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ABSTRACT Structural equation models (SEMs) are multivariate specifications capable of conveying causal relationships among traits.
Although these models offer insights into how phenotypic traits relate to each other, it is unclear whether and how they can improve
multiple-trait selection. Here, we explored concepts involved in SEMs, seeking for benefits that could be brought to breeding
programs, relative to the standard multitrait model (MTM) commonly used. Genetic effects pertaining to SEMs and MTMs have distinct
meanings. In SEMs, they represent genetic effects acting directly on each trait, without mediation by other traits in the model; in MTMs
they express overall genetic effects on each trait, equivalent to lumping together direct and indirect genetic effects discriminated by
SEMs. However, in breeding programs the goal is selecting candidates that produce offspring with best phenotypes, regardless of how
traits are causally associated, so overall additive genetic effects are the matter. Thus, no information is lost in standard settings by using
MTM-based predictions, even if traits are indeed causally associated. Nonetheless, causal information allows predicting effects of
external interventions. One may be interested in predictions for scenarios where interventions are performed, e.g., artificially defining
the value of a trait, blocking causal associations, or modifying their magnitudes. We demonstrate that with information provided by
SEMs, predictions for these scenarios are possible from data recorded under no interventions. Contrariwise, MTMs do not provide
information for such predictions. As livestock and crop production involves interventions such as management practices, SEMs may be
advantageous in many settings.

STRUCTURAL equation models (SEMs) (Wright 1921;
Haavelmo 1943) are multivariate models that account

for causal associations between variables. They were adap-
ted to the quantitative genetics mixed-effects models set-
tings by Gianola and Sorensen (2004). These models can be
viewed as extensions of the standard multiple-trait models
(MTMs) (Henderson and Quaas 1976) that are capable of
expressing functional networks among traits. Gianola and
Sorensen also investigated statistical consequences of causal
associations between two traits when they are studied in
terms of MTM parameters, expressed as functions of SEM
parameters. Additionally, these authors developed inference
techniques by providing likelihood functions and posterior
distributions for Bayesian analysis and addressed identifi-
ability issues inherent to structural equation modeling.

The work of Gianola and Sorensen (2004) was followed
by several applications of SEMs to different species and
traits, such as dairy goats (de los Campos et al. 2006a), dairy
cattle (de los Campos et al. 2006b; Wu et al. 2007, 2008;
Konig et al. 2008; Heringstad et al. 2009; Lopez de Maturana
et al. 2009, 2010; Jamrozik et al. 2010; Jamrozik and
Schaeffer 2010), and swine (Varona et al. 2007; Ibanez-
Escriche et al. 2010). Extensions were proposed to account
for heterogeneity of causal models (Wu et al. 2007), to in-
clude discrete phenotypes via a “threshold” SEM (Wu et al.
2008), to study heterogeneous causal models using mixtures
(Wu et al. 2010), and to analyze longitudinal data using
random regressions (Jamrozik et al. 2010; Jamrozik and
Schaeffer 2010). The likelihood equivalence between MTMs
and SEMs was addressed by Varona et al. (2007). As an
attempt to tackle the problem of causal structure selection,
Valente et al. (2010) proposed an approach that adapted the
inductive causation (IC) algorithm (Verma and Pearl 1990;
Pearl 2000) to mixed-models scenarios, allowing searching
for recursive causal structures in the presence of confound-
ing resulting from additive genetic correlations between
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traits. The development and application of such methodol-
ogies are reviewed in Wu et al. (2010) and Rosa et al.
(2011).

All aforementioned articles have applied Gianola and
Sorensen’s (2004) mixed-effects SEM and inference machin-
ery. However, the contrasting of the results from SEMs and
MTMs were generally restricted to the usual model compar-
ison criteria based on goodness of fit or by exploring the
SEM’s greater flexibility in expressing complex associations
among phenotypes (e.g., the possibility of distinguishing be-
tween direct and indirect effects among traits). Nevertheless,
some authors have pointed out that even though reduced
SEMs and MTMs may yield similar inferences regarding dis-
persion parameters, interpretation and use of the models for
selection purposes could differ if causal effects among traits
actually exist (de los Campos et al. 2006b). Resolving this
major issue would indicate how important or useful SEM
could be for breeding programs.

Clearly, investigating whether and how selection would
differ between a SEM and a MTM applied to a set of phe-
notypic traits is of importance and interest. However, this
has not been done yet. So far, almost all articles that fol-
lowed Gianola and Sorensen (2004) had a similar structure.
First, they proposed a specific application of a mixed-effects
SEM to study a set of traits assumed to have complex rela-
tionships among them, with the rationale that accounting
for causal relationships might lead to a better model than
the traditional MTM. Then, results in terms of inferences
and causal interpretations for the structural coefficients
among phenotypes were presented. Finally, they presented
inference regarding the remaining parameters in terms of
the “reduced” model. To do this, estimates of additive ge-
netic effects and associated dispersion parameters pertain-
ing to the SEM are “rescaled” in terms of those from the
standard MTM to provide meaningful comparisons. While
these articles focus on inferences of structural coefficients
and their causal interpretations, fitting a SEM and convert-
ing its genetic parameters to MTM parameters negates the
advantages of using a causal model as a SEM for quantita-
tive genetic analysis. Consequently, the application of the
SEM loses its appeal, especially as this approach introduces
additional complexities such as causal structure selection
(Valente et al. 2010) and parameter identifiability issues
(Wu et al. 2010).

