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Abstract
Life history data arising in clusters with prespecified assessment time points for patients often
feature incomplete data since patients may choose to visit the clinic based on their needs. Markov
process models provide a useful tool describing disease progression for life history data. The
literature mainly focuses on time homogeneous process. In this paper we develop methods to deal
with non-homogeneous Markov process with incomplete clustered life history data. A correlated
random effects model is developed to deal with the nonignorable missingness, and a time
transformation is employed to address the non-homogeneity in the transition model. Maximum
likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter
estimation. Simulation studies demonstrate that the proposed method works well in many
situations. We also apply this method to an Alzheimer's disease study.
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1. Introduction
Multi-state life history data arise in many research areas such as medicine, social sciences
and public health, and multi-state models provide a convenient way to characterize the
movement of individuals among distinct states. With continuous time multi-state models,
transition intensities are often of primary interest, and these are perhaps most widely
modeled by Markov models (e.g., Bartholomew 1983; Singer and Spilerman 1976a, 1976b;
Wasserman 1980). Various methods based on Markov models have been proposed in
literature, including discrete time (e.g., Albert and Waclawiw 1998) and continuous time
models (Andersen et al. 1993; Kalbfleish and Lawless 1985, 1989; Cook et al. 2004; Cook,
Kalbfleisch and Yi 2002).

Most applications assume a homogeneous Markov process; that is, the transition
probabilities only depend on the elapsed time between observations. This assumption is not
satisfied when transition probabilities depend on previous times. Limited work has been
devoted to deal with non-homogeneous Markov process models. Kalbfleisch and Lawless
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(1985) proposed a method for modeling non-homogeneous multi-state data under panel
observations, in which the non-homogenous intensity matrix is a product of a baseline
homogeneous intensity matrix and a function of time. Gentleman et al. (1994) considered
piecewise constant transition intensities to deal with non-homogeneous models. A number
of authors have used piecewise homogeneous processes to model temporal homogeneity
with applications (e.g., Saint-Pierre et al. 2003; Ocana-Riola 2005; Perez-Ocon, Ruiz-Castro
and Gamiz-Perez 2001). Hubbard, Inoue and Fann (2008) considered a time transformation
method to deal with the non-homogeneity. This method allows the time-varying transition
intensity matrix by assuming the transition intensity to be the product of a baseline transition
intensity matrix and a scalar function of time. This method requires fewer parameters to
estimate than piecewise methods, and hence is appealing when a smaller number of subjects
or shorter observation periods are available, and the computation burden is less.

In many situations, multi-state life history data arise in clusters. For example, in studies of
Alzheimer's disease (AD) conducted by the National Alzheimer's Coordinating Center
(NACC), the data were collected from 29 Alzheimer's disease centers, and follow-up visits
for subjects in each cluster are scheduled at one year-interval. Subjects in the same cluster
may have correlations due to some common features. Appropriate analysis should take the
correlations into account. A general method to deal with the clustered data is the random
effects model (Laird and Ware 1982), in which the correlations are incorporated through the
assumption that the cluster-specific effects are to be random.

In cohort studies, clinical assessments may be scheduled before the study, but patients may
choose when they want to visit clinics for clinical examinations according to their degree of
disease activity. This creates a problem somewhat akin to incomplete data arising in
longitudinal studies. In this case, data may be missing at random (MAR) (Little and Rubin
2002) if missing status depends on observed (typically past) responses, or missing not at
random (MNAR), where the missing status may depend on the latent disease status.

