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Abstract

Complete genome sequences contain valuable information about natural selection, but this information is difficult to
access for short, widely scattered noncoding elements such as transcription factor binding sites or small noncoding RNAs.
Here, we introduce a new computational method, called Inference of Natural Selection from Interspersed Genomically
coHerent elemenTs (INSIGHT), for measuring the influence of natural selection on such elements. INSIGHT uses a
generative probabilistic model to contrast patterns of polymorphism and divergence in the elements of interest with
those in flanking neutral sites, pooling weak information from many short elements in a manner that accounts for
variation among loci in mutation rates and coalescent times. The method is able to disentangle the contributions of weak
negative, strong negative, and positive selection based on their distinct effects on patterns of polymorphism and diver-
gence. It obtains information about divergence from multiple outgroup genomes using a general statistical phylogenetic
approach. The INSIGHT model is efficiently fitted to genome-wide data using an approximate expectation maximization
algorithm. Using simulations, we show that the method can accurately estimate the parameters of interest even in
complex demographic scenarios, and that it significantly improves on methods based on summary statistics describing
polymorphism and divergence. To demonstrate the usefulness of INSIGHT, we apply it to several classes of human
noncoding RNAs and to GATA2-binding sites in the human genome.
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Introduction
Evolutionary modeling has become an essential tool in geno-
mic analysis, particularly for the study of noncoding elements
in eukaryotes, which tend to be sparsely annotated, poorly
understood, and difficult to examine experimentally. So far,
most evolutionary analyses of such elements have been based
on patterns of sequence divergence between genomes that
diverged millions of years ago (Boffelli et al. 2003; Thomas
et al. 2003; Cooper et al. 2005; Siepel et al. 2005; Pollard
et al. 2010). However, numerous confounding factors limit
the utility of this approach. For example, evolutionary “turn-
over” (gain and loss of functional elements) can be prominent
on these time scales (Dermitzakis and Clark 2002; Moses et al.
2006) and can distort patterns of sequence divergence. In
addition, positive and negative selection can sometimes act
on the same sequences and have partially canceling effects on
divergence. Finally, technical challenges such as orthology
identification and genomic alignment are nontrivial on
these time scales, and errors in these procedures can produce
spurious inferences of natural selection.

In principle, data describing genetic polymorphism within
species could help to address these limitations. Patterns of
polymorphism reflect evolutionary processes on relatively
short timescales, during which turnover should be much
less prevalent. Orthology identification and alignment are

also much more straightforward on these time scales.
Furthermore, it is well known that patterns of polymorphism
within a species and divergence between species can be used
to tease apart the signatures of positive and negative selection
(McDonald and Kreitman 1991; Sawyer and Hartl 1992;
Bustamante et al. 2005).

In practice, however, it is technically challenging to extract
useful information about natural selection from patterns of
polymorphism and divergence in noncoding elements. Many
of the elements of interest, such as transcription factor bind-
ing sites and small noncoding RNAs, are quite short (at most
tens of bases in length), and polymorphisms tend to be
sparse. As a result, many elements of interest typically contain
no informative sites whatsoever, whereas most others contain
just one or two. This problem can be addressed by pooling
data from multiple elements (Andolfatto 2005), but variation
across loci in mutation rates and coalescence times can lead
to difficulties in interpreting such pooled data sets (Smith and
Eyre-Walker 2002; Stoletzki and Eyre-Walker 2011). Finally,
the confounding influence of demography on patterns of
polymorphism is a persistent problem when attempting to
draw conclusions about natural selection (Nielsen et al. 2007).

Here, we describe a new computational method,
called Inference of Natural Selection from Interspersed
Genomically coHerent elemenTs (INSIGHT), that is designed
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to address these challenges. INSIGHT uses the general strategy
of contrasting patterns of polymorphism and divergence in a
collection of elements of interest with those in flanking neu-
tral regions, thereby mitigating biases from demography,
variation in mutation rates, and differences in coalescence
time. In this way, it resembles McDonald–Kreitman (MK)-
based methods for identifying departures from neutrality
(McDonald and Kreitman 1991; Sawyer and Hartl 1992;
Smith and Eyre-Walker 2002; Andolfatto 2005). Unlike these
methods, however, INSIGHT is based on a generative prob-
abilistic model, accommodates weak negative (WN) selection
(Charlesworth and Eyre-Walker 2008), and allows diffuse in-
formation from many short elements across the genome to
be pooled efficiently, in a manner that avoids statistical pitfalls
arising from pooling counts of site classes. Our modeling ap-
proach also fully integrates phylogenetic information from
multiple outgroup species with genome-wide population ge-
netic data.

The main purpose of this article is to detail the
probabilistic model and inference strategy underlying the
INSIGHT method. We also compare our full probabilistic
model with summary-statistic-based methods similar to
those used in a number of previous polymorphism-
and-divergence studies (Fay et al. 2001; Smith and
Eyre-Walker 2002; Andolfatto 2005), demonstrating several
advantages of our methods across a range of simulation pa-
rameters. In a parallel submission (Arbiza L, Gronau I, Aksoy
BA, Hubisz MJ, Gulko B, Keinan A, Siepel A, in revision), we
report the use of INSIGHT in a large-scale analysis of tran-
scription factor binding sites in the human genome, based on

chromatin-immunoprecipitation-and-sequencing (ChIP-seq)
data for 78 human transcription factors (Dunham et al.
2012). Here, we further demonstrate the breadth of applica-
bility of the method by applying it to several classes of human
noncoding RNAs and using it to carry out a position-specific
analysis of GATA2-binding sites in the human genome.

Materials and Methods

General Approach

The central goal of INSIGHT is to characterize the aggregate
influence of natural selection on a collection of elements
having some arbitrary genomic distribution (fig. 1). The col-
lection of elements is assumed to be reasonably homoge-
neous and coherent but can be defined in many different
ways. For example, it might include all binding sites of a
particular transcription factor, all noncoding RNAs of a par-
ticular type, all binding sites near genes of a particular func-
tional category, or all paired bases in a group of RNAs
(see Discussion). We assume the individual elements are
fairly short, ranging from a single nucleotide to perhaps a
few hundred bases in length. The key modeling challenge is
to integrate sparse information from many such elements in a
manner that accounts for variation along the genome in
properties such as mutation rate and coalescence time.
Rather than attempting to fully describe the relationships
among selection, polymorphism, and divergence—which is
complex and demography-dependent—our model works
by contrasting patterns of polymorphism and divergence in
the elements of interest with those in nearby neutral sites.