Many questions regarding the use of SEMs in the animal
or plant breeding context include, for example, the follow-
ing: (1) From a plant and animal breeding standpoint, why
do we want to know causal relationships among pheno-
types? (2) Does knowledge of the causal model change
predictions, or even the set of selected subjects, in a breeding
program? And (3) how useful are the additive genetic effects
and other parameters pertaining to SEMs?

In this article, we attempt to shed some light on these
questions by investigating whether SEMs offer any advan-
tages for decision making in a breeding program in
comparison with MTMs. The article is structured as follows:

The models to be contrasted are described in the section
Structural Equation Models and Classical Multiple-Trait Mod-
els. Before comparing the advantages from using each
model, we describe the difference in meaning of the param-
eters of each model (e.g., genetic effects and genetic cova-
riances) in Meaning of Parameters in the SEM and the MTM.
In the next two sections, we compare the usefulness of both
models in two different scenarios involving complex rela-
tionships between traits. A stable scenario presented in the
section Multiple-Trait Settings with Recursive Effects is dis-
cussed first. Next, a scenario with external interventions
is presented in Consequences of Modifications in the Causal
Model. Also in this section, results of a previously published
SEM application are reinterpreted under the possibility of
interventions. Additional remarks are made in Discussion.

Structural Equation Models and Classical
Multiple-Trait Models

Letting yi be a vector containing observations for t different
traits observed in subject i, a linear mixed-effects SEM, as
proposed by Gianola and Sorensen (2004), may be repre-
sented as

yi ¼ Lyi þ Xibþ ui þ ei; (1)

where L is a t · t matrix filled with zeros, except for specific
off-diagonal entries according to a causal structure (Valente
et al. 2010). These nonnull entries contain parameters
called structural coefficients that represent the magnitude
of each linear causal relationship between traits. Further-
more, b is a vector of “fixed” effects associated with exoge-
nous covariables in Xi, ui is a vector of additive genetic
effects, and ei is a vector of model residuals. The vectors
ui and ei are assumed to have the joint distribution�

ui
ei

�
eN

��
0
0

�
;

�
G0 0
0 C0

��
;

where G0 and C0 are the additive genetic and residual co-
variance matrices, respectively.

By reducing the model via solving (1) for yi (Gianola and
Sorensen 2004; Varona et al. 2007), the SEM becomes
ðI2LÞyi ¼ Xibþ ui þ ei, such that

yi ¼ ðI2LÞ21 Xibþ ðI2LÞ21ui þ ðI2LÞ21ei

¼ u*i þ u*i þ e*i ; (2)

where �
u*
i

e*i

�
eN

��
0
0

�
;

�
G*
0 0
0 R*

0

��
; (3)

with G*
0 ¼ ðI2LÞ21G0ðI2LÞ219 and R*

0 ¼ ðI2LÞ21C0ðI2
LÞ219. This transforms this model into a MTM, which
ignores the causal relationships among traits.
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Meaning of Parameters in the SEM and the MTM

The reduction of the SEM leads to a MTM parameterized in
such a way that both models produce the same joint probability
distribution of phenotypes. Therefore, the essential difference
between these models cannot be articulated in terms of
expressive power of joint distributions or goodness of fit. In
this context, the only advantage of SEMs is that they can
potentially describe more parsimoniously the distribution
represented by a standard MTM. However, a fundamental
difference between both models is that the SEM not only
describes the distribution of data, but also expresses causal
relationships among traits. The implication is that each
equation should be interpreted as a causal mechanism,
where the quantity in the left-hand side is causally de-
termined by the quantities in the right-hand side, but not the
other way around. Therefore, the causal interpretation of
SEM induces viewing the sign “=” in (1) as actually represent-
ing an asymmetrical causal connection, although it is still sym-
metric regarding the representation of relationships between
mathematical quantities. In other words, although the quantity
assigned to the trait in the left-hand side (LHS) is the same as the
quantity given by the function in the right hand side (RHS), the
former is determined by the latter (Pearl 2000, pp. 68 and 69;
see also the epilogue for a nontechnical introduction to Pearl’s
work). The function in the RHS of one equation may contain
traits that are in the LHS in other equations in the same model if
traits present causal relationships among themselves. Note that
in the process of reducing the SEM into a MTM, some terms are
switched from the RHS to the LHS and vice versa, which erodes
the expression of causal relationships between traits, although it
does not change their statistical association or the mathematical
relationship among observations, model parameters, and resid-
uals. In MTMs, on the other hand, all associations between traits
stem from covariances among random variables that are consid-
ered explicitly in the model or among residuals.

Both SEMs and MTMs include additive genetic effects,
which are pivotal quantities in animal and plant breeding.
However, the meaning of these quantities depends on the
model adopted. Take the genetic effects from a SEM, i.e., ui

in (1). As specified, each equation is a description of how the
value of a given trait is not only associated, but also defined
by its causal parents (the variables that exert a causal effect
on such trait). However, the effects from other phenotypic
traits (if any) are already accounted for in the equation for
a particular trait. In this specification, SEM genetic effects
cannot be simply described as effects of genes on a trait, but
as the effect of the genome (or of genes) on that trait while
ideally holding the value of the remaining traits (physically,
not by statistical conditioning) constant (Pearl 2000, Defi-
nitions 5.4.2 and 5.4.3 on p. 164). This is equivalent to
interpreting the genetic effect as the direct effect of genes
on a specific trait, free from genetic effects mediated by other
phenotypic traits that may also have causal influence on it.
Statistically, these effects could be thought of as standard
genetic effects influencing ðI2LÞyi instead of yi (Gianola

and Sorensen 2004), where ðI2LÞyi represents a vector of
phenotypes corrected for causal influences among traits. For
that reason, the SEM genetic effect could be seen as a “direct”
genetic effect, i.e., as part of an “overall” genetic effect that
lumps together direct and “indirect” genetic effects. The latter
term refers to genetic effects on one trait that are mediated by
other traits.