Grüger et al. (1991) discussed the informative sampling in multi-state models. Chen, Yi and
Cook (2010) proposed a piecewise constant transition model to handle the non-homogeneity
in a progressive process with informative observations. Sweeting, Farewell, and De Anglis
(2010) developed a multi-state Markov model for disease progression in the presence of
informative examinations by using a more regularly observed auxiliary variable. Both the
methods of Chen, Yi and Cook (2010) and Sweeting, Farewell, and De Anglis (2010) do not
consider the clustered data. Little work in the literature has addressed incomplete clustered
data under the framework of a non-homogenous Markov process. Under a MAR or MNAR
mechanism, the naïve analysis method such as the complete case analysis can give biased
inferences. In this paper, we provide a general method to handle incomplete clustered data
for the non-homogeneous Markov processes when data are MAR and MNAR. The time
transformation method (Hubbard, Inoue and Fann 2008) is employed to address the non-
homogeneity, and the correlated random effects models are employed to address the MNAR
or nonignorable mechanism. This method is very appealing in that it can deal with missing
not at random mechanism and allow time-varying intensities under the framework of non-
homogeneity for the clustered life history data. Furthermore, using the nonparametric time
transformation model, we can accommodate temporal non-homogeneity without assuming
that transition intensities follow any particular functional form of time. Thus, our proposed
method is more flexible than previous methods dealing with non-homogeneity. Maximum
likelihood methods are used with parameter estimation carried out via the Monte-Carlo EM
algorithm, and variance estimation is performed using the Louis's method (Louis 1982).

The remainder of this paper is organized as follows. In Section 2, we describe models and
estimation for continuous time models. In Section 3, we develop methods for parameter
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estimation when data are MAR and MNAR. Empirical studies including the simulation
studies and sensitivity analyses are implemented in Section 4. Data arising from a dementia
disease study are analyzed using the proposed method in Section 5. We conclude the paper
with a general discussion in Section 6.

2. Notation and Model Formulation
2.1. Non-homogeneous Random Effects Markov Process Model via Time Transformation

Suppose there are K states, 1, 2, …, K, and let Yij(u) be the state occupied for subject j at
time u in cluster i, i = 1, …, n, j = 1, …, ni. To incorporate the correlations among the
clusters in the transitions among these states, random effects models are often employed in
the Markov transition intensity function. To be specific, the transition intensity function at
time u for transitions from state  to state k for subject j in cluster i, given the random effect
δ1i, is

where δ1i is often assumed to come from a density function f(δ1i|Σ1) with parameter Σ1. The
use of the random effect δ1i on u (through the intensity function) is one way of introducing
correlation within the ith cluster. To model the dependence of the transition intensities on
risk factors, we may introduce covariates by expressing the transition intensities as functions
of time (in the non-homogeneous case) and covariates. For a given individual j in cluster i,
we often adopt models of the form

where  is the baseline transition intensity with all explanatory variables  and

random effect δ1i being zero,  is the time-invariant covariate vector, δ1i is a random
effect vector for cluster i and is often assumed to follow a normal distribution with mean 0
and covariance matrix Σ1, and Zi is a covariate vector for random effect δ1i. Furthermore,
we assume δ1i and δ1i′ are independent for i ≠ i′. A simple example is the frailty model that

is commonly used in practice if we take Zi as a scalar one. Let ,

, .

A multi-state model for subject j in cluster i with state space {1, 2, …, K} can then be

described via the transition intensity matrix  with elements , , k = 1, …,
K. Let Pij(u, u + v|δ1j) denote the K × K cluster-specific transition probability matrix from
time u to time v + u for subject j in cluster i, given δ1i. For a homogeneous process the

transition intensity matrix  does not depend on time u, and the transition probability

 depends only on the time interval v, so we

denote it as , , k = 1, …, K. In the matrix form, we have
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where Pij(v|δ1i) is the K × K cluster-specific transition matrix with element . For a
non-homogeneous process, we do not have an explicit form between the transition intensity
matrix and transition probability matrix. However, we can do some proper time scale
transformation such that the process is homogeneous afterwards (Hubbard et al. 2008).
Specifically, let t = h(u) be a time transformation on which the process is homogeneous with
intensity matrix Qij(δ1i) given the random effect δ1i, then

where tm = h(um), m = 1, 2. It is easy to show that , which
implies that time scale transformations leading to a time homogeneous Markov process are
possible if the non-homogeneity in the process is due to a time-varying multiplicative
change in the matrix of transition intensities.

Here we assume, after the time scale transformation t = h(u), the transition intensity matrix
for subject j in cluster i given the random effect δ1i does not depend on time. Then, the
model becomes

where  is the  element of the homogeneous intensity matrix Qij(δ1i) for subject j. Let

 denote the transition probability with an elapse time t for subject j in cluster i
from state  to k given the covariate , and the random effect δ1i. Let β denote the
unknown parameter vector in the transition intensity matrix Qij(δ1i).

