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Abstract

We present a stochastic process model for the joint evolution of protein primary and tertiary structure, suitable for use in
alignment and estimation of phylogeny. Indels arise from a classic Links model, and mutations follow a standard substitution
matrix, whereas backbone atoms diffuse in three-dimensional space according to an Ornstein–Uhlenbeck process. The model
allows for simultaneous estimation of evolutionary distances, indel rates, structural drift rates, and alignments, while fully
accounting for uncertainty. The inclusion of structural information enables phylogenetic inference on time scales not previously
attainable with sequence evolution models. The model also provides a tool for testing evolutionary hypotheses and improving
our understanding of protein structural evolution.
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Introduction
The study of biopolymers has long relied heavily on align-
ment. Alignment algorithms identify regions of similarity be-
tween proteins and nucleic acids as a means of identifying
common function and inferring homology. Sequence align-
ment also plays a key role in the reconstruction of phyloge-
nies, a task with application to diverse areas such as drug
design and resistance, epidemic monitoring, forensics, and
anthropology. Alignment is vital for reconstruction because
when sequences share a common ancestor, the degree of
similarity between them can be used to estimate evolutionary
distances. In such situations, formal statistical inference and
proper accounting for uncertainty rely on a model of the
evolutionary process. Incorporation of alignment uncertainty
has been shown to be crucial for proper characterization of
uncertainty in phylogenetic reconstruction (Lunter et al.
2008; Wong et al. 2008). Improved phylogenetic estimation
therefore relies in part on reducing alignment uncertainty
through more informative evolutionary modeling.

An enormous literature on statistical alignment and phy-
logeny exists, and we do not attempt a comprehensive sum-
mary in this study. Felsenstein (2003) provides a broad
overview. Evolutionary models involve stochastic processes
for mutation (Dayhoff et al. 1978; Jones et al. 1992) and in-
sertion/deletion (Thorne et al. 1991, 1992; Miklós et al. 2004)
and when combined these provide a model suitable for use in
Bayesian or maximum likelihood alignment calculations
(Bishop and Thompson 1986; Hein et al. 2000). Use of such
models for Bayesian phylogenetics is widespread (Holmes and
Bruno 2001; Huelsenbeck et al. 2002; Lunter et al. 2005).

Existing evolutionary models for proteins focus on primary
structure, treating each protein as a sequence of amino acid
characters. (Some work has attempted to incorporate

structure-induced dependence among sequence positions—
see, e.g., Robinson et al. 2003; Rodrigue et al. 2009— but these
models nevertheless operate at the sequence level.) However,
it is well known that protein tertiary structure is conserved
over much longer time scales than sequence. This is because
selective pressure occurs at the level of function; because a
large percentage of sequence positions contribute to function
only through their role in structure formation; and because of
the significant redundancy in sequence space of protein folds.
As a result, many homologous proteins may share limited
sequence similarity, placing them in the “twilight zone” for
sequence alignment.

When protein tertiary structure information is available,
structural alignment algorithms can often be used to obtain
highly accurate alignments in the absence of significant se-
quence similarity. Many such algorithms have been devel-
oped, typically based on optimizing a similarity score,
including minimization of the sum of squared distances be-
tween aligned C� coordinates or corresponding pairwise C�
distances. See Eidhammer et al. (2000) and Hasegawa and
Holm (2009) for comprehensive reviews. However, as these
algorithms are entirely based on optimization of heuristic
score functions, most provide little or no accounting for un-
certainty or confidence in the resulting alignment and no
possibility of formal statistical inference procedures. In addi-
tion, structural scores such as root-mean-square deviation
(RMSD) give only indirect information about evolutionary
distance (Chothia and Lesk 1986; Panchenko et al. 2005;
Zhang et al. 2010).

Rodriguez A and Schmidler SC (unpublished data) have
developed a probabilistic approach to structure alignment
(see also Schmidler 2006 and Wang R and Schmidler SC,
unpublished data) and shown that some other structural
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alignment algorithms are special cases of their model. This
provides many advantages, including full accounting for un-
certainty in the alignment, enabling adaptive estimation of
alignment parameters, and making explicit the statistical as-
sumptions implicit in commonly used score functions.
Rodriguez A and Schmidler SC (unpublished data) also pro-
vide a joint sequence–structure model and show significant
improvements over a sequence-based approach alone in ap-
proximate estimation of evolutionary distances by selecting
point accepted mutation (PAM) distances. However, these
approaches use a gap-penalty formulation and as such do not
serve as a formal, reversible evolutionary stochastic process
suitable for use in phylogenetic applications. Gutin and
Badretdinov (1994) and Grishin (1997) explore spatial diffu-
sion processes to describe structural evolution and derive
equations relating RMSD to sequence identity and evolution-
ary distance, but in both cases, the alignment is assumed to be
given. In the absence of an indel process, these methods do
not provide an explicit evolutionary model for alignment or
phylogeny.

In this article, we build on these approaches to develop
what we believe to be the first stochastic evolutionary process
for protein sequence and structural drift simultaneously, suit-
able for protein alignment and phylogenetic estimation. We
show that the inclusion of structural information effectively
stabilizes inference of alignments and evolutionary distances
for distant relationships. We also show how the model may
be used to test evolutionary hypotheses. We conclude with a
discussion of several possible extensions to the model to in-
corporate greater biophysical realism.