As an example, consider three traits (with phenotypes y1,
y2, and y3) having the causal structure depicted in Figure 1,
where u9 ¼ ½u1; u2; u3� and e9 ¼ ½e1; e2; e3� represent ad-
ditive genetic effects and residual effects, respectively. Rela-
tionships among y, u, and e can be described via the SEM8<

:
y1 ¼ u1 þ e1
y2 ¼ l21 y1 þ u2 þ e2
y3 ¼ l32 y2 þ u3 þ e3;

which is similar to (1) if fixed effects are omitted, and

L ¼
2
4 0 0 0
l21 0 0
0 l32 0

:

3
5

In addition, additive genetic and residual covariance struc-
tures are given by

VarðuÞ ¼ G0 ¼
2
4 s2

u1 su1;u2 su1;u3
su1;u2 s2

u2 su2;u3
su1;u3 su2;u3 s2

u3

3
5

and

VarðeÞ ¼ C ¼
2
4s2

e1 0 0
0 s2

e2 0
0 0 s2

e3

:

3
5

Note that as C is diagonal, the parameters of the SEM are
identifiable for any acyclic causal structure among traits.
The reduced version of the SEM is

y ¼ ðI2LÞ21uþ ðI2LÞ21e

¼ u* þ e*;

Figure 1 Hypothetical recursive causal structure involving three pheno-
types (y1, y2, and y3), influenced by genetic effects (u1, u2, and u3) and
residuals (e1, e2, and e3). Bidirected arcs connecting the u’s represent
genetic correlations.
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yielding:

y1 ¼ u1 þ e1 ¼ u*1 þ e*1
y2 ¼ l21ðu1 þ e1Þ þ u2 þ e2 ¼ ðl21u1 þ u2Þ þ ðl21e1 þ e2Þ ¼ u*2 þ e*2
y3 ¼ l32½l21ðu1 þ e1Þ þ u2 þ e2� þ u3 þ e3

¼ ðl32l21u1 þ l32u2 þ u3Þ þ ðl32l21e1 þ l32e2 þ e3Þ ¼ u*3 þ e*3:

Note that u1, u2, and u3 represent genetic effects that
directly affect y1, y2, and y3, respectively. Further, the direct
genetic effect on y2 (i.e., u2) has an indirect effect on y3, and
genetic effects that directly influence y1 (i.e., u1) also affect
y2 and y3 indirectly. In the SEM, the genetic effects represent
the joint effect of all genes directly contributing to variation
of each phenotypic trait, but their effects are further “trans-
mitted” to other phenotypes through the causal network.
While the SEM distinguishes between the direct and the
indirect effects, its reduced form transforms genetic effects
into effects pertaining to a model that ignores the causal
association among traits, i.e., the MTM. For that reason,
a genetic effect pertaining to a MTM [that is, (2) and (3)]
represents the overall genetic effect exerted by the genome
of the individual over each trait through all causal paths. In
the example of Figure 1, the overall genetic influence on
trait 2 ðu*2Þ is obtained by reducing the model, producing
the relationship u*2 ¼ l21u1 þ u2. A fraction of u*2 is due to
a direct effect on this trait, which is represented by u2 in our
SEM. Other genes may exert direct effects over trait 1 (u1),
which in turn influence trait 2 as l21u1, and therefore their
effects are included in u*2.

As a hypothetical field example (and disregarding the
actual biology involved), suppose that Figure 1 refers to
three traits of sows, where y1 is litter size, y2 is the number
of live piglets at 5 days after farrowing, and y3 is total
weight of weaned pigs, all measured as traits of the sow.
Because of the discrete nature of y1 and y2, this system
would be better represented by a SEM for discrete traits,
but for the sake of simplicity, assume that these traits are
approximately multivariate normal. For this scenario, u1
could be seen as the genetic merit of the sow regarding
the size of the litter produced, which could be associated
to a genetic effect on the size of the sow’s uterus or to the
number of ova produced. Further, the number of live piglets
at 5 days after farrowing (y2) is represented as causally
affected by litter size at the day of farrowing (y1) and by
a direct genetic effect represented by u2. This construction
implies that direct genetic effects acting over y1 would in-
fluence y2 indirectly, as the latter trait would also be affected
by the genetic merit for uterine size or ovulation rate. While
this effect would be completely mediated by y1, some addi-
tional genetic effects could affect y2 directly (e.g., genes
affecting quality and quantity of colostrum), which are rep-
resented by u2. Following the same interpretation, u3 would
represent the effect of genes on total weight of weaned pigs
by the sow without mediation of both remaining traits (e.g.,
genes related to total volume and quality of milk produced).
On the other hand, the genetic effect for weight weaned as

given by a MTM would encompass not only the effect repre-
sented by u3, but also those related to prolificacy and colos-
trum. This is clear in the reduced model, where u*3 ¼
l32l21u1 þ l32u2 þ u3. The same would apply to u*2, which
would contain effects of genes related to prolificacy (u*2 ¼
l21u1 þ u2). This example illustrates that the SEM is able to
differentiate between direct and indirect genetic effects,
something that cannot be accomplished via the MTM.