The choice of h(·) is very flexible, and we require h(u) ≥ 0 and dh(u)/du ≥ 0, since h(u)
defines a time scale. Two common methods in practice for selecting the h(·) are the
exponential time transformation h(u) = uϕu and the nonparametric time transformation h(u)
= uξ(u), where

K(·) is a kernel function, and γ is a bandwidth. This kernel smoother has knots at uk, k = 1,
…, d; smoothing parameter ϕ satisfies constraints ϕk > 0. To make identifiability, we often
assume ϕ1 = 1 or ξ(0) = 0.

We comment that not all non-homogeneous models can be so transformed to homogeneity,
but through selection of the transformation function, the proposed method can cover various
non-homogeneity cases that are often used in practice. For example, using the nonparametric
time transformation model can accommodate temporal non-homogeneity without assuming
that transformation intensities follow any particular functional form of time, which is more
flexible than previous method dealing with non-homogeneity. The exponential
transformation form has several advantages. First, it has a good interpretation: if ϕ > 1, it
means a (ϕ − 1) × 100% increase in the rate of all transitions per year (assuming a yearly
time unit); if ϕ < 1, it means a (1 − ϕ) × 100% decrease in the rate of all transitions per year
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(assuming a yearly time unit); ϕ = 1 means the process is homogeneous on both the original
and transformed time scales. Second, it requires estimation of fewer parameters, and hence
can reduce the computation burden and can also be employed even when a smaller number
of subjects or shorter observation periods are available.

2.2. Independent Inspection Process for Complete Data
With continuous time models and observation schemes, the response process {Y(u), u > 0}
may be observed at any time point u over the period observation. If the time of assessment u
does not depend on the state of the underlying response process Y, we can base inference on
the response process conditional on the assessment times (Grüger, Kay and Schumacher
1991), and this is typically an implicit assumption in standard analyses. In this paper, we
consider the problem in which subjects are scheduled to be examined at pre-specified
assessment times denoted u1 < u2 < … uM, where M is the number of pre-specified
assessment times. This reflects many common clinical settings where patients are expected
to return for regular follow-up assessment, say, on annual basis. This enables us to adopt a
convenient frame work employed to describe incomplete longitudinal data since it is then
only necessary to indicate whether each assessment is made.

Let Yij = (Yij(u1), …, Yij(uM))T be a health state vector for subject j in cluster i at all
observation time points, where each element of Yij may take values 1, …, K, i = 1, …, n, j =

1, …, ni. Define .

3. Estimation and Inferences
3.1. Maximum Likelihood Estimation with Complete Data

Let θ = (β, ϕ, Σ1). We can maximize the observed data log-likelihood given the initial state,

to solve for the parameter θ. However, there is no explicit form for this likelihood, thus the
maximization procedure is hard to implement. Alternatively, we can employ the Monte-
Carlo EM (MCEM) algorithm (McLachlan and Krishnan 1997), which is easy to implement.
To do this, we regard the random effect δ1 as a missing value, and the complete data log-
likelihood of (y, δ1) is

where ,

, and yi is a realization of Yi, i = 1, …, n.

In the E step, given the value θ(t), we calculate
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This step also involves the integration, and in general, there is no explicit form. In practice,
the Monte-Carlo method is often used to approximate this integration. To do this, we sample

 from the conditional distribution f(δ1i|yi, θ(t)) via Gibbs sampler, where the
conditional distribution

Given the Bi samples,

In the M step, we maximize  via the Fisher-scoring algorithm to solve for the
parameter θ. Iterate the E and M steps until convergence. Denote the limit as .

For the variance estimate, we use Louis's (1982) formula. The information matrix of θ is
given by

and the covariance matrix of  is .

3.2. Maximum Likelihood Estimation with Incomplete Responses which are Missing at
Random

With incomplete response under the missing at random (MAR) mechanism, we may also
employ the MCEM algorithm to solve for the parameter θ. For simplicity, we let yi = (yi,obs,
yi,mis), where yi,obs and yi,mis denote the observed and missing parts for the response yi. To
implement the MCEM algorithm, the log-likelihood of (y, δ) is

In the E step, given θ(t), we calculate

Similarly, we use Monte-Carlo method to approximate the above integration. To do this, we

sample  from the joint distribution f(δ1i, yi,mis|yi,obs, θ(t)) via
Gibbs sampler, where the full conditional distributions are given by
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Given the Bi samples,

In the M step, we maximize  via the Fisher-scoring algorithm to solve for θ.
Iterate the E and M steps until convergence. Denote the limit as .