FIG. 1. Schematic description of INSIGHT. The method measures the influence of natural selection by contrasting patterns of polymorphism and
divergence in a collection of genomic elements of interest (gold) with those in flanking neutral sites (dark gray). Nucleotide sites in both elements (Eb)
and flanks (Fb) are grouped into genomic blocks of a few kilobases in length (b) to accommodate variation along the genome in mutation rate and
coalescence time. The model consists of phylogenetic (gray), recent divergence (blue), and intraspecies polymorphism (red) components, which are
applied to genome sequences for the target population (X, red) and outgroup species (O, gray). At each nucleotide position, the alleles at the MRCA of
the samples from the target population (A) and of the target population and closest outgroup (Z) are represented as hidden variables and treated
probabilistically during inference. The allele Z determines whether monomorphic sites are considered to be divergent (D). Polymorphic sites are
classified as having low- (L) or high- (H) frequency–derived alleles based on A and a frequency threshold f. The labels shown here are based on a likely
setting of Z and A. Vertical ticks represent single nucleotide variants relative to an arbitrary reference. Inference is based on differences in the patterns of
polymorphism and divergence expected at neutral and selected sites.
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We assume that genome-wide polymorphism data are
available for a particular target population, in a form that
allows polymorphic sites to be reliably distinguished from
invariant sites and provides reasonably accurate information
about allele frequencies. At present, this is most easily
achieved using high-coverage individual genome sequences,
although our methods could also be adapted to make use of
statistically inferred genotype frequencies based on
low-coverage sequence data (Yi et al. 2010). We further
assume that genomic sequence data are available for one or
more outgroup species. Although the method can be used
with a single outgroup genome, better information about
ancestral alleles can be obtained by using two or more min-
imally distant outgroups that diverged from one another
prior to the divergence of either one from the target
population.

We assume that each nucleotide site evolves according to
one of four possible selective modes: neutral drift (neut),
strong negative (SN) selection, WN selection, or positive
selection (P). This coarse-grained, categorical approach to
modeling the distribution of fitness effects (DFE) is motivated
by observations indicating that the data contain only limited
information about the full DFE (Boyko et al. 2008; Wilson et al.
2011). The key to our approach is that these four selective
modes have qualitatively distinct effects on patterns of poly-
morphism and divergence (cf., Bierne and Eyre-Walker 2004).
In particular, SN and positive selection will generally cause
mutations to reach fixation or be lost rapidly, and therefore
will mostly eliminate observable polymorphisms. By contrast,
WN selection will allow polymorphisms to persist for longer
periods of time, but will tend to hold derived alleles at low
frequencies. In addition, negative selection (either strong or
weak) will largely prohibit the eventual fixation of derived
alleles. Therefore, we make the following three assumptions
about nucleotide sites under selection: 1) only positively se-
lected sites make nonnegligible contributions to divergence;
2) only WN sites make nonnegligible contributions to poly-
morphism; and 3) any polymorphisms must have low derived
allele frequencies. (Neutral sites, of course, may also contrib-
ute to divergence and polymorphism.) Together, these as-
sumptions allow the fraction of sites under selection to be
estimated. As it turns out, they are not sufficient to fully
disentangle the contributions of all four selective modes,
but they do allow us to obtain indirect information about

the contributions of positive and WN selection at selected
sites (discussed later).

In addition, we classify every site as monomorphic (M),
polymorphic with a low-frequency–derived allele (L), or poly-
morphic with a high-frequency–derived allele (H), where the
distinction between L and H sites depends on a designated
low-frequency threshold f (typically f ¼ 0:15). Information
about selection comes from the relative frequencies of
these labels in the elements of interest relative to the flanking
neutral sites, together with patterns of divergence with re-
spect to the outgroup genomes. A minor complication is that
in some cases, the derived allele class depends on the ances-
tral allele, which is not known. We address this problem by
treating the ancestral allele as a hidden (latent) random var-
iable and integrating over possible values as needed. The use
of this low-dimensional projection of the SFS is intended to
buffer our method from the effects of recent demographic
changes in the target population. In the simulation analyses
reported later, we examine the extent to which our inferences
are robust to demography. We also examine their depen-
dence on the threshold f.

Probabilistic Model

Our model assumes that the genomic regions under study are
partitioned into a collection of blocks, B. The nucleotide sites
within each block b 2 B are further partitioned into sites
within the elements of interest, Eb, and the associated neutral
flanking sites, Fb (cumulatively E and F, respectively). Each
block is assigned a population-scaled mutation rate (�b), a
neutral divergence scale factor (lb), and an outgroup diver-
gence scale factor (lO

b ). In addition, the model has four global
parameters: the fraction of sites under selection in elements
(�), the relative divergence (�) and polymorphism (�) rates at
selected sites, and �, a multivariate parameter summarizing
the neutral site frequency spectrum (table 1). The full set of
parameters is denoted by f.

Each site i is associated with a set of aligned bases from the
outgroup genomes (Oi) and the polymorphism data for the
target population (Xi). Xi is further summarized as
Xi ¼ ðX

maj
i , Xmin

i , YiÞ, where Xmaj
i and Xmin

i are the observed
major and minor alleles, and Yi 2 fM, L, Hg is the minor allele
frequency class (Xmin

i ¼ ; when Yi ¼ M). The entire data set
is denoted by ðX, OÞ. Yi is defined by the observed minor
allele frequency mi and the specified low-frequency threshold,

Table 1. Model Parameters.

Parameter Type Description

jO
¼ fjO

b gb2B Neutral Block-specific neutral scaling factor for the outgroup portion of the phylogeny, used
when computing the prior distributions for the deep ancestral allele PðZi j Oi, kO

b Þ.

j ¼ fjbgb2B Neutral Block-specific neutral scaling factor for divergence.

h ¼ fhbgb2B Neutral Block-specific neutral polymorphism rate.

b ¼ ðb1, b2, b3Þ Neutral Relative frequencies of the three derived allele frequency classes, ð0, f Þ, ½f , 1� f �, and
ð1� f , 1Þ, within neutral polymorphic sites.

q Selection Fraction of sites under selection within functional elements.

g Selection Ratio of divergence rate at selected sites to local neutral divergence rate.

c Selection Ratio of polymorphism rate at selected sites to local neutral polymorphism rate.
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f < 1
2; in particular, Yi ¼ M when mi ¼ 0, Yi ¼ L when

0 < mi < f , and Yi ¼ H when mi � f . Note that the
minor allele frequency is observed, whereas the derived
allele frequency depends on the identity of the hidden pop-
ulation ancestral allele (Ai) and is thus inferred probabilisti-
cally by the model. Sites with three or more alleles are
discarded in preprocessing. Each site is also associated with
three hidden variables: a selection class (Si 2 fsel, neutg), a
“deep” ancestral allele at the most recent common ancestor
(MRCA) of the target population and closest outgroup (Zi),
and a population ancestral allele (Ai) (table 2).

