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Abstract
Coordinated regulation of gene expression relies on transcription factors (TFs) binding to specific
DNA sites. Our large-scale information-theoretic analysis of >950 TF-binding motifs
demonstrates that prokaryotes and eukaryotes use strikingly different strategies to target TFs to
specific genome locations. Although bacterial TFs can recognize a specific DNA site in the
genomic background, eukaryotic TFs exhibit widespread, nonfunctional binding and require
clustering of sites to achieve specificity. We find support for this mechanism in a range of
experimental studies and in our evolutionary analysis of DNA-binding domains. Our systematic
characterization of binding motifs provides a quantitative assessment of the differences in
transcription regulation in prokaryotes and eukaryotes.

DNA binding and gene regulation
Classical experiments demonstrated that strong binding of a TF to its cognate site in a
promoter is sufficient to alter gene expression [1]. Significant effort has been put into
experimentally determining [2–6] and computationally inferring [7–10] motifs recognized
by TFs and determining the occupancy of promoters by TFs [11]. The motifs and binding
locations of a TF have in turn been used to predict which genes it regulates and their
expression levels [12]. Such studies rely on linking the binding of TFs to DNA with the
regulation of nearby genes.

Although such an association has been strongly established in bacteria, growing
experimental evidence in eukaryotes challenges this assumption by showing limited
correlation between gene expression and TF binding [12–14]. For example, Gao et al. found
no correlation between occupancy patterns and gene expression profiles for the majority
(67%) of yeast TFs they studied, suggesting that only a subset of promoters bound by each
TF is controlled by it [12]. A more striking example comes from a recent study [13], which
demonstrated only 3% overlap between TF occupancy and genes response to TF knock-out.
Although this discrepancy can be explained in part by a redundant binding of homologous
TFs [15], it might also be evidence of a more fundamental uncoupling between TF binding
and gene expression in eukaryotes.
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Our analysis of 969 TF-binding motifs provides strong support for the uncoupling
hypothesis by demonstrating that eukaryotic TFs do not recognize DNA with sufficient
specificity (i.e. do not possess sufficient information) to bind to cognate sites exclusively;
instead they occupy tens of thousands of decoy sites throughout a genome. Although
managing such promiscuous binding requires several costly mechanisms, its advantages for
eukaryotes are yet to be understood.

An information-theoretical approach to binding-motif recognition
To bind its cognate site, a TF has to recognize it among ~106 alternative sites in bacteria or
~109 sites in eukaryotes. Using information theory, we ask whether individual TFs possess
enough information for such remarkably precise recognition. The application of information
theory to protein–DNA recognition has a rich history [16–18] and provides a theoretical
basis for current efforts to characterize motifs recognized by DNA-binding proteins using a
range of in vivo and in vitro techniques [6]. The most common use of information theory is
to construct ‘sequence logos’ that demonstrate the relative contribution of individual base
pair positions to binding specificity (Figure 1). Information theory, however, also allows us
to test whether the total information contained in a motif is sufficient to guide a protein to a
specific place in a large genome.

Information theory dictates that finding a unique object among N alternatives requires Imin =
log2 N bits of information (Figure 1) [19]. Similarly, a minimum of Imin = log2 N bits of
information is needed to specify a unique address in a genome containing N possible sites
for a TF to bind (i.e. N bps). For bacteria, with N =106–107 bps this yields Imin = 20–23 bits
(Imin = 22 bits for Escherichia coli). For eukaryotic genomes, N =108–1010 bps leading to
Imin ≈ 27–33 bits (Imin = 24 bits for Saccharomyces cerevisiae, Imin = 27 bits for Drosophila
melanogaster, and Imin = 31 bits for Homo sapiens).