This difference between the natures of the genetic effects
represented by u and by u* is reflected in the genetic cova-
riances under a MTM or a SEM. In the SEM, genetic covari-
ability expresses association between direct effects and can
be thought of as due to genes that directly affect two traits
simultaneously or to linkage disequilibrium between genes
that affect two traits in a similar fashion. This is represented,
for example, by su1;u2 in the recursive model

y1 ¼ u1 þ e1
y2 ¼ l21y1 þ u2 þ e2;

(4)

where �
u1
u2

�
eN½0;G�;

with

G ¼
�

s2
u1 su1;u2

su1;u2 s2
u2

�

as represented in Figure 2.
However, the scenario imposes a second source of genetic

association between the two traits, because the genetic
effect represented by u1 also affects y2 indirectly. This (in-
direct) second source of covariation could even have a sign
that is opposite to that of the first source (covariance be-
tween direct genetic effects), so that genes that affect a pair
of traits could actually have “double consequences” (which
could be even antagonistic) in the observed association be-
tween phenotypes. As the meaning of genetic effects is dif-
ferent under the SEM or the MTM, the same applies to the
meaning of genetic covariances between traits. In the SEM,
genetic covariances represent only the first described source
of association, whereas in the MTM, genetic covariances

Figure 2 Hypothetical recursive causal structure involving two traits (phe-
notypes are y1 and y2) influenced by direct genetic effects u1 and u2 and
by residuals e1 and e2, respectively. Bidirected arcs connecting the u’s
represent genetic correlations.
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account for both sources. Therefore, even if the genes that
directly affect y1 have no direct effect on y2 and were in
linkage equilibrium with the genes that actually affect y2
directly, the indirect association between u1 and y2 would
be a source of genetic covariance between the two traits
under the MTM (covariance between MTM genetic effects)
that is not encompassed by genetic covariances under the
SEM. Nevertheless, all sources of association among traits
are accounted for by the SEM via the causal connections
among phenotypes. The relationship between the covarian-
ces from the two models is given by

s*
u1;u2 ¼ cov

�
u*1;u

*
2

�
¼ covðu1;u2 þ l21u1Þ ¼ su1;u2 þ l21s

2
u1;

where s*
u1;u2 is the genetic covariance under the MTM, and

l21s
2
u1 represents the indirect genetic association among

traits, a function of the genetic variance of trait 1 and of
the magnitude of the causal effect of trait 1 on trait 2.

Multiple-Trait Settings with Recursive Effects

Consider two traits involved in a network described by
a recursive SEM as in Figure 2. Here, data can be analyzed
by fitting a SEM with known causal structure and identifi-
able model parameters or by fitting a MTM. The latter
ignores the causal association between traits and is repre-
sented in Figure 3.

In a selection program, one is interested in selecting
candidates that result in progeny with the best expected
phenotypes. Suppose we have all the information available
from the SEM, including the causal structure, model param-
eters, and genetic values. The vector of SEM genetic effects
alone is not sufficient for predicting the expected phenotypes,
but this can be done by combining this information with
the causal structure and the structural coefficients. For the
scenario described, assume that the magnitude of the causal
relationship between y1 and y2 is represented by a structural
coefficient with value 20.5 and that both traits have the
same positive economic value per unit of measurement
so that subjects could be ranked using the sum of pre-
dicted phenotypes for both traits as criterion. Suppose
three candidates for selection, A, B, and C have SEM
breeding values u9A ¼ ½2; 2�;u9B ¼ ½1; 3�; and u9C ¼ ½3; 1�,
respectively. Predicted phenotypes can be obtained by
inputting these values into the SEM, so they would be
ranked as B, A, and C (with genetic merits ½1; 2:5�9,
½2; 1�9, and ½3; 20:5�9, respectively). This is done by cal-
culating E½yi1; yi2jui1; ui2� ¼ ½ui1; l21ui1 þ ui2� and using the
sum of predicted phenotypes as a selection criterion.
Note that the direct genetic effect on trait 1 exerts a (neg-
ative) effect on trait 2, while the direct genetic effect on
trait 2 does not affect trait 1.

A similar analysis of the impact of each SEM breeding value
on the phenotype is more awkward when the system involves
more traits and more complex causal structures. However,
a general method of finding the expected phenotypic con-

sequences conditionally on a vector of SEM additive genetic
effects is from the relationship u* ¼ ðI2LÞ21u. Therefore,
the SEM make available more information than the MTM
(e.g., causal relationships between traits and distinguishing
between direct and indirect genetic effects), which includes
the information needed to make phenotypic predictions.
However, the relevant information for such predictions is
given by the overall genetic effect, which is already provided
by the MTM. Therefore, the MTM has the same prediction
capabilities regardless of the causal model underlying the
traits, which does not even need to be known. In this stan-
dard framework, causal network learning would not con-
tribute with additional relevant information for a breeding
program.