We assume independence of blocks, conditional indepen-
dence of the nucleotide sites within each block given the
model parameters, conditional independence of the variables
describing the target population (Ai, Si, and Xi) from the out-
groups (Oi) given the deep ancestral allele (Zi), and indepen-
dence of the site-wise selection classes (Si), as shown
graphically in figure 2. The same graphical model applies to
all sites, except that the selection class is fixed to “neut” for
the flanking sites. Thus, a likelihood function for the model,
conditional on the outgroup data, can be written as follows:

Lðf ; X, OÞ � PðX jO, fÞ

¼
Y
b2B

Y
i2Fb

X
z

X
a

PðXi, Zi ¼ z, Ai ¼ a j Si ¼ neut, Oi, fÞ

" #

�
Y
i2Eb

X
s2fneut, selg

PðSi¼ s j fÞ
X

z

X
a

PðXi, Zi¼ z, Ai ¼ a j Si¼ s, Oi, fÞ

" #
:

ð1Þ

Furthermore, each term of the form PðXi, Zi, Ai j Si, Oi, fÞ can
be factorized as follows:

PðXi, Zi, Ai j Si, Oi, fÞ

¼ PðZi jOi, l
O
b Þ PðAi j Si, Zi, fÞ PðXi j Si, Ai, Zi, fÞ:

ð2Þ

This likelihood function is composed of four conditional
probability distributions, corresponding to the variables Si, Zi,
Ai, and Xi. The distribution for Si is needed only for element
sites and is given by a two-component mixture model with
coefficient �:

PðSi ¼ s j fÞ ¼
� s ¼ sel
1� � s ¼ neut

:

�
ð3Þ

The conditional distribution for Zi given the outgroup data,
PðZi jOi, l

O
b Þ, is based on a standard statistical phylogenetic

model and is computed using existing software. Notice that
our model assumes that the phylogenetic model for the out-
groups is independent of the selection class, Si. This assump-
tion is not strictly warranted (sites under selection are likely to
evolve at different rates in the outgroups), but it dramatically
simplifies the inference procedure by allowing us to
pre-estimate the outgroup scale factors (lO

b ) and the site-
wise distributions for Zi (see Parameter Inference). In practice,
this simplifying assumption is of little consequence, because it
only affects the prior distribution for Zi, which is fairly insen-
sitive to evolutionary rates in outgroup lineages as long as the
branches of the phylogeny are not too long.

The third conditional distribution, PðAi j Si, Zi, fÞ,
describes the process of sequence divergence on the lineage
leading to the target population. Given a global neutral
branch length t for this lineage (in substitutions per site),

Table 2. Model Variables Associated with Site i.

Variable Type Description

Oi Observed Set of aligned bases from outgroup species

X
maj
i Observed Base for major allele in target population

Xmin
i Observed Base for minor allele in target population (; for monomorphic sites)

Yi Observed MAF class for site i: “M” for monomorphic sites (MAF = 0)
“L” for polymorphic sites with MAF 5 f
“H” for polymorphic sites with MAF � f

Si Hidden Selection class: “neut” for neutral sites
“sel” for sites under selection

Zi Hidden Ancestral allele at the MRCA of the target
Population and the closest outgroup

Ai Hidden Ancestral allele at the MRCA of samples from the target population

FIG. 2. Graphical model for an individual nucleotide site i. As in figure 1,
the phylogenetic portion of the model is shown in gray, the divergence
component in blue, and the polymorphism component in red.
Observed variables are represented by solid circles and hidden variables
by empty circles. The observed alleles in the target population and
outgroups are represented by Xi and Oi, respectively. Xi consists of a
major (Xmaj

i ) and minor (Xmin
i ) allele, as well as the minor allele fre-

quency class (Yi; not shown). The selection class is denoted Si, and the
ancestral alleles are denoted Zi and Ai, as described in figure 1.
Conditional dependence between the variables is indicated by directed
edges, in the standard manner for probabilistic graphical models. Model
parameters are shown alongside the associated conditional dependency
edges. The selection parameters �sel ¼ �,�,�ð Þ are highlighted in green.
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we assume a nucleotide substitution rate of lbt for neutral
sites and �lbt for sites under selection. Note that � can be
driven downward by negative selection or upward by positive
selection, so that it may be greater or less than one, depending
on the DFE. Because we are primarily interested in cases in
which t is quite small (e.g., t � 0:005 for the case of humans
and chimpanzees), we use the following approximation for
the probability of divergences under a Poisson substitution
model:

PðAi¼a j Si¼ s, Zi¼ z, fÞ¼

1
3 lbt s ¼ neut, a 6¼ z
1� lbt s ¼ neut, a ¼ z
1
3 �lbt s ¼ sel, a 6¼ z
1� �lbt s ¼ sel, a ¼ z:

8>><
>>:

ð4Þ

Finally, the fourth conditional distribution,
PðXi j Si, Ai, Zi, fÞ, describes the patterns of polymorphism
in the target population given the ancestral alleles and
selection class. The definition of this distribution is somewhat
more involved. Briefly, we assume that the neutral
polymorphism rate for each genomic block b is determined
by a block-specific population-scaled mutation rate,
�b ¼ 4Nb�b, which allows the model to accommodate
both variable mutation rates and selection from linked sites
(background selection or hitchhiking). The probability of
observing a polymorphic nucleotide position is taken to be
�ban, where n is the number of haploid genomes sampled and
an ¼

Pn�1
k¼1 1=k (Watterson 1975). In the absence of missing

data, an is a constant of no consequence in the inference
procedure, but it can be used to accommodate sites
with small amounts of missing genotype data if desired
(see Discussion and supplementary methods,
Supplementary Material online). Given a neutral polymor-
phism, the probabilities of low-, intermediate-, and
high-frequency–derived allele are given by �1, �2, and �3,
respectively (

P3
i¼1 �i ¼ 1). The situation is similar for sites

under selection, except that they are assumed to have
population-scaled mutation rates of ��b and only
low-frequency derived alleles are permitted. It is possible to
derive closed-form expressions for this distribution for all
cases of interest (supplementary table S1, Supplementary
Material online). In addition, the conditional distributions
PðXi j Si, Ai, Zi, fÞ and PðAi j Si, Zi, fÞ can be combined into
a single conditional distribution table, PðXi j Si, Zi, fÞ, by inte-
grating over possible values of Ai. This integration is simplified
by assuming an infinite sites model for the time since the
population-level MRCA, which implies Ai 2 fX

maj
i , Xmin

i g

(table 3).

Parameter Inference

The main objective of the inference procedure is to produce
maximum likelihood estimates (MLEs) of the selection pa-
rameters, �, �, and � , but to do so, the neutral parameters
fneut ¼ kO, k, h, b

� �
must also be estimated. In principle, an

expectation-maximization (EM) algorithm could be used to
jointly estimate all model parameters. However, this approach
is impractical for genome-wide applications involving millions

of nucleotide sites. Instead, we take advantage of the “loose
coupling” between the phylogenetic outgroup model and the
remaining portions of the model, and between the portions
of the model concerned with the elements and the flanking
sites, to decompose the inference procedure into separate
stages, each of which can be performed fairly simply and
efficiently.

Our inference procedure is based on the observation that
the likelihood function can be expressed as a product of a
function of the flanking sites and a function of the element
sites (eq. 1). The first function depends only on the neutral
parameters, whereas the second function depends on both
the neutral and the selection parameters. However, because
the flanking sites are expected to significantly outnumber the
sites within the elements, the information about the neutral
parameters comes predominately from the first function, and
they can be estimated to a good approximation by maximiz-
ing this function only. The selection parameters can then be
estimated by conditionally maximizing the second function.
By making some additional minor simplifying assumptions,
the first stage of inference can be further divided into two
separate steps, one concerned with estimation of the phylo-
genetic parameters, kO and k, and one concerned with esti-
mation of the population genetic parameters, h and b. Our
inference procedure thus consists of the following three dis-
tinct stages (supplementary methods, Supplementary
Material online):

Phylogenetic Model Fitting: The divergence scale factors
lb and lO

b are estimated by fitting a pre-estimated neutral
phylogenetic model to putative neutral sites in each ge-
nomic block using standard phylogenetic fitting proce-
dures (Hubisz et al. 2011). The fitted phylogenetic model
for the outgroup species is then used to compute the
prior distribution for ancestral alleles, PðZi jOi, l

O
b Þ, at all

sites in the block.
Neutral Polymorphism Model Fitting: MLEs of the
block-specific polymorphism rate parameters, �b, and
the global parameter �2 are obtained using simple
closed-form expressions. Global parameters �1 and �3

Table 3. Conditional Distribution Table for PðXijSi; Zi; fÞ.