To test whether TF motifs contain enough information to identify unique sites in their
corresponding genomes, we calculated the information content of 969 experimentally
determined bacterial and eukaryotic motifs. As a measure of information contained in a
motif, we applied the commonly used Kullback-Leibler (KL) distance between the motif and
the overall genome composition [17, 18]

(Eqn 1)

where L is the length of the motif, pi(b) is the frequency of base b at position i in the motif,
and q(b) is its background frequency. The information content of a motif quantifies the
sensitivity of TF binding affinity to variation in the binding site sequence from the
consensus sequence and the probability of a site occurring in a ‘random’ stretch of DNA
[16].

Motifs of bacterial and eukaryotic transcription factors are markedly
different

Using this metric, we find that the motifs of prokaryotic and eukaryotic TFs are strikingly
different (Figure 2, Tables S5–6 in the online supplementary material). The average
information content of a prokaryotic motif, I ≈ 23 bits, is slightly above the required Imin =
22 bits, demonstrating that a single cognate site is generally sufficient to address a TF to a
specific location in prokaryotes, though there still might be an overlap between the
background and weak but functional sites in some cases (Figure S1 in the online
supplementary material).
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Although longer eukaryotic genomes require a TF to be more specific, we find that
eukaryotic TFs are much less specific than bacterial TFs and do not contain sufficient
information to find a cognate site among 109 decoys. The average information content of a
multicellular eukaryotic motif is only I ≈ 12.1 bits, falling far below the Imin ≈ 30 bits
required to provide a specific address in a eukaryotic genome (Figure 2). Yeast TF motifs
have a mean information content of I = 13.8 bits, which is below the required Imin ≈ 24 bits,
but represents a smaller information deficiency (Imin – I ≈ 10 bits) than that of the
multicellular eukaryotes (Imin – I ≈ 18 bits).

To ensure that the results were not influenced by a poor choice of data, we employ databases
[20, 21] that contain motifs for full biological TF units (i.e. dimers when the binding of an
individual site is accomplished by a dimer, e.g. LacI, Gal4). We also rely on in vitro
experiments [22] that used full-length TFs. In addition, the motifs do not show a significant
correlation between the information content and the number of cognate sites used to derive
the motif (ρ = −0.27). When motifs with <8 cognate sites in RegTransBase are eliminated,
we see a decrease in the mean information content by ~1 bit. Taken together, we conclude
the biases due to the number of sites used to construct a TF binding motif do not change our
general findings. Finally, these results are consistent for motifs obtained both in vivo and in
vitro and for all available data sets (Table S6, in the supplementary material).

Widespread non-functional binding in multicellular eukaryotes
The significant information deficiency in eukaryotes, which emerges because of their large
genomes and degeneracy of the motifs, has several biologically important consequences.
Primarily, it suggests that numerous sites as strong as the cognate ones are expected to be
present in eukaryotic genomes by chance. Using information theory and simulations, we
estimate the lower bound of the number of such spurious sites or hits as h ≥ 2Imin–I, with an
average spacing s≤ 2I between them (Figure S1c, in the supplementary material). Therefore,
an average multicellular eukaryotic TF is expected to have h ≈ 104 – 106 spurious sites per
genome, which is reduced to h ≈ 103–105 accessible sites assuming 90% chromatinization
of the genome or h ≈ 102–104 assuming 98% chromatinization. For yeast, h ≈ 102–104,
assuming 0 to 80% chromatinization.

In multicellular eukaryotes, spurious sites are expected to arise by chance every s ≈ 4000 bp.
An important implication of this is that, in eukaryotes, the presence of a site cannot be a
distinctive feature of a regulatory region. By contrast, a typical bacterial TF is expected to
have few such spurious sites, making the presence of a single high-affinity site a unique
event and a distinctive feature of a regulatory region. Consistent with this picture is the
atypically low information content of a few bacterial DNA-binding proteins that pack and
crosslink DNA: H-NS (histone-like nucleoid structuring protein), Fis (factor for inversion
stimulation) and IHF (integration host factor) (I = 7.5, 7.3 and 7.8 bits, respectively).
Similarly, and in agreement with Sengupta el al. [8], CRP (catabolism repressor protein) and
other global regulators that bind hundreds of sites in the genome have lower information
content (CRP: I = 11 bits). The low information content of bacterial global regulator motifs
makes it particularly challenging to find their cognate sites [23].