Likewise, what genetic response is to be expected in
one trait when selection is applied on the other trait? As
mentioned, selection should not be based on SEM genetic
effects, but on their overall phenotypic consequences.
Suppose, for the same two-trait system described above,
a positive correlation between direct genetic effects. If, for
example, we select for subjects whose genetic effects result
in more favorable y2 (i.e., larger values for u*2 under the
MTM), we would tend to select individuals who have low
u1, because that would result in decreasing y1 and, conse-
quently, in an increase in y2 due to the causal association
between traits (i.e., u1 has a negative indirect effect on y2).
However, at the same time we would be selecting individ-
uals with high u2, which would imply some indirect selec-
tion for high u1 due to the positive SEM genetic correlation.
Therefore, selecting for u*2 would have an outcome consist-
ing of a combination of two antagonistic “influences” on u1
and, consequently, on y1. The magnitude and sign (or di-
rection) of the indirect selection for u1 would depend on
the relative magnitude of the associations represented by
each path. Ultimately, the correlated response to selection
would depend only on su1;u2 þ l21s

2
u1, which results from

the combination of both paths. For any causal model, these
consequences can be deduced from the relationship
G*

0 ¼ ðI2LÞ21G0ðI2LÞ219. Again, the MTM provides the
relevant genetic covariances regardless of the causal model
that generates the data, which does not even need to be
known for selection purposes.

Figure 3 Diagram representing the structure of a standard bivariate
model involving two traits (y1 and y2) influenced by genetic effects u*1
and u*2 and residuals e*1 and e*2. Bidirected arcs connecting u*’s and e*’s
represent genetic and residual correlations, respectively.
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Consequences of Modifications in the Causal Model

In the previous section, it was indicated that in standard
frameworks of genetic improvement of multiple traits with
stable causal models at the level of the phenotypes, there are
no advantages from knowing the causal structure and from
fitting a SEM. Nonetheless, knowledge of the causal relation-
ship among variables means being able to predict the outcome
of external interventions and counterfactuals. For example,
a structural equation y2 ¼ l21y1 þ e2 informs the value y2
would have if the value of y1 was set to y91, but it does not
provide any information about the value of y1 after setting y2
to a different value y92. Therefore, the advantages of using the
SEM may not be in the realm of probabilistic description of
events (as they do not differ from those of the MTM), but in
the prediction of effects of local interventions and modifica-
tions in the phenotypic network (Pearl 2000, section 3.2).
Therefore, the SEM can be used not only as a description of
a joint distribution, but also as a description of a set of auton-
omous causal mechanisms. Consequently, such models allow
the prediction of the effect of local modifications in the system
by making suitable changes in some equations, while keeping
the remaining ones unaltered. The updated probability func-
tion represents the consequences of the modification. These
interventions range from changing the functional relationships
between traits to simply forcing some variables to take on
some fixed values, which would be mirrored as equation prun-
ing and substituting the manipulated variable by a constant
(Pearl 2000, section 5.3.3). Such predictions cannot be per-
formed by purely descriptive statistical models, lacking infor-
mation about causal relationships among traits.

To illustrate this, assume the model with structure as in
Figure 2 and suppose the same aforementioned three sub-
jects A, B, and C, whose two-trait SEM breeding values given
by u9A ¼ ½2; 2�;u9B ¼ ½1; 3� and u9C ¼ ½3; 1�, respectively, are
to be ranked. Next, consider a situation where the causal
relationship between traits can be changed, for example,
by an external intervention. To obtain the overall genetic
effects resulting from such modifications, one can still use
u*
i ¼ ðI2LÞ21ui, but making suitable changes in the magni-

tudes of structural coefficients in L. For example, if l21 is
changed from 20.5 to 20.9, the three ranked subjects
would present MTM breeding values of ½1; 2:1�9, ½2; 0:2�9,
and ½3; 21:7�9 for B, A, and C, respectively, as opposed to
½1; 2:5�9, ½2; 1�9, and ½3; 20:5�9, respectively, for the same
individuals. Note that this modification influences the
expected phenotype (and consequently the expected pheno-
types of the offspring), increasing the magnitude of the dif-
ferences between subjects.

If the causal influence is blocked somehow, the edge
between traits is removed, and the SEM becomes

y1 ¼ u1 þ e1
y2 ¼ u2 þ e2;

such that every entry of L would be 0, and u*
i ¼

ðI2LÞ21ui ¼ ui. In this circumstance, variables that affect

trait 1 (including genetic effects represented by u1) would
not have any indirect influence on trait 2, such that genetic
effects under both the SEM and the MTM are equivalent. For
this scenario, the MTM genetic effects would be ½2; 2�9,
½1; 3�9, and ½3; 1�9 for A, B, and C, respectively, and any
choice among these three would be expected to have similar
overall economic consequences if the relative economic
value is the same for both traits.

When a modification in the causal model changes the sign
of the causal effect between traits, then the role of selection
for trait 1 is changed. In this case, increasing the genetic effect
for trait 1 would still have a desirable effect on trait 1 while
having a desirable effect on trait 2 as well. If the intervention
is analogous to, for example, assigning the value 0.5 to the
structural coefficient, the MTM breeding values would become
[3; 2.5]9, [2; 3]9, and [1; 3.5]9, for C, A, and B, which modifies
the ranking for selection (B, A, and C in the original scenario).

Finally, if we physically control the value of trait 1 by
holding it to a constant c, then the causal influence between
traits results in an average shift on trait 2. However, because
the value of trait 1 is determined by an external interven-
tion, the genetic effects of this trait have no influence on its
phenotype (and as a consequence, there is no indirect in-
fluence on trait 2 either). Therefore, the causal structure
changes to that shown in Figure 4, mirrored by a “surgery”
in the SEM (Pearl 2000), which becomes

y1 ¼ c
y2 ¼ l21cþ u2 þ e2:

Here, the overall mean of y2 is shifted by l21c and animals
would be selected on the basis of differences for the direct
genetic effect over trait 2 alone, because genetic merit for
trait 1 does not influence the phenotypes.