S y z, xmaj, xmina P Xi ¼ ðx
maj, xmin, yÞ j Si ¼ s, Zi ¼ z, f

� �
neut M z ¼ xmaj ð1� kbtÞð1� hbanÞ

neut M z 6¼ xmaj 1
3 kbtð1� hbanÞ

neut L z ¼ xmaj ð1� kbtÞb1 þ
1
3 kbtb3Þ

1
3 hban

�
neut L z ¼ xmin ð1� kbtÞb3 þ

1
3 kbtb1Þ

1
3 hban

�
neut L z =2 fxmaj, xming 1

3 kbt b1 þ b3

� �
1
3 hban

neut H z 2 fxmaj, xming 1� kbtþ 1
3 kbt

� �
b2

1
3 hban

neut H z =2 fxmaj, xming 2
3 kbtb2

1
3 hban

sel M z ¼ xmaj ð1� �kbtÞð1� chbanÞ

sel M z 6¼ xmaj 1
3 �kbt

sel L z ¼ xmaj ð1� �kbtÞ 1
3 chban

sel L z 6¼ xmaj 0

sel H — 0

aRelationships among variables. It is implicit that xmaj 2 {A, C, G, T} and xmaj 6¼ xmin

in all cases. In addition, xmin ¼ ; when y ¼ M.
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are estimated by a simple EM algorithm (they do not
have closed-form estimators due to ancestral
uncertainty).
Selection Inference: The selection parameters�, �, and �
are estimated conditional on the pre-estimated neutral
parameters and ancestral priors by maximizing the likeli-
hood of the element sites only by EM.

Extracting Information about the Modes of Selection

Although the INSIGHT model does not permit direct estima-
tion of the fractions of sites under WN, SN, or positive selec-
tion, the estimated model parameters can be used to obtain
indirect measures of the impact of WN and positive selection.
A useful measure of positive selection is Dp, the number of
divergence events driven by positive selection (sometimes
called “adaptive substitutions”), and a similar measure per-
taining to WN selection is Pw, the number of polymorphic
sites subject to selection. Expected values for Dp and Pw can
be obtained by summing over site-wise posterior
probabilities associated with the variable configurations
ðYi ¼ M, Zi 6¼ Ai, Si ¼ selÞ and ðYi ¼ L, Si ¼ selÞ, respec-
tively (supplementary methods, Supplementary Material
online). To allow comparisons between sets of different
sizes, we normalize E½Dp� and E½Pw� by dividing them by
the total number of nucleotide sites considered (in kilobases).
By dividing E½Dp� by the total (expected) number of diver-
gences, one can alternatively obtain an estimate of the frac-
tion of substitutions driven by positive selection, a quantity
known as 	 (Smith and Eyre-Walker 2002; Andolfatto 2005)
(supplementary methods, Supplementary Material online).

Confidence Intervals and Likelihood Ratio Tests

The probabilistic nature of the model allows us to estimate
standard errors for the estimated selection parameters using
the curvature method (Lehmann and Casella 1998), based on
an approximate Fisher information matrix derived from the
3� 3 matrix of second derivatives for the log-likelihood func-
tion for �, �, and � (eq. 1) at the joint MLE (supplementary
methods, Supplementary Material online). In addition, likeli-
hood ratio tests (LRTs) can be used to evaluate evidence for
selection in general (� > 0), positive selection (� > 0), and
WN selection (� > 0). The LRTs are performed by fitting the
model to the data twice, once with no restrictions on the free
parameters, and once with a parameter of interest fixed at
zero. Twice the difference in log likelihoods is then treated as a
test statistic and compared with an appropriate asymptotic
distribution. The tests for � > 0 and � > 0 involve nested
models in which the null hypothesis falls at a boundary of the
alternative hypothesis. The associated test statistics therefore
have asymptotic null distributions equal to a 50:50 mixture of
a 
2 distribution with one degree of freedom and a point
mass at zero (Chernoff 1954; Self and Liang 1987). The case of
� is more complex, because a value of � ¼ 0 causes � and �
to become irrelevant to the likelihood function. Therefore, we
used an empirical distribution to determine the cutoff for this
LRT and found this to be consistent with a 
2 distribution
with three degrees of freedom (see Results).

Implementation and Software

The INSIGHT software consists of several modules. The main
module is a C program, INSIGHT-EM, for the two EM algo-
rithms used for inference: the main one for the selection
parameters and a simpler one for �1 and�3. The phylogenetic
model fitting stage is implemented separately using proce-
dures from RPHAST (Hubisz et al. 2011), and additional
scripts are used for processing and filtering the polymorphism
data. The INSIGHT website (http://compgen.bscb.cornell.
edu/INSIGHT/, last accessed February 15, 2013) provides
source code, documentation, and sample files for running
the EM algorithm. The website also provides access to a
server that can be used to run INSIGHT on any collection
of human genomic elements, using our precomputed sum-
maries of human polymorphism data (discussed later).

Estimators Based on Summary Statistics

For comparison with our model-based estimates, we made
use of simple estimators for the fraction of sites under selec-
tion (�) and the number of adaptive substitutions (Dp).
These estimators are based on the numbers of polymor-
phisms in element and flanking sites, denoted PE and PF,
respectively, and the numbers of divergence events in ele-
ment and flanking sites, denoted DE and DF, respectively.
They include a divergence-based estimator for � introduced
by Kondrashov and Crow (1993),

�̂Div ¼ 1�
DE j F j

j E j DF
, ð5Þ

a parallel estimator based on polymorphism rates,

�̂Poly ¼ 1�
PE j F j

j E j PF
, ð6Þ

and an estimator for E½Dp� based on the McDonald and
Kreitman (1991) test, adapted from Smith and Eyre-Walker
(2002):

D̂p�MK ¼ DE �
PE DF

PF
: ð7Þ

In comparison with our model-based estimates, the
divergence-based estimator �̂Div ignores the effect of positive
selection, and the estimators �̂Poly and D̂p�MK both implicitly
assume that no polymorphisms occur in selected sites, and
thus ignore the effects of WN selection. All three estimators
share the limitation of pooling counts across elements in a
manner that does not account for variable mutation rates
across loci.