Materials and Methods

Evolutionary Model

Our evolutionary model is formulated as a continuous time
Markov process composed of three components: an inser-
tion/deletion (indel) model, an amino acid substitution
model, and a structural drift model. The indel component
follows the Links model of Thorne et al. (1991). The sequence
mutation component follows a standard substitution rate
matrix. Finally, the structural component models the evolu-
tionary drift of individual amino acids (represented by C�
coordinates) in three-dimensional space using an Ornstein–
Uhlenbeck (OU) process (Uhlenbeck and Ornstein 1930;
Karlin and Taylor 1981). In what follows we denote by SX

the sequence of amino acid characters, and by CX the 3D
atomic coordinates, of protein X.

Indel Model
Let X and Y represent two proteins, with X an evolutionary
ancestor of Y. The indel model describes the process of res-
idues being added to and deleted from X. Thorne et al. (1991)
have previously developed a birth–death model for this pro-
cess known as the Links model. The model assumes a con-
stant birth rate � and death rate � through time and across
the length of the protein chain, with independence from site
to site. Amino acid survival probabilities can be determined
from the Links model for any values of �,�, and time interval
t (e.g., Holmes and Bruno 2001):

�ðtÞ ¼ e��t ð1Þ

�ðtÞ ¼
�ð1� eð���ÞtÞ

�� �eð���Þt
ð2Þ

�ðtÞ ¼ 1�
�ð1� eð���ÞtÞ

ð1� e��tÞð�� �eð���ÞtÞ
ð3Þ

Here �(t) is the probability of ancestral survival, �(t) is the
probability of insertions given at least one surviving descen-
dant, and �(t) is the probability of insertions given ancestral
death. These probabilities can be represented as a transition
matrix for a pair hidden Markov model (HMM, Durbin et al.
1998) with emitting states match, insertion, and deletion, and
null start and end states (Holmes and Bruno 2001). (See
Appendix for details.) Let M denote the alignment matrix
between X and Y, defined as the adjacency matrix of an
order-preserving bipartite matching; then P(Mj�,�,t) is
given by the corresponding product of probabilities in this
transition matrix.

Although the Links model is the most commonly used,
alternative models that allow for larger indel events (Thorne
et al. 1992; Miklós et al. 2004) may also be substituted.

Sequence Model
Using the Links model for indels, a complete evolutionary
sequence model is obtained by specification of an amino
acid substitution rate matrix. Several such matrices exist in
the literature; for the examples in this article, we use the JTT
1992 matrix (Jones et al. 1992) as adjusted by Kosiol and
Goldman (2005). We make the standard assumption that
the substitution process is in equilibrium and that insertions
arise according to the equilibrium distribution. Letting SX and
SY represent the sequences of X and Y, the joint likelihood of
SX, SY, and an alignment M is:

PðSX; SY;Mj�; �; t;QÞ ¼ PðSX; SYjM; t;QÞPðMj�; �; tÞ

¼ PðSY
MjS

X
M; t;QÞPðSY

�Mj�Þ

� PðSXj�ÞPðMj�; �; tÞ

where SM
X and SM

Y denote the matched (aligned) positions of
SX and SY, SY

�M
the unmatched positions of SY, Q the substitu-

tion rate matrix, and p the equilibrium distribution of char-
acters. P(SM

Y
j SM

X , t, Q) is given by a product of independent
substitution probabilities at each site, obtained by exponen-
tiation of tQ; PðSY

�M
j�Þ and P(SX

jp) are products of the appro-
priate entries of p; and P(Mj�,�,t) is described in the
preceding section. This specifies a complete model for se-
quence evolution of the type used by many researchers
(e.g., Holmes and Bruno 2001 and references therein).

Structural Model
We define a model for protein structure evolution analo-
gously, building a structural drift process on top of the
Links indel process. Let CX and CY be nX� 3 and nY� 3 ma-
trices containing the Euclidean coordinates of the C�’s of X
and Y respectively, where nX is the number of amino acids in
X. Where the sequence model uses a continuous-time,
finite-state Markov process, the structure model uses a re-
versible diffusion process in 3D space modeling drift and

3576

Challis and Schmidler . doi:10.1093/molbev/mss167 MBE



fluctuation in the amino acid positions (represented by their
C� coordinates). We model positions as drifting indepen-
dently in space according to an OU process, or Brownian
motion with a mean reversion coefficient. (Unlike standard
Brownian motion, the OU process has a stationary distribu-
tion and thus can be used as a component in a reversible
stochastic process.) If Cij

(t) is the jth coordinate of the ith C� at
time t, this process is described by the stochastic differential
equation

dCðtÞij ¼ �ð	j � CðtÞij Þdtþ 
dB ð4Þ

where dB is standard Brownian motion, z is the mean of the
process, and y represents the strength of the reversion toward
the mean. We set z = 0 for convenience, as we are concerned
with shape and thus location is arbitrary (see the Rotation
and Translation section). This process has the advantage of
permitting closed-form expression of the equilibrium
distribution