Making predictions when some variables in a causal
network are physically held constant is different from
making predictions based on simple conditional probabili-
ties. To illustrate this, consider a different modification, in
which y2 is determined by an external intervention, such
that the model becomes

y1 ¼ u1 þ e1
y2 ¼ c;

following the causal structure in Figure 5.

Figure 4 Hypothetical recursive causal structure as in Figure 2 after an
external intervention sets the value of y1 to a constant c.
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Here, as y2 is held constant whereas y1 is free to vary, the
genetic effects on y1 are given by u1, so that u1 would be the
sole criterion for selection. This could be expressed as
E½ y1jdoð y2 ¼ cÞ; u2; u1� ¼ E½ y1ju1�, where do() denotes that
a variable presents a given value due to external coercion.
For this intervention, one might be tempted to predict y1
from E½ y1j y2; u2; u1�, but the results would be different. Ac-
tually, this expression would reflect the expected value for y1
given that we observed a certain value for y2. This notion
contrasts with E½ y1jdoð y2 ¼ cÞ; u2; u1�, which expresses the
expectation of y1 given that y2 was coerced to c by an exter-
nal intervention. Predictions based on E½ y1j y2; u2; u1� would
be poor, since under no interventions y2 is affected by y1, so
that observing y2 updates the expectation of y1. Conversely,
y1 has no association with y2 if the value of the latter was
externally imposed, so that it should not have any bearings
on the prediction. Actually, even u2 affects E½ y1j y2; u2; u1�,
since such expectation is expressed conditionally on y2, mak-
ing the path y1 / y2 ) u2 active (Pearl 2000; Spirtes et al.
2000). In this case, the magnitude of u2 would mistakenly
be considered if the scenario depicted in Figure 5 holds.

It should be stressed that modifications and interventions
on the causal relationships between traits have an impact on
the prediction of offspring’s phenotypes, which could even
result in reranking of candidates for selection. As men-
tioned, predicting genetic merits for scenarios where such
modifications take place would not be possible using the
MTM, where causal relationships are not accounted for.
The modifications in breeding values get more complicated
to understand as the networks become more complex, with
more traits involved. However, the quantitative representa-
tion of this modification can be obtained easily by transform-
ing the SEM according to the modification under which
predictions will be made (e.g., by modifying structural coef-
ficients values or removing edges and assigning a fixed value
to phenotypes) and then computing ðI2LÞ21ui. Therefore,
the key pieces of information needed to predict breeding
values under interventions in the causal model are (1)
knowing how to represent the intervention or modification
in the L matrix and (2) inferring the direct genetic effect on
each trait. Fitting a SEM with a suitable causal structure is
necessary for that. By inferring SEM genetic effects, one
could potentially predict how the genetic merits of different
subjects change under a huge number of potential interven-
tions or modifications in the causal relationships among
traits, which is impossible when studying such systems with
standard MTMs.

Following the example given in Meaning of Parameters in
the SEM and the MTM, suppose that predictions are required
for total weight of piglets at weaning (y3). Given the model
assumed, the genetic merit for this trait (u*3) would be a com-
bination of direct genetic effects on the three traits in the
model. However, suppose further that predictions are nec-
essary for a production system that applies cross-fostering,
which is an external intervention where a constant value is
assigned to y2 (i.e., the same number of piglets in each litter

at 5 days after farrowing), so that this variable is no longer
affected by u2 or y1 and has a constant effect on y3. Under
this intervention, the causal graph is as in Figure 6, which
can be represented by the following SEM:

y1 ¼ u1 þ e1
y2 ¼ c
y3 ¼ l32cþ u3 þ e3:

By physically holding the value of y2 to a constant, the
genetic effects u1 and u2 have no indirect effects on y3; this
makes sense, as after cross-fostering, sows have an equal
litter size no matter how prolific they are (which could be
represented by y1) and regardless of their genetic merit for
piglet survival rate in the first 5 days after farrowing (which
would be indicated by y2 under no intervention). Genetic
merit for total weight of weaned pigs would then depend
only on direct genetic influence on this trait, e.g., via genetic
merit for milk production (which could be represented by
u3). Prediction of genetic merit in such a scenario would be
possible if a study under the nonintervention scenario was
made using the SEM, which would provide direct genetic
effects. On the other hand, predictions based on the MTM
are expected to be poor.

Another scenario illustrating the usefulness of SEM
applications is that provided by studies of first and second
lactation milk yield (MY) in cows, as suggested by Gianola
and Sorensen (2004). Perhaps cows with high first MY
records may receive preferential nutrition and management,
affecting the second lactation milk yield. This relationship
consists of a positive causal influence from first to second
lactation MY, with a causal structure the same as that
depicted in Figure 2, where y1 and y2 are the first and sec-
ond lactation MY records, respectively. The magnitude of the
structural coefficient reflects the intensity of the preferential
treatment. Studying the problem using the SEM instead of
the MTM would allow one to predict genetic merit (or off-
spring performance) of individuals in settings with different
magnitudes of preferential treatment or in scenarios without
preferential treatment at all, assuming there is no further
source of direct causation between traits. This could be done
by choosing a value of l21 that describes the scenario for
which the prediction will be made. An alternative analysis
to preferential treatment was proposed by Stranden and

Figure 5 Hypothetical recursive causal structure as in Figure 2 after an
external intervention sets the value of y2 to c.
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Gianola (1998), by use of t-distributed residuals in a mixed
model. This may alleviate the bias in the prediction of the
“true” genetic effect, which is considered to be the genetic
effect in the absence of preferential treatment. The construc-
tion made here by using the SEM enables one to predict the
direct genetic effects and, therefore, to obtain predictions of
genetic merit that apply not only in the absence of prefer-
ential treatment (the goal in Stranden and Gianola 1998),
but also under different levels of preferential treatment.
Furthermore, by using heterogeneous causal structures
(Wu et al. 2007), the various levels of preferential treatment
could be accommodated in the same analysis.