Simulations

We conducted a series of experiments on simulated data to
assess the validity of our modeling assumptions and to eval-
uate the accuracy of the inference method. Simulated ele-
ments and flanking regions were generated with the forward
simulator SFS_CODE (Hernandez 2008), assuming various
mixtures of selective modes for the elements. We simulated
data for human populations and chimpanzee, orangutan, and
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rhesus macaque outgroups, using parameters based on pre-
vious studies. Each simulated block consisted of a 10 bp ele-
ment, reflecting a typical binding site, and 5,000 flanking
neutral sites on each side. We assumed a constant recombi-
nation rate and a randomly varying mutation rate, and each
nucleotide position was assigned to one of four selection
classes: neutral evolution (2Nes ¼ 0), SN selection
(2Nes ¼ �100), WN selection (2Nes ¼ �10), and positive
selection (2Nes ¼ 10). The choices of population-scaled se-
lection coefficients were approximately based on several
other recent studies (Eyre-Walker et al. 2006; Boyko et al.
2008; Wilson et al. 2011). Selection at WN and SN sites was
held constant across the phylogeny, whereas for P sites, we
assumed an interval of positive selection followed by WN
selection on the lineage leading to the human population,
to simulate selective sweeps rather than recurrent positive
selection (see supplementary methods, Supplementary
Material online, for complete details). The 10 kb flanking
sites were all assigned to the neutral class, and the 10 bp of
each simulated element were allocated among the four clas-
ses by multinomial sampling. When the simulation was done,
sequence data were extracted using a single haploid sample
from each of the three outgroup populations and 50 diploid
samples from the target (human) population. In addition to
assuming a range of mixtures of selective modes, we consid-
ered collections with various numbers of elements (ranging
from 10,000 to 20,000), examined four different demographic
scenarios, and perturbed the selection coefficients used for
each category of selection (see supplementary methods,
Supplementary Material online, for complete details).

The values of �, E½Dp� and E½Pw� estimated by INSIGHT
were compared with “true” values for each simulation. The
true value of � was simply the fraction of sites assumed to be
under selection during data generation. The true value of Dp

was taken to be the number of actual divergence events that
occurred in sites under positive selection. The true value of Pw

was taken to be the number of negatively selected sites that
are polymorphic. In computing this quantity, we allowed for
both strong and WN selection, because we are interested in
accounting for all segregating deleterious alleles, regardless of
our modeling assumptions. For � and Dp, we also compared
our model-based estimates with the simple estimates based
on counts of polymorphic and divergent sites (eq. 5–7).

Analysis of Human Noncoding Genomic Elements

In our analysis of real data, we made use of the 69 individual
human genome sequences recently released by Complete
Genomics (http://www.completegenomics.com/public-data/
69-Genomes/, last accessed February 15, 2013) (Drmanac
et al. 2010), using data for 54 unrelated individuals.
Although larger data sets are available (1000 Genomes
Project Consortium 2010), this one was selected for its high
coverage, which reduces the effect of genotyping error and
allows singleton variants to be characterized with fairly high
confidence. For outgroup genomes, we used the chimpanzee
(panTro2), orangutan (ponAbe2), and rhesus Macaque
(rheMac2) reference genomes. Various filters were applied

to guarantee high quality alignments and variant calls (sup-
plementary methods, Supplementary Material online).
Putatively neutral sites were identified by excluding exons
of known protein-coding and RNA genes plus 1 kb of flanking
sites on each side, and previously predicted conserved non-
coding elements plus flanking regions of 100 bp. After these
filters were applied, an average of 3,881 sites per 10,000 bp
block remained. Genomic blocks with<100 putative neutral
sites were discarded.

We examined several classes of short interspersed noncod-
ing elements in the human genome, including several collec-
tions of regulatory noncoding RNAs and a collection of
GATA2 transcription factor binding sites. Annotations for
noncoding RNAs were taken from GENCODE v.13 (Harrow
et al. 2012) (supplementary methods, Supplementary
Material online), and the GATA2-binding sites were identified
by a pipeline based on genome-wide chromatin immunopre-
cipitation and sequencing (ChIP-seq) data from the ENCODE
project (Dunham et al. 2012), as described separately (Arbiza
L, Gronau I, Aksoy BA, Hubisz MJ, Gulko B, Keinan A, Siepel A,
in revision). To improve efficiency, we performed the phylo-
genetic model fitting stage of our analysis in a preprocessing
step. We fitted a neutral model estimated from 4-fold degen-
erate sites to the predesignated neutral sites by estimating
two scale factors, one for the branch to the human genome
(k) and one for the other branches in the tree (kO; see Pollard
et al. [2010] for details). This analysis assumed a (((human,
chimpanzee), orangutan), rhesus macaque) tree topology.
The outgroup scale, lO, was estimated globally using all neu-
tral sites genome-wide, and the human divergence scale, lb,
was fitted separately in different genomic blocks. We used for
this purpose a fixed set of 10 kb genomic windows overlap-
ping by 5 kb and avoiding recombination hotspots. The same
blocks were used for estimating the neutral polymorphism
rates, �b. After fitting the phylogenetic model, we computed
conditional distributions for the ancestral allele Zi given the
outgroup sequences at each nonfiltered nucleotide position i
in the genome. The estimates of lb and �b, and the distribu-
tions for Zi, were recorded in a database and used in all sub-
sequent analyses.

Results

Simulations

We applied INSIGHT to various collections of synthetic ele-
ments to assess its accuracy and to validate our modeling
assumptions. This was done by comparing our model-based
parameter estimates both with “true” values reflecting the
simulated evolutionary histories and with values obtained
using simpler estimators based on counts of polymorphisms
and divergences (see Materials and Methods). We simulated
data sets roughly similar to our real data (supplementary table
S3, Supplementary Material online), with 10,000–20,000
blocks each consisting of a 10 bp element flanked by 5 kbp
of neutral sequence on each side. We considered a range of
mixtures of neutral, weak negative (WN), strong negative
(SN), and positive (P) selection (see Materials and Methods).
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We started by examining four representative data sets
(fig. 3A): 1) one with relatively few sites under selection
(10%) and negative selection only (“Neg”); 2) another with
a moderate fraction of sites under various types of selection
(30%), including a substantial fraction under positive
selection (“Pos”); 3) another with a high fraction of sites
selection (60%), with mostly WN selection and no positive
selection (“Weak”); and, finally, 4) a set with a substantial
fraction of sites in each of the selective modes (“Mix”).
We found that our model-based estimates were within one
standard error of the true values across all mixtures of selec-
tive modes. The simple estimators also performed reason-
ably well in many cases, but the divergence-based
estimators for � were strongly biased by positive selection
(e.g., �̂Div ¼ �0:52 in Pos and �̂Div ¼ �0:13 in Mix). The
reason for this bias is that these estimators implicitly attribute
all divergence to neutral drift, an assumption that is violated
by nonnegligible levels of positive selection. Similarly, the
polymorphism-based estimator for � was biased downward
in the presence of WN selection (e.g., �̂Poly ¼ 0:59 and

�True ¼ 0:8 in Mix), because this estimator implicitly assumes
that selection completely eliminates polymorphism, which is
not true in this case. For similar reasons, the MK-based esti-
mates of the number of adaptive divergences (D̂p�MK) were
also biased in the presence of WN selection (Charlesworth
and Eyre-Walker 2008).