Because the information-theoretic results depend on a rather simple description of the
genomic background, we searched real genomic sequences for matches to several well-
characterized motifs to verify the validity of the theoretical results. Using a standard
bioinformatics approach, we find, in agreement with the theory, >104 spurious sites per
genome for degenerate eukaryotic TFs (Table S1). This does not constrain in any way the
number of cognate, functional sites a TF has in the genome but demonstrates that, in
eukaryotes, cognate sites can be difficult to recognize among 103–105 equally strong
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spurious sites. This creates a binding landscape with a potential for widespread non-
functional binding.

Widespread non-functional binding is consistent with diverse experimental
data

Evidence of this landscape has been found in several large-scale experiments. Our estimate
of ~103 spurious hits in the chromatinized D. melanogaster genome is consistent with the
103–104 experimentally observed binding events for several TFs [14]. Moreover, our results
explain the large number of binding events detected by ChIP-chip [11] and ChIP-seq
experiments [24], suggesting that majority of these events reflect the widespread binding to
sites that arise by chance and are likely to be non-functional. In agreement with this idea,
studies in yeast have shown a decoupling between binding and apparent regulatory function
for a nontrivial fraction of TF binding events [12, 13].

Using the estimated frequency of spurious sites in multicellular eukaryotes of once every
4000 bp, and assuming a regulatory (accessible) region of ~1000 bp around the transcription
start site of each gene, we estimate that a single TF is expected to bind spuriously to ~25%
of all regulatory regions. Consistent with these estimates, ChIP-chip experiments found that
NOTCH1 binds to 19%, MYC to 48%, and HES1 to 18% of all human promoters [25]. Our
expectation is that most of these binding events have little regulatory effect. The prevalence
of widespread, spurious binding events in eukaryotes means that we should be cautious in
interpreting all experimentally identified binding events as regulatory interactions.

The abundance of accessible high-affinity spurious sites in eukaryotes has two effects: (i) it
sequesters TF molecules; and (ii) it makes it more difficult for the cellular machinery of
gene regulation to detect regulatory regions occupied by TFs and discriminate them from
occupied spurious sites.

The sequestration of TF molecules by spurious binding sites necessitates a high TF copy
number. The number of spurious sites h (or the number of cognate sites to be bound)
imposes a lower limit on the TF copy number per cell [26], which is on the order of 1–10
per cell for bacteria, 1000 for yeast, and 103–105 for multicellular eukaryotes. These
estimates are consistent with available experimental data: 5–10 copies per cell of LacI
repressor in E. coli, an average of approximately 2000 copies per cell of TFs in yeast; and
105 copies per cell of the prototypical multicellular eukaryotic TF p53 (Table S4).

Clustering of cognate sites can provide specificity of eukaryotic TFs
Although high TF copy-numbers are necessary to cope with spurious sites, they are not
sufficient to provide specificity (i.e. to allow cellular machinery to distinguish regulatory
binding sites from equally strong decoys). However, the presence of multiple sites in
proximity of each other can specify a regulatory region. Many regulatory regions in
eukaryotes contain multiple sites of the same or different TFs [7, 27–35], a property
commonly used in bioinformatics to detect regulatory regions [27, 31]. Using the
information content of TF motifs, we can calculate the minimal number of cognate sites
(ncluster) in regions of length w ≈ 500–1000 bps needed to determine a unique location in a
genome (supplementary methods online, Tables S2, S3). To obtain ncluster, we first calculate
how many clusters of n spurious sites are expected to be found in a genome of a given
length, E(n). Next we choose ncluster as the minimal number of sites in a cluster such that
E(n) <1. In other words, a cluster of sites is unique (i.e. informative) if spurious sites are
expected to form less than one such cluster by chance.
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In a region of 1000 bp composed of the sites of 3–10 different TFs, we calculate ncluster =
10–20 sites. This lower limit on the number of required binding sites is remarkably
consistent with the mean of 18–25 sites per 1000 bp observed in fly developmental
enhancers [28]. These results also demonstrate that, beyond the known examples in flies and
sea urchins[35], clustering of sites is a common phenomenon applicable to many regulatory
regions of multicellular eukaryotes.