Inferences for scenarios with modifications could be made
also to investigate genetic association patterns. As discussed
in Multiple-Trait Settings with Recursive Effects, in a simple
two-trait SEM with a negative causal effect at the phenotypic
level and a positive covariance between the SEM genetic
effects, the sign and magnitude of a correlated response to
selection applied to one trait are given by combining two
antagonist paths, i.e., su1;u2 þ l21s

2
u1. A modification in the

causal relationships among phenotypes would alter the MTM
genetic covariance and, consequently, the magnitude or even
the direction of the correlated response to selection. Changes
in MTM genetic variances and covariances could be predicted
by knowing the dispersion parameters of SEM genetic effects
as well as the new value for l21. For more complex networks,
however, the consequences of modifications in the dispersion
of MTM genetic effects are more difficult to follow, regardless
of whether these modifications correspond to changing the
magnitude of causal relationships or physically coercing a phe-
notype to have a constant value. Consequences would follow
from the relationship G*

0 ¼ ðI2LÞ21G0ðI2LÞ219. Therefore,
one can compute, for example, the magnitudes of correlated
responses and heritabilities for scenarios with modified causal
relationships among traits, which could not be attained by
using the MTM.

Following the results of the investigation here described,
we present next some examples of how the concept of
intervention can make the results from previous applications
of the SEM in quantitative genetics more meaningful for the
context of breeding programs.

López de Maturana et al. (2009) proposed to study three
birth-related traits of primiparous Holstein cows: gestation

length (GL), calving difficulty (CD), and stillbirth (SB). CD
and SB were considered as categorical traits affected by
a liability variable, following a threshold model framework.
A mixed-effects threshold SEM was applied, assuming a re-
cursive causal structure where GL directly affected liabilities
of both CD and SB directly, and the liability of CD affected
the liability of SB as well. The structure considered is partially
presented in Figure 7A, where systematic environmental
effects and other random variables are omitted for simplicity.
Due to the nonlinear relationship between GL and the re-
maining traits, the magnitudes of causal associations were
allowed to be heterogeneous, so that specific sets of structural
coefficients were assigned according to four different inter-
vals of GL values: 261–267 days, 268–273 days, 274–279
days, and 280–291 days. Although all other SEM parameters
were regarded as homogeneous, assuming structural coeffi-
cient heterogeneity basically results in allowing for heteroge-
neity of many parameters of a reduced model.

From this causal model, it is implied that genetic effects
(represented by sire genetic effects in this study) on GL affect
SB via two paths: through the direct causal association between
both traits (or more precisely, through the direct causal as-
sociation between GL and liability for SB) and also indirectly
through the liability of CD. Posterior means of inferred
structural coefficients indicate that if the phenotype for GL is
between 280 and 291 days, genetic effects for longer gestation
would increase liability to CD, which would in turn increase
liability to SB. Additionally, large genetic effects for GL in this
same scenario would also increase liability for SB through the
direct connection between both traits. Individual overall ge-
netic effects for each trait could be obtained from fitting a GL
interval-specific MTM. However, in a context where cows
undergo cesarean sections, the difficulties in calving would be
externally fixed for all females, so that gestation length would
no longer affect it. Furthermore, CD would no longer be
affected by its SEM genetic effects, which could possibly
encompass effects of genes on pelvic area or calf frame size. By
externally fixing CD, genetics would affect SB differently,
because genetic effects coming from CD would be blocked,
and genetic effects of GL would affect SB only through a single
path instead of two. This intervention results in changing
individual genetic merits for SB, but information presented by
Lopez de Maturana et al. (2009) is sufficient to predict these
changes, as demonstrated next.

By fitting the SEM presented by these authors,
a vector u9i ¼ ½uGLi ; uCDi ; uSBi � is assigned to each sire i.
Overall sire effect for SB could be computed as u*SBi

¼
uSBi þ lSB;CDuCDi þ ðlSB;GL þ lCD;GLlSB;CDÞuGLi . For GL rang-
ing from 280 to 291 days, the posterior means inferred for
structural coefficients were 0.47, 0.23, and 0.60 for lCD;GL,
lSB;GL, and lSB;CD, respectively. In the context under
the aforementioned intervention, the model should be mod-
ified as presented in Figure 7B, such that sire effects for
SB should be compared using u*SBi

¼ uSBi þ lSB;GLuGL i .
For example, two sires with SEM genetic effects u9A ¼
½1; 0:4; 2 0:04� and u9B ¼ ½1; 2 0:4; 0:04� would have

Figure 6 Hypothetical recursive causal structure as in Figure 1 after an
external intervention sets the value of y2 to c.
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overall genetic effects as u*SBA
¼ 0:712 and u*SBB

¼ 0:312 on
a standard scenario, but the intervention would invert the
ranking of their effects on SB, which would be then
u*SBA

¼ 0:19 and u*SBB
¼ 0:27, respectively. Note that per-

forming a cesarean section would result in an average shift
on SB, but quantifying this shift is not necessary to compare
sires’ overall genetic effects for the modified scenario. Also,
following the concepts presented, it is possible to study how
the dispersion of random effects would change in a scenario
where calvings are assisted through cesarean section. For
example, the sire variance for SB would be expected to
change from 2.66 to 0.56.