CðtÞij � N 0;

2

2�

� �
ð5Þ

and conditional distribution at time t, given time s:

CðtÞij jC
ðsÞ
ij � N CðsÞij e��ðt�sÞ;


2

2�
ð1� e�2�ðt�sÞÞ

� �
: ð6Þ

Therefore, again assuming that the parent structure CX and
insertions in CY follow the equilibrium distribution, the joint
likelihood of two structures and an alignment between them
can be expressed in a form analogous to the sequence model:

PðCX; CY;Mj�; �; t; 
2; �Þ ¼ PðCX; CYjM; t; 
2; �Þ

� PðMj�; �; tÞ

¼ PðCY
MjC

X
M; t; 
2; �ÞPðCY

�M
j
2; �Þ

� PðCXj
2; �ÞPðMj�; �; tÞ

ð7Þ

with PðCY
MjC

X
M; t; 
2; �Þ calculated according to equation (6),

PðCY
�M
j
2; �Þ and P(CX

js2,y) according to equation (5),
and P(Mj�,�,t) as the appropriate product of transition
probabilities from matrix (9) in the Appendix. In addition,
the marginal likelihood of the observed structures,
P(CX,CY

j�,�,t,s2,y), can be obtained by summing across all
possible alignments M using a dynamic programming forward
algorithm for pair HMMs (Durbin et al. 1998).

Note that this diffusion process assumes no significant
structural reorganization and is best viewed as a model of
structural drift within the basin of attraction of a particular
fold. Evolution between folds is likely a discontinuous event
with slowly accumulating sequence changes suddenly cross-
ing into the basin of an alternative fold; our model currently
does not account for such between-fold evolutionary events.

The model also assumes independence among sites, as
with most commonly used sequence evolution models. Site
independence is necessary to maintain analytical tractability
of equations (5) and (6) after convolving with the indel pro-
cess, whereas mean reversion of the OU process (as opposed

to Brownian motion) ensures existence of the equilibrium
distribution, equation (5). Independence does mean that
the insertion distribution is diffuse, allowing insertions to
arise anywhere in the protein (as dictated by the variance
of CX), without regard to the locations of neighboring
amino acids. As a result of these assumptions the model is
inadequate as a generative model for physically realistic pro-
tein structures but behaves well for inference conditional on
observed structures. Possible extensions of the model toward
additional biophysical realism are described in the Discussion
section.

Rotation and Translation
For simplicity, we have introduced the structural component
of the model under the assumption that X and Y share a
common coordinate frame. In practice, the coordinates CX

and CY are obtained through experimental methods in which
the coordinate frame is arbitrary. Thus, when comparing CY

with CX, we should not distinguish between elements of the
set:

fCYRþ 1� : R 2 SOð3Þ; � 2 R
3
g

containing all possible rotations and translations of CY, where
SO(3) denotes the special orthogonal group of 3� 3 rotation
matrices. It is possible to resolve this by treating equivalence
classes of protein coordinates (shape spaces) using Procrustes
transformations (Rodriguez A and Schmidler SC, unpublished
data). However, as the optimal transformation depends on the
full alignment, the likelihood over all alignments cannot be
decomposed recursively as required for the HMM forward–
backward algorithms. Instead, we treat R and Z as uncertain
parameters to be estimated (Green and Mardia 2006;
Schmidler 2006) and calculate likelihoods conditional on a
given rotation and translation. Then equation (7) becomes

PðCX; CY;Mj�Þ ¼ PðCY
M; jC

X
M; t; 
2; �; R; �ÞPðC

Y
Mj


2; �Þ

� PðCXj
2; �ÞPðMj�; �; tÞ

with � representing the entire parameter set (�,�,t,s2,y,R,Z).

Joint Sequence and Structure Model
The combined model is obtained by assuming independence
between the sequence substitution and structural diffusion
processes, conditional on the indel process. Thus, the full
likelihood of the combined model is simply the product of
the individual model likelihoods.

PðX; Yj�Þ ¼
X

M

PðCX; CYjM; t; 
2; �; R; �Þ

PðSX; SYjM;Q; tÞPðMj�; �; tÞ

ð8Þ

with � again representing the entire parameter set. Each
factor of the product in equation (8) is provided by one of
the preceding sections.

Parameter Estimation and Computation

We take a Bayesian approach to parameter estimation, with
the posterior distribution obtained by Markov chain Monte
Carlo (MCMC) simulation. Parameters are updated by a
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random walk Metropolis–Hastings (Metropolis et al. 1953;
Hastings 1970), with acceptance probability involving the
marginal likelihood, equal to P(X,Yj�,�,t,s2,y,R,Z) given by
(8). In practice, it is best to update � and� together, similarly
for R and Z, to account for dependence in the posterior. All
examples reported below use vague Gamma(1.01,.01) priors
for t,�,�,s2, and y, a uniform distribution on rotations for R,
and an improper uniform prior for Z.

Rotation/Translation Sampling
A random walk for R and Z can be constructed as follows.
Propose R0 from R by generating an axis v uniformly from the
unit sphere and angle f from a von Mises distribution with
high concentration around 0, and form R0 as the composition
of R and (v, f). Then propose Z0 � N(Z,t2I), and accept or
reject the pair R0,Z0 together.