For the variance estimate, we use Louis's (1982) formula. The information matrix of θ is
given by

and the covariance matrix of  is .

3.3. Maximum Likelihood Estimation with Incomplete Response which are Missing not at
Random

With incomplete responses under the missing not at random (MNAR) mechanism, we must
model the missing data process appropriately to obtain a valid inference. To do this, we let
Rijm be the missing indicator of Yij(um), which equals 1 if Yij(um) is observed and 0

otherwise. Let Rij = (Rij1, …, RijM)T, , and we use the lower case letter to
denote the realization of the random variable. To incorporate the cluster effects in the
missing data model, we may also employ a random effects model, as follows,

(1)

where , , δ2i is a random effect vector in

the missing data model with density f(δ2i|Σ2), Σ2 is an unknown parameter vector,  may

include the function of , and  is a cluster-level covariate vector. Denote

. To accommodate for the correlation between δ1i and δ2i, we let Σ12 = cov(δ1i,
δ2i). We further make the assumption that the missing data process and the response process

are independent given the random effect δi. Let .

Let θ = (β, ϕ, Σ1, Σ2, Σ12, α). We also implement the MCEM algorithm for solving for the
parameter θ. The log-likelihood of (r, y, δ) is
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where

In the E step, given θ(t), we calculate

To approximate the above integration using Monte-Carlo method, we sample

 from the joint distribution f(δi, yi,mis|ri, yi,obs, θ(t)) via Gibbs
sampler, where the full conditional distributions are given by

Given the Bi samples,

In the M step, we can maximize  via the Fisher-scoring algorithm to solve for
θ. Iterate the E and M steps until convergence. Denote the limit as .

For the variance estimate, we can use Louis's (1982) formula. The information matrix of θ is
given by

and the covariance matrix of  is .
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Here we comment that the Louis's method for variance of the parameter estimate  works
fine for low dimensional parameters, but it becomes inconvenient if one has high
dimensional parameter or a mixed fixed effect coefficient and random covariance matrix
since the second derivatives of Q(·) function are not easy to obtain. For high dimensional
cases, a better choice is the method by Jamshidian and Jennrich (1993).

4. Simulation Studies
4.1. Performance of the Proposed Method

Here we consider a three-state transition process with transition intensity given by

for  after the time transformation h(u) = uϕu, where , and Xij is a time
independent covariate generated from N(0, 1). We will study the performance of the
proposed method when the transformation function is correctly specified/ misspecified in the
following. The true parameters are q012 = 0.2, q013 = 0.1, q021 = 0.2, q023 = 0.1, β12 = 1.0,

β13 = 0.5, β21 = −0.5, β23 = 1.0, , and ϕ = 1.2. The observation time points are
uniformly on (0, 3) with equal space interval 1. At the first observation time point, subjects
are equally likely to be in state one or two. The number of clusters is set to be 30, and the
number of subjects is 50 in each cluster.

The missing data model is

(2)

for j = 2, 3, …,where . The true values are α0 = 1.0, and . We vary α1 to
adjust the missing proportions. We also assume ρ = corr(δ1i, δ2i) and change it to adjust the
dependence between the response and missing indicators. One thousand simulations are run
for each parameter configuration.

First, we consider that the transformation function h(·) is correctly specified. Here we
compare three methods. One is the proposed method; the second, called “Independence”, is
the method that we ignore the correlation between the two random effects δ1i and δ2i, i.e. we
set ρ = 0 although it is not; the third, called “Marginal”, is the method that we ignore the

cluster level effect in the intensity, i.e. we set  although it is not. Tables 1 to 3 report
the result, where BIAS is the percent relative bias; SD is the empirical standard deviation;
CP is the 95% coverage probability. It is seen that the proposed method gives satisfactory
results with negligible finite sample biases and good coverage probabilities. However, the
independence method yields large biases and poor coverage probabilities when ρ ≠ 0. When
ρ = 0, the independence method gives very close results to the proposed method. For the
marginal method, it yields larger biases for all cases.