We also use an information-theoretical approach to calculate the information content of a
cluster of sites and then estimate the minimal number of sites in cluster sufficient to reach
the required information Imin. We demonstrate (see the online supplementary material) that
for a cluster of sites spanning a region of w bps, the contribution of each site i to the total
information content of the cluster (δIi) is approximately

(Eqn 2)

where Ii is the information content of motif i. Choosing w = 500 –1000 bps [31, 36] and Ii =
12 bits, we obtain that each site contributes 2–3 bits of information, necessitating 10–15
sites to achieve the ~30 bits of information needed for multicellular eukaryotes.

Eukaryotic and bacterial TF using different repertoire of DNA-binding
domains

Our study shows that combinatorial regulation is rooted in the way eukaryotic TFs recognize
DNA, but how did this difference from prokaryotes arise? The gradual modifications of the
DNA-binding residues, the expansion and/or contraction of the DNA-binding interface, or
the re-invention of DNA-binding domains altogether could have contributed to this
difference. To investigate the possible evolutionary trajectory, we compared sequences of
prokaryotic and eukaryotic DNA-binding domains of TFs available in the PFAM database
[37] (Figure 3a). This analysis gives a clear result – prokaryotes and eukaryotes use different
sets of DNA-binding domains. Of the 133 known DNA-binding domains, 69 have only
eukaryotic members, 49 are totally prokaryotic, and only 15 families have both prokaryotic
and eukaryotic members, but are usually dominated by one of two kingdoms (Table S7).
This result is consistent with the previous observation of the differing rates of expansion and
contraction of DNA binding domain families between prokaryotes and eukaryotes [38]. As a
control, we compare this result to domains involved in glycolysis and gluconeogenesis and
find that a few of those domains are kingdom specific (Figure 3b). The lack of shared
prokaryotic and eukaryotic DNA-binding domain families suggests that the TF machinery
employed by eukaryotes might have evolved de novo.

Energy-based considerations of transcription factor binding
As was demonstrated in the seminal paper by Berg and von Hippel [16] and later papers, for
example Ref. [17], this information-theoretical approach is closely related to the energy-
based analysis of TF binding motifs. The constraints on the information content of motifs
considered here can be interpreted as constraints on the sequence-specific protein-DNA
binding energy. Gerland et al. [26] and Lassig [39] have considered these constraints and
demonstrated that the energy contribution of each consensus base pair to the sequence-
specific binding energy in bacteria should be approximately ε ≈ 2–3 kB T for a motif of L =
15 bps.

The specificity of transcription factor binding can be assessed using an energy-based
approach: given a set of cognate sites, how many sites in a genome are expected to have the
energy lower than the energy of the cognate sites? A direct answer is provided by our
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bioinformatics analysis, where such sites are explicitly counted in each genome. We also
used the information content of TF motifs to estimate the contribution of each consensus
base pair to the sequence-specific binding energy (supplementary methods online), obtaining
a range ε ≈ 1.5–3.5 kBT = 1–2 Kcal/mol for both prokaryotes and eukaryotes, which is
consistent with recent micro-fluidic measurements [2].

Another important aspect of TF recognition not considered here is the nonspecific binding of
proteins to DNA, as our focus was on specific (high affinity) binding. As was demonstrated
previously [26, 39, 40], competition between specific binding to cognate sites and non-
specific binding to the rest of the DNA determines whether a TF is bound to the cognate site
or to non-specific DNA. Using available dissociation constants for specific and non-specific
binding [2, 41, 42], we calculate that a bacterial TF binds non-specifically once every 106

bps. Eukaryotic TFs, in contrast, bind non-specifically every 103–104 bps. Therefore, non-
specific binding sequesters almost as many TF molecules as the spurious sites, making it
difficult for the cell to recognize a regulatory region form the rest of the DNA where TFs are
bound specifically and non-specifically.