The mixing of R and Z can be slow. To remedy this, an
independence step is interspersed with the random walk,
with proposal distribution constructed as a mixture with
components centered at a “library” of plausible transforma-
tions. This library is created by computing the least-squares
transformation between each pair of consecutive n-residue
subsequences between X and Y (Rodriguez A and Schmidler
SC, unpublished data) and excluding all such transformations
with RMSD>�, where the threshold � is chosen to arrive at a
manageable number of mixture components. Each compo-
nent of the mixture is the product of a von Mises–Fisher
distribution centered on the axis of rotation, a von Mises
distribution centered on the angle of rotation, and a
normal distribution centered on the translation. Then the
probability density of this distribution at any rotation R0

and translation Z0 is

1

k

Xk

i¼1

vMFðv0; vi; 1ÞvMðf0;fi; 2ÞNðZ0;Zi; t
2IÞ

where vMF (v0;vi ,1) is the density of the von Mises–Fisher
distribution evaluated at v0, the axis of rotation of R0; vM
(f0;fi,2) is the density of the von Mises distribution evalu-
ated at f0, the angle of rotation of R0; N (Z0;Zi ,t

2I) is a mul-
tivariate normal distribution centered at Zi and evaluated at
Z0; and k is the number of components in the mixture.
Mardia and Jupp (2000) provide general information regard-
ing spherical distributions. An algorithm for generating sam-
ples from the von Mises–Fisher distribution is provided by
Wood (1994). The proposed pair (R0,Z0) is then accepted or
rejected according to the Metropolis–Hastings criterion.

Monitoring Convergence
Convergence of the MCMC algorithm was established by the
following protocol in all analyses reported in the Results sec-
tion later. Multiple independent MCMC chains of 50,000 it-
erations were run from overdispersed starting points, with
10,000 iterations discarded as burn-in. We used eight chains
for the sequence model and 16 chains for the combined
model (to account for larger state space due to additional
parameters). Convergence was tested by the Gelman and
Rubin (1992) diagnostic on the marginal posterior distribu-
tion for each parameter.

Results

Inference for Distantly Related Proteins

The joint sequence–structure evolutionary model described
in the Evolutionary Model section enables improved align-
ment and estimation of evolutionary distance and rates be-
tween distantly related proteins. To illustrate this on a
well-understood protein family, we applied both the
sequence-only model and the combined sequence–structure
model to estimate the evolutionary distance between the
human hemoglobin � subunit and globins from a series of
increasingly distant species (table A1). Figure 1 shows the
resulting marginal posterior distributions for evolutionary dis-
tance t. In both models, the posterior distribution of t ac-
counts for alignment uncertainty, which is critical for
phylogenetic applications (Lunter et al. 2008; Wong et al.
2008). The two models yield comparable results for the
pairs with short evolutionary distances and hence high se-
quence similarity, but as similarity decreases the uncertainty
in sequence alignments grows. For sequences with very low
similarity, many alignments have virtually equal probability,
and the sequence-only likelihood becomes essentially flat for
sufficiently large t. The inclusion of structural information by
the combined model dramatically reduces this alignment un-
certainty, allowing better use to be made of the sequence
information, and also contributes additional information
about evolutionary distance through the simple model of
structural drift.

This “range” extension of the model through the addition
of structure is significant. The sequence-only model begins to
differ from the combined model at distances of only 1.5 ex-
pected substitutions per site, becoming completely uncertain
by 2.5 expected substitutions, whereas the combined model
continues to provide informative posteriors to distances of at
least 3.5 expected substitutions. In addition, the sequence
model parameters (t,�,�) become confounded even at
modest evolutionary distances (see also fig. 3 later). In con-
trast, the combined model has no difficulty simultaneously
estimating all parameters (t,�,�,s2,y,R,Z) with no loss of pre-
cision in t.

Delaying the Phase Transition
The sharp increase in entropy of the posterior distribution
under the sequence model is suggestive of the phase transi-
tion discussed by Mossel (2003, 2004) (see also Daskalakis
et al. 2011), who shows that if the substitution rate is
above a threshold, it is impossible to recover either ancestral
sequences or phylogenetic topology over large evolutionary
distances using sequence evolution models. Empirically, we
see the transition even earlier (at shorter distances) than sug-
gested by Mossel’s bounds, between t = 1.5 and t = 2; this is
explained principally by the fact that Mossel’s result assumes
a fixed alignment, while accounting for uncertainty in the
alignment (and indel rates) causes the uncertainty to grow
much faster.