These synthetic data sets—generated by forward simula-
tion, under fairly realistic assumptions—also enabled us to
directly evaluate the assumptions underlying our model.
Consistent with our assumptions, no mutations reached fix-
ation in the 340,000 negatively selected sites (weak or strong)
in our synthetic data sets. On the other hand, polymorphisms
under selection were not completely restricted to WN sites, as
assumed; instead, 8% of them occurred in SN sites and 9% of
them in positively selected sites, with the remaining 83% in
WN sites. Nevertheless, our inference procedure appeared to
be robust to these violations of our assumptions, with fairly
accurate estimates of all parameters in all cases. Our default
threshold of f = 15% for low-frequency polymorphisms ap-
peared to be adequate: Only 4% of selected polymorphisms

A B C

FIG. 3. Simulation results. (A) Parameter estimates for four collections of 20,000 simulated elements based on different mixtures of neutral (neut),
positive (P), strong negative (SN), and weak negative (WN) selection (as indicated at bottom). The true values of �, Dp, and Pw are indicated by solid
bars, and estimates from INSIGHT are indicated by diamonds, with error bars representing one standard error. For comparison, estimates from several
simpler count-based methods are also shown, including estimates of � based on polymorphism (�̂Poly; “+”) and divergence (�̂Div; solid squares) rates,
and estimates of Dp based on the MK framework (D̂p�MK; “�”). Adaptive divergences (Dp) and deleterious polymorphisms (Pw) are shown as rates per
1,000 base pairs (kbp). See Materials and Methods for details. (B) INSIGHT was applied to 11 collections of 10,000 elements with various fractions of sites
under selection (see text), assuming a range of values for the low-frequency derived allele threshold f. Relative estimation errors for �, Dp, and Pw,
measured as differences between the estimates and true values normalized by the true value, are shown as a function of the frequency threshold f. Each
box plot describes the distribution of values for the 11 collections considered. Curvature-based standard errors for these experiments are summarize in
supplementary figure S2, Supplementary Material online. (C) Simulated data sets were generated for the same 11 mixtures of selective modes� four
different demographic scenarios (supplementary table S2, Supplementary Material online), and INSIGHT parameter estimates were compared with true
values. Box plots represent the distribution of relative error per demographic scenario. The relative estimation error for the simple count-based
estimators, �̂Poly, �̂Div, and D̂p�MK, is shown for comparison.
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exhibited derived allele frequencies exceeding this threshold,
and these sites were vastly outnumbered by neutral
high-frequency polymorphisms. Overall, although the simu-
lated data did not fully support our modeling assumptions,
only fairly minor violations were observed and our inference
procedure seemed to be robust to them.

To test the robustness of INSIGHT to the assumed
strength of selection, we conducted a series of simulations
in which we perturbed the selection coefficients used for the
three selective modes, SN, WN, and P (supplementary meth-
ods, Supplementary Material online). We found that INSIGHT
performed very well across the entire range of values assumed
for SN and positive selection (supplementary fig. S1,
Supplementary Material online). A clear bias in parameter
estimates was observed only when quite weak selection was
assumed for the WN mode (�2Nes � 2), in which case � and
Pw were clearly underestimated and Dp was slightly under-
estimated. These results suggest that INSIGHT is generally
robust to assumptions about selection coefficients, but that
negative selection has to reach a certain threshold to produce
sufficient shifts in derived allele frequencies to be detected by
the method. As a result, our statements about � and Pw

should be interpreted as including only the subset of delete-
rious polymorphisms that clear this threshold (supplemen-
tary methods, Supplementary Material online).

As mentioned earlier, f = 15% appears to be an adequate
upper bound on the derived allele frequency at negatively
selected sites (Fay et al. 2001; Zhang and Li 2005;
Charlesworth and Eyre-Walker 2008). In reality, of course,
this threshold depends on various factors, including the
actual distribution of selection coefficients and the demo-
graphic history of the sample. To test the robustness of our
model to the choice of f, we generated 11 collections of 10,000
elements with true fractions of sites under selection ranging
from 0 to 1 (in steps of 0.1), keeping the proportion within
selected sites in each collection constant at 45% WN, 50% SN,
and 5% PD. We then applied INSIGHT to each data set using
values of f ranging from 1% to 40% (fig. 1B). We found that
very low thresholds (f<7%) resulted in clear underestima-
tion of all model parameters, due to the presence of many
selected polymorphisms with DAFs exceeding the cutoff,
whereas very high thresholds (f>20%) led to high variance
due to sparse data for high-frequency polymorphisms (sup-
plementary fig. S2, Supplementary Material online).
Importantly, however, no bias was observed for thresholds
in the range of 7–20%, indicating robustness to the specific
choice of threshold and justifying the default choice of 15%,
which we used throughout most of our analysis.

An important feature of our model is that it directly con-
trasts sequence patterns in elements with those in nearby
neutral sites, which should make it insensitive to the partic-
ular demographic history of the target population. To test
robustness to demography, we simulated data sets for each of
the 11 mixtures of selective modes described earlier using four
different demographic scenarios for the target population:
one with constant population size since divergence from
chimpanzee, one with a moderate population expansion,
and two others with a severe population bottleneck followed

by an exponential expansion (supplementary table S2,
Supplementary Material online). Inference was performed
separately for each of these 4� 11 data sets, and the esti-
mated parameters were then compared with their true values
and with the simple count-based estimates (fig. 1C). The
divergence-based estimates, �̂Div, were quite poor due to
the effects of positive selection, as discussed earlier, and the
polymorphism-based estimates, �̂Poly, consistently underesti-
mated the true values, by an average of 20–30% across the
different scenarios, due to the effects of WN selection. Similar
patterns of underestimation were observed for the MK-based
estimator of the number of adaptive divergences, D̂p�MK. In
contrast, our model-based estimates of � and Dp showed no
apparent bias in any of the simulated demographic scenarios.
Estimates of the number of polymorphisms under selection,
Pw, showed somewhat greater variance, as observed in our
initial simulation study (fig. 1A), but the error in these esti-
mates did not seem to be affected by demography. Thus, our
method appears to be capable of disentangling the contribu-
tions of positive and negative selection even in the presence
of a complex demographic history, without the need for ex-
plicit demographic inference.

Analysis of Human Noncoding Genomic Elements

To demonstrate its application to real data, we used INSIGHT
to examine several classes of noncoding elements in the
human genome, using 54 unrelated individual genomes
from Complete Genomics to define human polymorphisms,
and the chimpanzee, orangutan, and macaque genomes as
outgroups (Materials and Methods). First, to assess our like-
lihood ratio cutoffs and ensure that our method adequately
controls for false-positive inferences of selection, we applied
INSIGHT to randomly selected “neutral” regions—excluding
genes, conserved noncoding elements, and their immediate
flanks (Materials and Methods). From the previously identi-
fied putatively neutral regions, we sampled 500 mutually
exclusive collections of approximately 30,000 “neutral ele-
ments,” 10 bp long. For each collection, we estimated � and
the corresponding LRT statistic for the null hypothesis of
� ¼ 0. The 500 estimated values of � were generally close
to zero, with a median of 0.03 (supplementary fig. S3,
Supplementary Material online) and almost no values >0.1.
The distribution of LRT statistics was roughly similar to a
50:50 mixture of a point mass at zero and a 
2 distribution
with three degrees of freedom, as expected (Materials and
Methods), but did show a clear shift toward large values rel-
ative to this distribution (fig. 4A). This shift may reflect vio-
lations of our simplifying assumptions in real genomic data
(e.g., variation in mutation rates within blocks), contributions
from alignment errors, or the inclusion of some functional
sites within our “neutral” elements. Nevertheless, we found
that the use of a more conservative (nonmixed) 
2 distribu-
tion with three degrees of freedom adequately controlled for
the excess in large LRT statistics. In particular, the empirical
distribution of LRT statistics shows a good fit to the tail of this
distribution (fig. 4A). Thus, we use this distribution for
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approximate calculations of nominal P values in our subse-
quent analyses.