Concluding remarks
We asked whether individual TF binding motifs possess enough information to find a
cognate site in the genome. The promiscuity of eukaryotic TFs leads to widespread, likely
non-functional, binding to decoy sites. If supported by direct experimental evidence, this
conclusion will challenge our understanding of gene regulation, which was gained largely
from experiments in bacterial systems and can be summarized as: one site – one TF – one
binding event. In multicellular eukaryotes this paradigm turns into: multiple sites –
thousands of copies of each TF – multiple cooperative binding events; making one binding
event necessary, but certainly not sufficient to regulate gene expression.

Such a mechanism is consistent with the concept of combinatorial gene regulation in
eukaryotes, but goes further by suggesting that not only are several sites required to form a
regulatory region, but binding to individual sites is likely to be widespread and possibly non-
functional. Cooperative binding [1] and synergetic activation [43] are likely to be some of
the mechanisms employed by the cell to differentiate between individual sites and clusters.

Although the apparent paradox of information deficiency in eukaryotes can be resolved by
using regulatory regions containing clusters of sites, each TF must nevertheless be present in
very high copy-number. Clearly, maintaining the tens of thousands of copies of each TF per
cell needed to saturate decoy sites comes at a metabolic cost that is likely outweighed by the
advantages of promiscuous binding that are yet to be discovered.

Evolutionary analysis supports our information-theoretical results and shows that the
observed differences in DNA recognition are not specific to a few cases but are likely to
span across kingdoms and constitute fundamentally different strategies of transcriptional
regulation in prokaryotes and eukaryotes. The promiscuity of eukaryotic TFs is likely to
constitute one of many eukaryotic evolutionary novelties, which might enable more
evolvable gene regulation, and thus be essential for evolution of a variety of structures [44].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Information theory as applied to DNA-binding motifs
(a) The concepts of minimal information required in theory and in DNA recognition and the
consequences of information deficiency, which results in spurious hits. (b) The sequence
logos for low- and high- information motifs, and the likelihood of a spurious hit to the motif
in a ‘random’ genomic background.
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Figure 2. Properties of binding motifs for bacteria, yeast, and multicellular eukaryotes
(a) The bar chart displays the minimum required information content for bacteria, yeast, and
multicellular eukaryotes (red), and the mean information content of TF binding motifs (blue)
for 98 bacterial [21], 124 yeast [22] and 123 multicellular [20] eukaryotic motifs. The error
bars are ± 1 standard deviation for the information content, and for Imin, the error bars
represent the variability in that quantity due to the range of genome sizes N. The blue dots in
the chart indicate the average information content from several other transcription factor
binding motif databases (Table S6). Below each series in the bar chart, we display an
example of sequence logo for a binding motif with close to average information content. The
chart demonstrates that bacterial transcription factor binding motifs informative enough to
make spurious hits to the genomic background unlikely, in constant to yeast and
multicellular eukaryotic motifs.
(b) The distributions of information content of motifs from the three representative
databases cited above. The ranges of required information (Imin) are marked in red. Most
bacterial motifs have I > Imin, whereas almost all eukaryotic motifs do not.
(c) Average properties of transcription factor binding motifs, the expected number and the
spacing between the spurious sites per genome in bacteria, yeast and multicellular
eukaryotes.
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Figure 3. Membership of PFAM protein domain families, by kingdom
To explore the evolution of DNA-binding domains, we examined the membership of PFAM
protein domain families. Each column in (a, b) represents a single PFAM family, and the
size of the red or blue bar indicates the proportion of the family’s bacterial and eukaryotic
members, respectively. (a), shows the membership of DNA-binding domains, demonstrating
that by bacteria and eukaryotes share very few. As a control (b), we plot the composition of
PFAM glycolysis and /or gluconeogensis enzyme families, which are shared between
kingdoms. In (c), we show a Venn diagram, after removing the weakest 10% of hits to a
PFAM family profile.
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