To examine the effect of alignment uncertainty on evolu-
tionary distance estimation, we simulated (under the JTT
substitution model, with no indels) the evolution of 100
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independent sequence descendants from human hemoglo-
bin � up to time t = 4 and another 100 descendants involving
indels (using the Links model with rates � =.05 and� =.0504).
We estimated the evolutionary distance from the ancestral
sequence to each of the 200 descendants, over the time

interval t 2 [0,4] at increments of 0.1, using the MCMC algo-
rithm described above and treating all parameters as un-
known, but with the alignment fixed for the first 100 (no
indel) sequences. Figure 2 shows the quantiles of the poste-
riors averaged across the 100 simulations. When the

t

Horse

Turtle

Stingray

Lamprey

Sea cucumber

Fruit fly

Clam

Ribbon worm

Nematode

Tuberculosis

t

Horse

Turtle

Stingray

Lamprey

Sea cucumber

Fruit fly

Clam
Ribbon worm

Nematode

Tuberculosis

(a) (b)

FIG. 1. Posterior distributions for evolutionary distance between human hemoglobin � and a series of increasingly distant globins, obtained by
(a) sequence-only model and (b) combined sequence–structure model. Distributions obtained from both models are nearly identical for the closest
three orthologs (horse, turtle and stingray) but begin to diverge beyond this point. The sequence–structure model stochastically orders the proteins
according to generally accepted taxonomy, whereas the sequence model begins to underestimate distances with the lamprey and sea cucumber and
yields completely flat, uninformative posteriors for the fruit fly, ribbon worm, nematode, and tuberculosis.

(a) (b)

FIG. 2. Average 95% credible intervals and medians from 100 simulated descendants of human hemoglobin �. The sequence model with unknown
alignment (a) has a sharp transition at t = 1.5. Removal of alignment uncertainty (b) delays the transition to three expected substitutions. For our
combined sequence–structure model, we witness this transition still later, at times > 3.5 (fig. 1).
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alignment is known, the sequence model displays a sharp
transition in posterior uncertainty (credible interval width)
at t = 3; beyond this point, the data inform only that the
sequences are not closely related. This transition occurs much
earlier (around t = 1.5) when the alignment is unknown and
its uncertainty must be accounted for. In this case, when �,�,
and t are simultaneously estimated the model swiftly loses
identifiability, resulting in completely uninformative posterior
distributions.

The addition of structural information in the combined
sequence–structure model dramatically reduces uncertainty
in the alignment, which should therefore push the transition
back to where it occurs for sequences with known alignment.
Additionally, the structural drift model, while simplistic, does
provide some information about distance. The results in
figure 1 indicate that the transition for the combined
model does not occur until after t = 3.5, confirming that
the structural information does add some information
beyond just the alignment. This suggests that the range of
the model may be extended to even longer evolutionary
distances by improving the realism of the structural diffu-
sion model to include stronger information about t and
not just M.

Estimating Indel Rates
With the alignment known, the sequence model is able to
provide a useful lower bound even after the transition, but
this is no longer true when the uncertainty arising from an
unknown alignment is accounted for (compare fig. 2a and b).
In particular, underestimation of evolutionary distance occurs
due to overestimation of the indel rates � and�: as sequence
similarity decreases, differences become as likely to be ex-
plained by rapid insertions and deletions over a short time
period as by substitutions, so deflated estimates of t can
result. Around t = 2 in figure 2a, approximately half of the
simulated proteins exhibited high variance while the other
half had narrower posteriors which underestimated the evo-
lutionary distance; thus it is not enough to obtain a

concentrated posterior from the sequence model, as larger
values of t are likely to be underestimated.

Figure 1 contains three examples of this: 2LHB (lamprey),
1HLB (sea cucumber), and 1B0B (clam). For each of these, the
sequence-only model gives significantly smaller estimates of
distance than the combined sequence–structure model.
Examination of the posteriors for � (fig. 3) confirms that
indel rates have been overestimated by the sequence
model, with underestimation of t particularly extreme in
the case of 1B0B as a result of a very diffuse posterior for �.
In fact, the long tailed posterior for � leads to a second mode,
near zero, in the posterior for t (fig. 1). A previous treatment
of the Links model based on human � and � globins esti-
mated the insertion rate at 0.03718 (Hein et al. 2000), and this
value was confirmed by Knudsen and Miyamoto (2003); it is
provided in figure 3 for reference. Combined model estimates
of indel rates are much more stable between protein pairs and
much closer to the results obtained by Hein et al. (2000).

Phylogeny Estimation

The uncertainty of evolutionary sequence models with re-
spect to evolutionary distance can dramatically impact the
ability to accurately estimate phylogenies (Lunter et al. 2008;
Wong et al. 2008). As our joint sequence–structure model
drastically reduces this uncertainty, we expect it will have
significant impact on stabilizing phylogenetic estimation.
Here, we explore this impact by estimating pairwise evolu-
tionary distances and applying neighbor-joining methods
(Saitou and Nei 1987; Howe et al. 2002). In the future, the
combined model will be integrated into a full Bayesian simul-
taneous alignment and phylogeny estimation model, for
which it is naturally suited and directly applicable.