Next, we examined three classes of noncoding RNAs an-
notated by the GENCODE project: microRNAs (miRNAs),
small nucleolar RNAs (snoRNAs), and large interspersed non-
coding RNAs (lincRNAs). We applied INSIGHT to a
high-confidence subset of annotated elements in each of
these five classes (supplementary table S3 and methods,
Supplementary Material online). Our analysis considered var-
ious thresholds for distinguishing between low and high
frequency polymorphisms, but our estimates were fairly in-
sensitive to this threshold (supplementary fig. S4,
Supplementary Material online), so we focus below on results
for the default threshold of 15%. All three classes of elements
were estimated to have significant fractions of sites under
selection (� > 0; P � 0:01; fig. 4B). snoRNAs showed the
highest estimated value (� ¼ 0:54	 0:10), consistent with
their essential role in guiding chemical modifications of

ribosomal and transfer RNAs (Pang et al. 2006; Matera et al.
2007). miRNAs also showed a somewhat elevated estimate
(0.3 ± 0.06). By contrast, lincRNAs were inferred to have a
considerably smaller (but still significant) fraction of sites
under selection (0.17 ± 0.04), consistent with previous obser-
vations indicating high levels of conservation are generally
limited to short segments within lincRNAs (Guttman et al.
2009; Marques and Ponting 2009; Ulitsky et al. 2011). We also
found significant evidence of WN selection in lincRNAs
(� > 0; P � 0:01). Furthermore, snoRNAs were estimated
to have particularly high rates of weakly selected segregating
polymorphisms (E½Pw� ¼ 1:9	 0:5 polymorphisms per
kbp).

To shed additional light on the manner in which natural
selection has influenced miRNA evolution, we applied
INSIGHT separately to different structural components
within the primary miRNA transcript (fig. 4C, inset). These
structural classes were defined based on predictions of hairpin

A C

DB

FIG. 4. Analysis of human genomic elements. (A) Distribution of LRT statistics for 500 sampled sets of “neutral” genomic elements, with approximately
30,000 elements per set. Test statistics reflect a null hypothesis that � ¼ 0 and an alternative hypothesis that � > 0. For comparison, a 
2

3 distribution
(with three degrees of freedom; red) and a 50:50 mixture of a 
2

3 distribution and a point mass at 0 (green) are also shown. Blue lines indicate
significance thresholds for P ¼ 0:01 and P ¼ 0:05 based on the 
2

3 distribution. Four of the 500 data sets (0.8%) had test statistics exceeding the
P ¼ 0:01 cutoff, and 24 (4.8%) exceeded the P ¼ 0:05 cutoff, indicating a reasonably good fit to the tail of the distribution. The distribution of
estimated values of � is shown in supplementary figure S3, Supplementary Material online. (B) Model-based estimates of �, E½Dp�, and E½Pw� for three
classes of noncoding RNAs (lincRNAs, miRNAs, and snoRNAs; see Materials and Methods). Error bars indicate one standard error. Symbols in red
indicate statistical significance in LRTs for overall selection (� > 0; “*” ! P < 0:01) and WN selection (� > 0; “w” ! P < 0:01), based on a 
2

3

distribution for � > 0 and a 
2
1 distribution for � > 0. (C) Estimates of � for several structural regions of miRNAs (inset). (Left) Results for a

coarse-grained partitioning into loop bases, unpaired stem bases, and paired stem bases. (Right) Results for a fine-grained partitioning of paired
bases in the stem into loop-proximal, lower-stem, star, and mature regions, corresponding to the regions that undergo cropping and dicing by Drosha
and Dicer (dashed lines). Estimates found to be significantly greater than 0 (P � 0:01) are highlighted (“*”). (D) The motif inferred for GATA2 together
with position-specific estimates of � (left axis), Dp, and Pw (right axis). Statistical significance is assessed and indicated as in (B), with significant positive
selection (� > 0; “P”! P < 0:01) estimated using a 
2

1 distribution. The “core” seven positions of the motif, having IC> 1
2, are highlighted in gray.

Estimates obtained for the joint analysis of all seven positions of the core motif are shown as well (left).
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secondary structures for the annotated miRNAs (supplemen-
tary methods, Supplementary Material online). We first par-
titioned the primary miRNA into loop and stem regions,
distinguishing between paired and unpaired bases within
the stem. Among these three partitions, paired bases in the
stem region were estimated to have a particularly high frac-
tion of sites under selection (� ¼ 0:47	 0:06; P < 10�5;
fig. 4C), consistent with their key role in stabilizing the hairpin
structure. In contrast, the estimates for the other two classes
were not found to be significantly greater than zero
(P > 0:05). We further partitioned the stem into four subre-
gions—loop-proximal, lower stem, star, and mature—reflect-
ing the cleavage activity of Drosha and Dicer, the two RNase
III cleavage enzymes of primary importance in miRNA bio-
genesis. We obtained the highest estimate of � (0.60 ± 0.16;
P � 0:01; fig. 4C) for the 21–22 nt mature region, reflecting its
dual role in structure preservation for efficient recognition
and processing by Drosha and Dicer, and in sequence com-
plementarity to target mRNAs. The lower-stem and
loop-proximal regions had lower estimates of �, probably
because they do not serve any direct regulatory role, but
are important in preserving the hairpin structure. The star
region had an intermediate estimate of � (0.46 ± 0.10;
P � 0:01), perhaps because a fraction of star sequences are
loaded into Argonaute complexes and carry out functional
roles, even though most are degraded (Okamura et al. 2008).

Our estimates of recent selection in human miRNAs were
generally concordant with previous comparative analyses in
Drosophila based on patterns of divergence between species
(Lai et al. 2003; Clark et al. 2007; Stark et al. 2007). They were
also fairly consistent with estimates of sequence conservation
across the primate phylogeny computed using phyloP scores
(Pollard et al. 2010; supplementary fig. S5, Supplementary
Material online). However, INSIGHT found somewhat stron-
ger evidence for selection in the mature relative to the star
region of the miRNA than did phyloP. This difference could
reflect a shift toward WN selection in the star region, which is
not apparent on comparative genomic time scales because
selection is sufficiently strong to prohibit long-term fixation of
derived alleles.