Next, we consider that the transformation function is misspecified to h(u) = u, i.e., we model
the homogeneous process although it is not. The last method in Tables 1 to 3, labeled
“Misspecified”, records the results. As expected, this method gives biased estimates for
parameters, indicating that the estimate of the proposed method is sensitive to the
misspecification of transformation function.

Chen and Zhou Page 9

J Multivar Anal. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2. Model Selection and Assessment
As a parametric method, the proposed method for the estimation of β is sensitive to
misspecification of the missing data and time transformation models. Therefore, careful
assessment of these models is warranted. We now discuss some model selection and
assessment procedures for the transition intensity, transformation and missing data models.

In general, a likelihood ratio test is used to compare the fit of two models, one of which is
nested within the other. This often occurs when testing whether a simplifying assumption for
a model is valid, as when two or more model parameters are assumed to be related. Both
models are fitted to the data and their log-likelihood recorded. The test statistic is twice the
difference in these log-likelihoods. In many cases, the probability distribution of the test
statistic can be approximated by a Chi-squared distribution with k degrees of freedom,
where k is the difference of the number of parameters between the full model and the
reduced model. The model with more parameters will always fit at least as well (have a
greater log-likelihood). Whether it fits significantly better and should thus be preferred can
be determined by deriving the p-value of the obtained test statistic. The standard likelihood
ratio test applies well when testing some fixed effects in the transition intensity. A
cautionary note is that the standard likelihood ratio test may be somewhat problematic since
the transition intensities are nonnegative (for example, when testing the baseline intensity),
or model comparisons involve variance components that are bounded at zero when testing
random effects, thus the standard likelihood ratio test does not apply. However, as indicated
by Self and Liang (1987) the likelihood ratio test for testing an effect that is bounded at zero
(e.g., testing baseline transition intensity that is equal to zero or a random effect that is equal

to zero) has an asymptotic distribution of a mixture of a point at mass zero and a 
distribution. Testing whether more baseline transition intensities are simultaneously zero or
both a transition intensity and a random effect are simultaneously zero are more complex.
This situation can be avoided by testing these parameters sequentially (Saint-Pierre et al.
2003). For non-nested models, people may consider Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC), etc.

Alternatively, Gentleman et al. (1994), Aguirre-Hernandez and Farewell (2002) and Saint-
Pierre et al. (2003) discuss the use of empirical and predicted state occupancy to assess
goodness-of-fit for Markov process models. The idea is that we compare the observed and
predicted prevalence of states at each time point, which would allow us to assess if the
transition intensity model, time transformation model or the missing data model is
reasonable.

5. Application to an Alzheimer's Disease Study
We apply the proposed method to the National Alzheimer's Coordinating Center (NACC)
Uniform Data Set (UDS), which is an ongoing longitudinal database of subjects seen at one
of the National Institute on Aging's 29 funded Alzheimer's Disease Centers (ADC) located
throughout the USA.

Some studies have found amnestic mild cognition impairment (MCI) to be transient because
future evaluations could yield a reversion to normal cognition (here we group normal and
“impaired, not MCI” and denote by normal cognition for simplicity) as opposed to
progression to dementia. In this section, we implement our proposed method to investigate
the risk factors for transitions among normal cognition, MCI, dementia and death. There are
7932 subjects from 29 Alzheimer's Disease Centers included at the entry of this study.
Follow-up visits for subjects are scheduled at approximately one-year intervals, with up to
four clinical visits at present. There are 6722 subjects with complete data observed.
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In this analysis, we treat death as an absorbing state but allow transitions between all other
states. Risk factor vector Xi includes: sex, congestive heart failure (CVCHF, yes/no),
geriatric depression score (GDS), family history of dementia (fhdem, yes/no), diabetes (yes/
no), hypertension (yes/no), education (years), Mini-Mental State Examination (MMSE)
score, and age. The MMSE score is a screening scale that evaluates orientation to place,
orientation to time, registration (immediate repetition of three words), attention and
concentration (spelling D-L-R-O-W), recall (recalling the previously repeated three words),
language (naming, repetition, reading, writing, comprehension), and visual construction
(copy two intersecting pentagons). The MMSE is scored as the number of correctly
completed items, with lower scores indicative of poorer performance and greater cognitive
impairment.