Figure 4a shows the estimated phylogeny for the hemo-
globin � subunits of 24 organisms (table A1) including near
and distant relationships (pairwise sequence identity
12–87%), obtained by applying neighbor-joining to the set
of pairwise posterior mean distances. Commonly accepted
taxonomy from the National Center for Biotechnology

(a) (b) (c)

FIG. 3. Posterior distributions of birth rate (�) between globins of human and (a) lamprey, (b) sea cucumber, and (c) clam obtained under
sequence-only (light) and sequence–structure (dark) models. Increasingly diffuse indel rate posteriors lead to underestimated evolutionary distance
estimates; � =0.03718 estimated previously by Hein et al. (2000) is given as a reference (vertical line).
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Information (NCBI) Taxonomy Database (Sayers et al. 2009;
Benson et al. 2009) is given in figure 4b. The phylogeny esti-
mated similarly (neighbor-joining with posterior mean dis-
tances) under the sequence-only model is shown in
figure 4d, albeit with unit distances (see below).

The reconstructed phylogeny obtained using the com-
bined sequence–structure model (fig. 4a) replicates the

established taxonomy almost perfectly. All subgroups are cor-
rectly formed, including grouping of the only reptile (turtle)
with the birds but as the most distant member. There are
minor differences in the topologies within groups where
branch lengths are small and minor changes in length can
result in topology changes. A fully Bayesian approach to phy-
logeny estimation would yield a posterior distribution over

(a) (b)

(d)
(c)

FIG. 4. Phylogenies for a group of 24 globins (table A1, pairwise sequence identity 12–87%) obtained by different methods. Branch lengths in (b), (c), and
(d) have been normalized for topology comparison. (a) Neighbor-joining tree using pairwise posterior mean evolutionary distances under sequence–
structure model. (b) Accepted taxonomy (NCBI Taxonomy Database). (c) Topology of (a). Estimated topology closely matches NCBI taxonomy (b),
with small differences. (d) Topology of neighbor-joining tree using pairwise posterior mean evolutionary distances under sequence-only model. Some
groups are incorrectly separated and several species appear as zero-branch-length intermediate points. Figures are created with TreeView (Page, 1996).
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competing topologies as well—here, our intent is merely to
indicate the potential of our sequence–structure model for
this purpose.

Using the sequence-only model, many of the pairwise dis-
tance posterior distributions remain essentially unchanged
from the prior, resulting in broad posterior support and
very large posterior means under diffuse gamma priors. In
such situations, point estimates have little meaning, and pos-
terior intervals convey a near-total lack of information about
the evolutionary distance between the two proteins. A phy-
logeny based solely on the sequence model therefore tends to
form clusters of closely related proteins with very large inter-
cluster distances and arbitrary relative placement of the
groups. Intergroup branch lengths are so long that visualiza-
tion of the phylogeny is challenging; for this reason, the
sequence-based phylogeny is given with unit branch lengths
(fig. 4d), so that topology can be easily examined. The topol-
ogy contains multiple inconsistencies with the established
taxonomy (fig. 4b). The lamprey is separated from other ver-
tebrates, as well as the rockcod from other bony fishes. The
mammals do not appear as a clade, but as zero-branch-length
points between subtrees.

Comparison to Multiple Sequence Alignment
Our sequence–structure model dramatically outperforms the
analogous evolutionary sequence model on a pairwise basis,
as demonstrated. However, simultaneous multiple sequence
alignment (MSA) algorithms can also reduce alignment un-
certainty, albeit to a lesser extent, through sharing of infor-
mation. In addition, many phylogenetic methods in common
use do not attempt to account for alignment uncertainty. We
used MAFFT (Katoh et al. 2005) as a representative, widely
used MSA algorithm, and compared the resulting tree with
that estimated under our model for the group of 24 globins of
figure 4. Default parameters were used for MAFFT. There are
no major differences between the trees estimated by MAFFT
and our model, indicating that the combination of MSA and

selective use of multiply conserved positions used by MAFFT
also does a good job of stabilizing the tree. Note, however,
that these procedures, while adding robustness, do not cor-
respond to an explicit evolutionary model as in our case.

More importantly, MSA algorithms rely on the presence of
close homologs. There are several closely related groups in the
set of 24 globins, making this well suited for an MSA ap-
proach. We performed the comparison again after removing
the closely related proteins to arrive at a subset of eight mu-
tually distant globins (pairwise sequence identity 12–43%);
figure 5 compares the resulting phylogeny under our se-
quence–structure model with that produced by MAFFT.
The phylogeny from our model remains consistent with the
established taxonomy and with the tree obtained using the
full set of globins, with only a minor shift in the placement of
the nematode. The MAFFT phylogeny, however, becomes
unstable, separating the lamprey from the other vertebrates.
Changing the MAFFT default substitution matrix from
BLOSUM62 to BLOSUM30 (more appropriate for distant ho-
mologs) has little effect, while modifying the gap penalty pa-
rameter caused MAFFT to perform worse.