None of the analyzed noncoding RNAs showed strong
evidence of positive selection, so we turned next to a collec-
tion of elements in which we expected to find evidence of
adaptation based on other recent work (Arbiza L, Gronau I,
Aksoy BA, Hubisz MJ, Gulko B, Keinan A, Siepel A, in revision):
GATA2-binding sites. Using the available ChIP-seq-based
annotations (Materials and Methods), we partitioned the
nucleotides in binding sites into 11 groups, corresponding
to the 11 positions in the GATA2 motif, and applied
INSIGHT separately to each group (fig. 4D). We found that
the signatures of natural selection were clearly concentrated
in positions 4–10, which constitute the “core” region of the
motif (fig. 4D). Indeed, six of these seven positions, and only
one other position, were found to have significant estimates
of � (P � 0:01). The 5th and 6th positions, associated with
the “GA” portion of the GATA motif, were estimated to have
undergone significant WN selection (P < 0:01), whereas the
signature of positive selection came primarily from the 7th

and 8th positions, which are associated with the “TA” portion
of the motif. Our posterior estimates indicated that nucleo-
tides in these two positions contributed a total of 123 ± 43
adaptive divergences across approximately 27,500 binding
sites. Interestingly, these positions (particularly the 8th) are
known to play a role in modulating binding specificity of
GATA2 (Ko and Engel 1993; Merika and Orkin 1993). They
are also critical in determining the relative binding affinities of
GATA1, GATA2, and GATA3, which regulate overlapping sets
of genes and are known to serve as “switches” between alter-
native modes of gene expression (Bresnick et al. 2010; Dore
et al. 2012).

Discussion
Recent advances in functional genomics have produced vast
catalogs of candidate noncoding elements, including noncod-
ing RNAs, transcription factor binding sites, RNA–binding
sites, and many others (Gerstein et al. 2010; Dunham et al.
2012). Evolutionary analyses will be essential in improving
annotations of these elements and revealing their functional
roles. Although methods based on patterns of divergence
between species have become widely used in the study of
noncoding functional elements, these methods are limited by
their consideration of relatively long evolutionary time scales
and their sensitivity to alignment errors and other technical
artifacts. INSIGHT is intended to complement these methods
by detecting signatures of recent selection based on newly
available population genomic data and comparative genomic
data for closely related species.

INSIGHT bears some similarities to MK-based methods
(McDonald and Kreitman 1991; Smith and Eyre-Walker
2002; Bierne and Eyre-Walker 2004; Andolfatto 2005),
Poisson random field (PRF)-based methods (Sawyer and
Hartl 1992; Bustamante et al. 2002, 2005; Williamson et al.
2005), and related methods for characterizing the DFE
(Eyre-Walker et al. 2006; Boyko et al. 2008; Eyre-Walker and
Keightley 2009), but it differs from previous methods in sev-
eral important respects. Unlike MK-based methods, INSIGHT
is based on a full generative probabilistic model, it explicitly
models WN selection, and it pools information from many
loci in a manner that properly accommodates differences in
mutation rates and coalescence time across the genome.
Unlike PRF-based methods, it does not attempt to directly
model the complex relationship between allele frequencies
and natural selection, but instead works by contrasting pat-
terns of polymorphism and divergence in the elements of
interest and flanking sites. INSIGHT additionally allows for
straightforward LRTs of various hypotheses of interest, and
it allows parameter variances to be approximately character-
ized using standard methods. For these reasons, we expect it
to be a valuable addition to the arsenal of methods available
for analysis of polymorphism and divergence data.

The INSIGHT model is designed to exploit newly available
genome-scale data sets describing both candidate functional
elements (Gerstein et al. 2010; Roy et al. 2010; Dunham et al.
2012) and variation within populations (1000 Genomes
Project Consortium 2010; Mackay et al. 2012). Although the
underlying graphical model is not complex (fig. 2), a naive
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approach to parameter estimation would still be prohibitively
CPU-intensive with genome-wide data. We achieve major
gains in efficiency by decomposing the inference procedure
into three separate steps, concerned with the estimation of
the phylogenetic, neutral, and selection parameters, respec-
tively. This decomposition relies on the simplifying assump-
tion that sites within the elements of interest contain
negligible information about the neutral parameters of the
model, because they are vastly outnumbered by the flanking
neutral sites—a property that can typically be guaranteed by
construction. It also depends on the use of a single phyloge-
netic model per locus in estimating the prior distribution of
the ancestral allele at all sites, which should be adequate as
long as relatively close outgroups are used. Notably, the first
two of these steps can be performed in preprocessing and
reused in the analysis of any set of loci that use the same
flanking regions. Furthermore, the neutral flanks can be
designed to maximize the potential for reuse (as we have
done here) by defining a set of fixed genomic blocks, and
associating each element with the neutral sites of the nearest
block. This strategy allows the neutral and phylogenetic pa-
rameters to be pre-estimated for each block and reused in any
number of subsequent analyses. Importantly, these steps
dominate the running time of the inference algorithm (parti-
cularly the phylogenetic estimation step). The final stage, in
which the parameters �, �, and � are estimated, is indepen-
dent of the number of genomes considered and typically
takes less than a minute.

It is worth emphasizing that INSIGHT can be applied to
any collection of genomic elements, provided each one is
sufficiently short that it does not span regions having mark-
edly different mutation rates or coalescence times, and pro-
vided each element can be associated with nearby sites likely
to be free from the effects of selection. In this article, we have
focused on the case of genome-wide collections of elements
of a particular type, such as miRNAs or binding sites for a
particular transcription factor, but many other types of anal-
ysis are possible. For example, in related work (Arbiza L,
Gronau I, Aksoy BA, Hubisz MJ, Gulko B, Keinan A, Siepel
A, in revision), we have examined various subsets of transcrip-
tion factor binding sites, such as those associated with genes
of a particular Gene Ontology category or expressed at a
particular level, and those having various levels of predicted
binding affinity. As we have shown here, the method can also
be used to pinpoint signals of selection within elements, by
partitioning them based on structural features (e.g., particular
motif positions or particular miRNA structural compart-
ments). Similar analyses could be used to contrast regions
of the genome having different epigenomic marks, sequences
nearby and far from genes, sequences on sex chromosomes
and autosomes, or any number of other biologically signifi-
cant genomic partitions.

INSIGHT could be extended in various ways to improve
the fit of the model to the data and broaden the utility of the
program. In this analysis, we had a sufficiently complete col-
lection of human variation data to simply discard positions
with missing data in one or more samples. In cases of more
missing data, however, it may be worthwhile to use the

strategy of adjusting Watterson’s constant an in the appro-
priate conditional distributions (table 3) based on the
number of samples for which data are available at each ge-
nomic position. This simple approach should work well as
long as the amount of missing data is not excessive, but it will
require some care in programming to efficiently accommo-
date site-wise variation in an (supplementary methods,
Supplementary Material online). Another useful extension
would be to allow for variation across loci in the global pa-
rameters �, �, and � , say, by assuming locus-specific param-
eters are drawn from (discretized) Beta (for �) or Gamma (for
� and �) distributions and estimating the hyper-parameters
for these distributions from the data. This strategy should
improve model fit considerably in cases of variable selection
across loci, similar to phylogenetic models that allow for rate
variation among sites (Yang 1994). A further extension would
be to use a fully Bayesian approach and infer posterior distri-
butions for the parameters of interest. This would also be
fairly straightforward, but would most likely require Markov
chain Monte Carlo sampling or variational Bayes approxima-
tions. These and other extensions would help further in using
patterns of polymorphism and divergence to shed light on
recent evolutionary processes, particularly in noncoding re-
gions, and may improve predictions of the fitness effects of
mutations across the genome.

Supplementary Material
Supplementary methods, tables S1–S3, and figures S1–S5 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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