For simplicity, the four states, normal cognition, MCI, dementia and death, were coded as 1,
2, 3 and 4, respectively. The multiplicative models for transition  to k after the exponential
transformation are

for , k = 1, 2, 3, 4, , and we assume .

For the missing data model, we assume

where . We further assume the correlation between δ1i and δ2i is ρ.

For the time transformation model, we assume an exponential transformation of the form
h(u) = uϕu.

As discussed in Section 4.2, we first do model selections. For the transition intensity and
missing data models, the likelihood ratio test is employed. Final results for the transition
intensity and missing data models are reported in Tables 4 and 5. To investigate the
goodness-of-fit for our time transformation, missing data and transition intensity models, we
compare the expected and observed state occupancies, which is shown in Table 6. The
expected number in state j at time t after the start is obtained by multiplying the number of
individuals under observation at time t by the product of the proportion of individuals in
each state at the initial time and the transition probability matrix in the time interval t. Here
we use mean values of the covariates in the population in intensities. Pearson's Chi-squared
test (Aguirre-Hernandez and Farewell 2002) shows that there is no significant difference (p-
value=0.14) between the observed and expected state occupancies, indicating that the time
transformation, missing data and transition intensity models are reasonable here.

Table 4 lists risk factors of interest for the transitions from normal to MCI, MCI to dementia
and dementia to death. Here, we compare two methods: the proposed method and the naive
method that ignores the missing data and the clustering effects. The estimates of ϕ in the
transformation function are 1.040 with 95% confidence interval (1.021, 1.059) for the
complete case analysis and 1.048 with 95% confidence interval (1.031, 1.066) for the
proposed method. Both reveal that the process exhibits significant non-homogeneity, and the
rate of evolution of the process is increasing as a function of time.
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The estimates of the variance of the random effects are  (p-value=0.222), and

 (p-value=0.491), indicating that there are no significant cluster effects in both the
response and the missing data processes. Significance of the correlation ( , p-
value< 0.001) between δ1i and δ2i indicates that the missing not at random mechanism is
perhaps reasonable.

For risk factors, the naive analysis and the proposed methods give different estimates. In the
transition from normal cognition to MCI, family history of dementia and age are significant,
indicating that older people and people who have a family history of dementia have higher
risk of transition from normal cognition to MCI. MMSE is significant in the naive analysis,
but it is not significant in the proposed method analysis. In the transition from MCI to
dementia, sex, fhdem, and age are significant, indicating that older people, people with
family history of dementia or males have higher risk of transition from MCI to dementia.
However, naive analysis shows that family history of dementia has no significant effect on
this transition. In the transition from dementia to death, sex, MMSE and age are significant,
indicating that a person has higher risk to death if he/she has a lower MMSE score or with
an older age, and women has lower risk of transition from dementia to death comparing to
men.

In practice, interests often lie in the transition from MCI to dementia. Figures 1 and 2 list the
transition intensities and transition probabilities from MCI to dementia for sex groups
adjusted for covariates fhdem, MMSE and age, where we use the mean value overall
subjects for each covariate being adjusted. As is expected, males have higher risk of
transition from MCI to dementia (hence higher transition probabilities from MCI to
dementia) compared to females. Similarly, we plot the the transition intensities and
transition probabilities from MCI to dementia for family history of dementia groups adjusted
for covariates sex, MMSE and age, where we use the mean value overall subjects for each
covariate being adjusted. As is expected, people with family history of dementia have higher
risk of transition from MCI to dementia (hence higher transition probabilities from MCI to
dementia) compared to those without family history of dementia.

6. Discussion
In this paper we propose a likelihood-based method for the analysis of incomplete
observations arising in clusters under the framework of non-homogeneous Markov
processes using the time transformation model. To deal with the missing not at random
mechanism and clustering effects, we employ a correlated random effects model for the
response and missing data processes. Simulation studies demonstrate that the proposed
method works well in a variety of situations.

