally connects the
T-tubules and SR and maintains the physical stability of T-tubule/SR
junctions, JP2 down-regulation likely leads to T-tubule dissociation
from the SR and ensuing disruption of cardiac dyads. Indeed, the
effects of knockdown of JP2 mimic the loss of T-tubule/SR organiza-
tion observed in response to cardiac stress.’>'"® Towards under-
standing the mechanism by which JP2 is down-regulated in failing
hearts, microRNA-24 (miR-24) has been identified as direct regulator
of JP2 homeostasis in the heart."" miRNAs are now recognized as im-
portant regulators of both normal and pathophysiological processes.
Expression of miR-24 is increased in failing hearts, and overexpression
of miR-24 in cultured myocytes results in JP2 down-regulation, altera-
tions in cardiac dyads, and changes in E—C coupling function.""” Taken
together, compelling evidence specifically identifies JP2 as a key medi-
ator of stress-induced cardiac T-tubule remodelling.

In addition to JP2, other proteins have been implicated in T-tubule
formation or remodelling, such as caveolin-3, amphyphisin-2 (Bin1),
telethonin (Tcap), particularly in skeletal muscle."®"?°~">* However,
the roles of these proteins in T-tubule biogenesis and pathogenesis
in cardiomyocytes remain to be determined. Newly published work
(2013) from the Terracciano group using Tcap knockout mice
began to shed new light into these curiosities, indicating that Tcap
is a critical, load-sensitive regulator of T-tubule structure and
function.'®

8. Conclusions

In summary, data from electron microscopy and confocal imaging of
isolated myocytes and, more recently, in situ confocal imaging of myo-
cytes in intact hearts have provided a clear understanding of the struc-
ture of T-tubules. We now recognize T-tubules as an important
structural component of E—C coupling function that, when perturbed,
results in loss of co-ordinated contraction of ventricular myocytes,
and T-tubule remodelling is a key player in the pathogenesis of
heart failure. While the composition of the T-tubule network is
fairly well-understood, we are beginning to discover the mechanistic
underpinnings of T-tubule remodelling, with JP2 emerging as a clear
factor regulating T-tubule integrity. Future studies are warranted to
answer the following questions: (i) What is the role and pathological
significance of longitudinal elements in the process of heart disease?
(if) What is the role of JP2 in T-tubule development? (iii) How does
JP2 become dysregulated at both the transcriptional and post-
translational levels in response to cardiac stress? (iv) JP2 is very

likely not the sole molecule responsible for T-tubule integrity in
health and disease. What other players are critically involved? And
how? Is there any interplay between JP2 and others factors in devel-
opment, healthy adults, and disease? By achieving a complete mechan-
istic understanding of how T-tubule integrity is developed and
maintained in health and how it is lost with disease progression, we
are one step closer to identifying novel strategies that improve
cardiac function and decrease mortality and morbidity associated
with heart failure.
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