To further examine the different potential of the se-
quence–structure model and MSA approaches to analyze
distantly related proteins, we simulated 10 sets of 6
pairwise-distant descendants of the � subunit of the
human globin at the leaves of a symmetric tree (top of
fig. 6) with inner branch lengths 0.35 and outer lengths 1.2
(pairwise sequence identity 13–17% on average). Simulation
parameters were (� = 0.03,� = 0.0302, s2 = 0.7, y = 0.005) —
values typically estimated from observed globins. To further
challenge our structure model, insertions in simulated struc-
tures were placed at the midpoint of their neighbors, as the
independence of the insertion distribution equation (5)
would otherwise make them easier to identify than naturally
occurring insertions. For each of the 10 simulated data sets,
we estimated the underlying phylogeny using MAFFT with
default parameters and using our joint model as before

FIG. 5. Estimated phylogenies for a subset of eight mutually distant globins (pairwise sequence identity 12–43%). The sequence–structure model still
closely matches the established NCBI taxonomy, whereas MAFFT begins to exhibit significant differences. Additionally, the MAFFT phylogeny has
become more sensitive to parameter choice, whereas the sequence–structure model estimates appropriate parameters from the data.
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(neighbor-joining on pairwise posterior means). The results
are shown in figure 6. The sequence–structure model arrives
at the correct topology in 6 of the 10 cases and preserves
correct nearest neighbors in three of the other four. MAFFT
only estimates the topology correctly in one instance and
mismatches neighbors in all of the rest. The principal difficulty
for the multiple sequence algorithm is insufficient sequence
information to resolve the alignment when sequences are
highly divergent. The problem is exacerbated by reliance
upon a single optimal alignment which is highly uncertain.
Our model benefits from both the Bayesian averaging over all
possible alignments and also especially from the dramatic
reduction of alignment uncertainty upon incorporating struc-
tural information, resulting in significantly improved phylog-
eny estimation.

Indeed, the effect of this stabilization extends to sets of
proteins for which MSA fails completely. With a broader set of
globin-like proteins (pairwise sequence identity 9–32%,
table A2), MAFFT returns an error message that a reliable
phylogeny cannot be produced. Our model continues to be
effective at these distances; the phylogeny is given in figure 7.
The tree continues to correctly preserve the subtree contain-
ing the human globin, with the hagfish and sea cucumber as
nearest neighbors. The extracellular giant hemoglobins of the

earthworm and beardworm are placed together, and the
nematode is the last multicellular organism before arriving
at the microbes. This tree is not intended as a definitive es-
timate—a fully Bayesian treatment involving phylogeny sam-
pling instead of neighbor-joining would be preferable to deal
with the multiple near polytomies in the tree—but these
results nevertheless illustrate the significant improvement
available from the joint sequence–structure model.

At extreme evolutionary distances (7% sequence identity)
even the sequence–structure model becomes nearly uniden-
tifiable, even when proteins share a common fold, for the
following reason: as illustrated in figure 2, there is a sharp
threshold past which sequence information provides only a
lower bound on evolutionary distance, even in the case of
fixed alignment. Beyond this threshold, sequences are effec-
tively in equilibrium and no longer provide any information
for estimating t. At this point, the structure component of the
model provides all information about t, but the OU process
by itself is identifiable only up to the product s2t. (At shorter
distances, Q serves to determines the scale for t, making s2

and t simultaneously estimable.) Figure 8 demonstrates the
relative precision of s2t to t on these time scales, for com-
paring the � subunit of phycocyanin from red alga with the �
subunit of human hemoglobin. Thus at the farthest
within-fold distances, a structure-only approach based on
s2t as a measure of distance between proteins can still pro-
vide some information about evolutionary relationships, but
we would need to fix s2 (analogous to scaling Q to one
expected substitution per time unit) to estimate t itself.

Reconstruction Regimes
Our results highlight the existence of multiple “regimes” of
reconstructability, depending on divergence times of the
input proteins. When sequence is sufficiently well conserved
that pairwise alignments are easily resolved, neighbor-joining
works well. As divergence increases into the “twilight zone” of
sequence similarity, pairwise alignments begin to fail but
can be recovered by pooling information across the set of

FIG. 6. Phylogenies estimated from simulated highly divergent data sets
(average pairwise sequence identity 13–17%). Top: true tree used to
simulate data. Left: sequence–structure model estimates. Right: MAFFT
estimates. Central green circle indicates correct topology, whereas red,
blue, and yellow identify correct pairs where mismatches are made. The
sequence–structure model estimates the correct toplogy in 6 of 10
simulations and preserves correct pairings of the proteins in all but
one. MAFFT produces the correct topology in only one data set and
in all other cases matches pairs incorrectly.

FIG. 7. Phylogenetic tree estimated under the sequence–structure
model on a highly divergent set of proteins (pairwise sequence identity
9–32%), from which MAFFT is unable to reconstruct a phylogeny.
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sequences using MSA. However, as demonstrated earlier,
a third regime exists when sequence information is inade-
quate for even MSA. In this case, our model demonstrates
that structural information can still resolve the alignment,
and conditional on alignment the sequences still contain suf-
ficient similarity to infer evolutionary distance. Finally, as se-
quences become widely divergent, we enter a fourth regime
where even though structural similarity may resolve the align-
ment, sequences are effectively in equilibrium and provide
essentially no information about either the alignment or
the evolutionary distance. In this last situation, our structural
model may still be used to estimate divergence times t, but
only if s2 is fixed by other means (fig. 8), analogous to scaling
sequence substitution models to one expected substitution
per time unit.