Note that, to obtain consistent parameter estimates under MNAR, both the transition model
and the model for the missing data process must be correctly specified. In practice, we aim
to build a model which provides useful insight into the response process and observation
process. Our strategy is therefore to build models that contain a large number of covariates,
carry out tests of fit of nested models, and ultimately find a parsimonious model using
standard procedures for model selection. The need for generalizations to deal with more
complex models can be assessed by model expansion and the use of general model selection
procedures such as the likelihood ratio test.

In this paper, we only consider that the time-transformation function is independent of the
cluster. This method can be easily extended to consider a different transformation for any
cluster. However, the number of parameters to be estimated will be inflated, especially when
the number of clusters is big. So, careful selection of the transformations is warranted. To
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reduce the number of parameters, model selection procedures introduced in Section 4.2 such
as the likelihood ratio test can be employed.

One limitation of our method is that it assumes that covariates are time independent. Time
dependent covariates are not a problem if they are piecewise-constant, more problematic if
they are known at all time points but continuously changing (e.g. age), and very problematic
if they are only known at their observation times (e.g. biomarkers). Relatively little work has
been done on fitting multi-state regression models with time-dependent covariates. In the
special case of a single interval-censored covariate that indicates the development of a
particular condition, Goggins et al. (1999) develop methods for Cox regression for a right
censored event time. Chen and Cook (2003) considered models and methods to deal with an
interval-censored progressive covariate processs in recurrent event analyses. Cook, Zeng,
and Lee (2008) consider an extension to the bivariate setting where both the covariate and
failure times are interval-censored. The more general problem of interval-censored time
varying covariates remains relatively open and worthy of future research.
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Figure 1.
Transition intensities for sex groups from MCI to Dementia
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Figure 2.
Transition probabilities for sex groups from MCI to Dementia
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Figure 3.
Transition intensities for family history of dementia (fhdem) groups from MCI to Dementia.
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Figure 4.
Transition probabilities for family history of dementia (fhdem) groups from MCI to
Dementia.
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Table 4

Comparisons of two methods for the multiplicative effects on the transition intensities in the studies of
Alzheimer's disease: hazard ratios and 95% confidence intervals

Proposed Method Naive Analysis

Parameter HR 95%LCL 95%UCL HR 95%LCL 95%UCL

Normal → MCI:

 SEX(F) 0.972 0.795 1.200 1.022 0.827 1.292

 fhdem 1.275 1.032 1.570 1.372 1.087 1.720

 MMSE 1.020 0.981 1.030 1.011 1.006 1.021

 AGE 1.026 1.013 1.040 1.033 1.014 1.041

MCI → Dementia:

 SEX(F) 0.708 0.580 0.865 0.712 0.572 0.877

 fhdem 1.246 1.012 1.534 1.191 0.955 1.380

 MMSE 0.997 0.984 1.011 0.999 0.988 1.024

 AGE 1.023 1.011 1.035 1.020 1.007 1.033

Dementia → Death:

 SEX 0.660 0.549 0.794 0.614 0.515 0.732

 fhdem 1.077 0.887 1.307 1.117 0.928 1.345

 MMSE 0.875 0.864 0.886 0.986 0.877 0.996

 AGE 1.045 1.033 1.056 1.046 1.035 1.058
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Table 5

Missing data model in the analysis of Alzheimer's disease

Parameter Estimate SE p-value

Intercept 4.822 0.363 <0.001

SEX(F) −0.196 0.058 <0.001

CVCHF 0.149 0.155 0.338

GDS −0.027 0.011 0.017

fhdem −1.366 0.062 <0.001

diabete −0.145 0.086 0.090

hypert 0.093 0.059 0.118

EDUC 0.005 0.004 0.169

MMSE −0.007 0.003 0.033

AGE −0.006 0.003 0.060

r m−1 −1.932 0.183 <0.001
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Table 6

Observed and expected state occupancies at each clinic visit

State Occupancies (observed/expected)

visit Normal MCI Dementia Death

1 301/301 143/143 295/295 6/6

2 2482/2475 1089/1080 1805/1799 150/172

3 2883/2866 1202/1183 2276/2258 336/389

4 1493/1483 516/510 1200/1188 254/281
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