Discussion
We have described a stochastic process model for com-
bined protein sequence and structure evolution, suitable for
use in likelihood-based alignment and phylogeny estimation.
Results on example protein families indicate that the inclu-
sion of structural information can dramatically decrease
uncertainty due to alignment and as a result signifi-
cantly stabilize reconstructed phylogenies. The current
model has certain shortcomings, and we briefly describe
them in this study, along with possible extensions for future
investigation.

Availability of Structural Data

Clearly the benefits of our approach are reliant on availability
of experimental structural data for the proteins of interest.

However, the number of known structures continues to grow
rapidly as a result of high-throughput structure determina-
tion efforts. Moreover, our results suggest that availability of
structures for even a subset of the sequences can significantly
stabilize the reconstructed tree, by informing rate parameters
(through a hierarchical model) and decreasing uncertainty in
key evolutionary distances that may drive topology uncer-
tainty. It may also be possible to incorporate high-accuracy
predicted structures, such as those based on homology
modeling, for sequences of unknown structure.

Improving the Structural Evolution Model
Intuitively, the inclusion of structure adds quantitative infor-
mation (compared with the discrete characters of sequence
models): the diffusion process penalizes large displacements
of atoms in Euclidean 3-space. This helps identify homologous
residues by favoring indel scenarios that best preserve the
relative positions of residues present in both ancestor and
descendant.

As mentioned in the Structural Model section, the dif-
fusion model of structural drift does not account for sig-
nificant structural reorganization leading to discontinuous
changes in fold. Descendant proteins are centered around
ancestral structures, slowly losing fold information, without
the ability to significantly reorganize into new structurally
distinct stable folds. Interesting preliminary work by
Herman J, Taylor W, and Hein J (personal communication)
provides a possible approach to modeling such large scale
events using transitions between discrete states and may
be useful in combination with our model to provide a
process that diffuses locally but has potential for discrete
transitions.

In addition, the independent-site assumption in the OU
process lacks certain realistic biophysical features such as ex-
cluded volume/repulsion and bond length constraints, which
give rise to dependence among positions. The challenge in
incorporating such effects is analytical tractability: for a gen-
eral (e.g., repulsive) potential U(X), the stationary distribution
is known only up to a normalizing constant but that constant
is required to evaluate changes in model size due to the indel
process, and moreover, the conditional distribution is gener-
ally not analytically tractable. Incorporation of some site de-
pendence may be achieved by the addition of a between-site
covariance matrix to the OU process, but the conditional and
stationary distributions again become problematic when con-
volved with the Links indel process. The current independent
site OU process was chosen to provide simplicity and com-
putational tractability, at the expense of some physical real-
ism. However, since inference is performed conditional on
observed structures, these limitations may be less important.
Still, it is worth noting that a more realistic evolutionary pro-
cess model for the structure might help provide additional
information about evolutionary distance, since as mentioned
in the Results section, we believe that in the current model,
structural information serves primarily to dramatically reduce
alignment uncertainty, with information about t coming pri-
marily from the sequence model.
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FIG. 8. Posterior distributions of t (light) and s2t (dark) between phy-
cocyanin � chain of red alga and human hemoglobin � obtained under
sequence–structure model. At such large distances (7% sequence iden-
tity), sequence provides no information about t and only the product
s2t may still be reliably estimated through structural information.
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Structure-Specific Indel and Substitution Processes
Currently, the model assumes constant insertion/deletion
rates (� and �), structural diffusion rate (s2), and substitu-
tion matrix (Q) at all sites along the protein. A more realistic
model would take advantage of the known structure, by al-
lowing different rates according to secondary structure, sol-
vent accessibility, location in an active site or binding site, etc.
Although this seems straightforward, some care is required to
preserve reversibility under indels. Structure-specific substitu-
tion matrices have been used successfully in sequence align-
ment and sequence–structure alignment (threading) and
should improve the realism and information content of the
model.

Dependence among Sequence and Structure
Currently, the sequence and structural information are com-
bined by assuming conditional independence of substitutions
and structural deviations given the alignment. This is easily
extended to incorporate dependence. The magnitude of de-
pendence may be explored by estimating the conditional
mean and variance of atom coordinate changes given se-
quence substitution from a database of hand alignments.

Fully Bayesian Structural Phylogenetic Tree Reconstruction
Finally, the outcomes in the Results section relate to pairwise
evolutionary distances and phylogenies constructed using
neighbor-joining methods. We are currently incorporating
the model into fully Bayesian simultaneous alignment-
and-phylogeny estimation, as done for sequence evolution

models by Lunter et al. (2005) and Redelings and Suchard
(2005). The incorporation of structural data may go a long
way toward resolving the significant uncertainty reported in
simultaneous estimation models involving sequence only
(Lunter et al. 2008; Wong et al. 2008), particularly when the
phylogeny involves long time scales.

Despite these shortcomings, outcomes reported in the
Results section with the current model show significant im-
provements over sequence-only models commonly used in
current practice. As such, the model provides an additional
tool for phylogenetic studies, especially those involving dis-
tant relationships or rapidly changing sequences, by extend-
ing the applicability of evolutionary protein models to longer
time scales.
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Appendix
The transition matrix for the pair HMM used to compute the
marginal likelihood across all alignments. Parameters � and�
and functions �(t),�(t), and �(t) are given in the Indel Model
section.
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