For the considered range of GL, lower uGL i would have
a desirable effect on SB, but individuals with low uGL i are
also more likely to present GL ,280 days. Inferences indi-
cated that in this case, the causal relationship between GL
and SB is expected to be modified, so that lSB;GL would
become negative. Under these circumstances, lower genetic
effects for GL would have undesirable effects on SB instead
of desirable effects. The information provided by this anal-
ysis allows one to compare sire genetic effects, considering
not only modifications due to external interventions (e.g.,
cesarean sections) but also those under spontaneous changes
in causal relationships (controlled by the phenotype for GL)
or under combinations of both types of modifications.

Similar interpretations could apply to other studies. For
example, Konig et al. (2008) proposed a mixed-effects SEM
with three traits measured in Holstein cows, where the in-
cidence of claw disorders is affected by the test-day MY
before the occurrence, but it also affects the test-day MY
after the occurrence, resulting in a causal structure similar
to the one displayed in Figure 1. The causal structure sug-
gests that the overall genetic effect of a test-day MY can be,
in part, due to genetic effects affecting incidence of claw
disorders (since claw disorders affect subsequent milk pro-

duction) and also due to the genetic effect for prior milk
production (since it affects the incidence of claw disorders).
Fitting this model allows one to predict how eradicating
claw disorders through external intervention would change
genetic effects for milk production. For example, such in-
tervention would be expected to change the genetic variance
of test-day MY and the covariance between consecutive re-
cords for this trait.

Finally, Heringstad et al. (2009) proposed a mixed-effects
SEM with causal structure similar to the one presented in
Figure 7A to study three traits of Norwegian Red cows:
Liability to incidence of certain diseases was considered as
affecting the interval from calving to first insemination and
the liability to nonreturn rate after 56 days after first insem-
ination. Additionally, these two last variables presented a
causal connection directed from the former to the latter.
Inferences for SEM parameters would allow, for example,
one to predict and compare sire effects for situations in
which diseases are eradicated or in which a timed artificial
insemination program would externally coerce a value for
the time interval between calving and first insemination.
The authors also mention that different environmental con-
ditions could alter the magnitudes of causal relationships
between phenotypes. By expressing the expected change
as a new value for structural coefficients, one can compare
overall genetic effects for many different scenarios. That
would allow one to have a single set of predicted direct
genetic effects and to account for genotype · environment
interaction, if such interaction can be articulated in terms of
modifications in the causal relationships between traits.

Discussion

According to the theory of SEMs and MTMs, even when
there are complex causal relationships among phenotypes,
selecting based on breeding values and estimating corre-
lated responses to selection do not require knowing the
causal model. The traditional MTM would do the job by
expressing the information that is necessary for this task: the
overall effects of the subject’s genes over different traits and
the linear associations between those effects within the
same individual. However, using the SEM in a scenario with
stable causal relationships among traits allows predictions of
the genetic merit and of correlated response to selection
conditionally on a hypothetical modification or external in-
tervention in the causal model. This would be important,
since inferences made under a specific scenario may not
apply to different scenarios. Additionally, magnitudes of her-
itabilities and covariability of breeding values for different
traits could change due to intervention. Such predictions are
made by representing the intervention on the causal struc-
ture among phenotypes and by knowing the genetic effect
directly on each trait, as well as the dispersion parameters
that describe their joint distribution, which is possible by
fitting a SEM. Performing such predictions would not be
possible if the analysis is done using the MTM.

Figure 7 Acyclic causal relationships involving calving traits, sire effects,
and model residuals, where yGL, yCD, and ySB represent the phenotype for
gestation length, the liability to calving difficulty, and the liability to still-
birth, respectively; uGL, uCD, and uSB represent sire effects for gestation
length, calving difficulty, and stillbirth, respectively; and eGL, eCD, and eSB
represent model residuals for gestation length, calving difficulty, and
stillbirth, respectively, as postulated by Lopez de Maturana et al.
(2009). Systematic environmental effects and maternal grandsire effects
are not displayed. The structure B represents the structure A after external
intervention fixing the value of yCD.
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As obtaining predictions for different scenarios consists
essentially of predicting overall genetic effects for modified
networks, one could reasonably argue that the same predic-
tions could be achieved by adjusting a MTM for this new
scenario or treating the same trait measured in different
scenarios as distinct traits within a single MTM. In this case,
accounting for causal associations between phenotypes, as
well as distinguishing between direct and indirect genetic
effects, would not be necessary for predictions. Nevertheless,
the information carried by a mixed-effects SEM would provide
two advantages: (1) Predictions for a different scenario with
modifications on the phenotypic network would not require
data obtained from extra scenarios, while the approach with
the MTM would; and (2) even small networks can suffer
a huge number of possible interventions or combinations
of interventions, so that obtaining data from each possible
scenario and fitting the MTM to each scenario are not feasible.
On the other hand, the original SEM contains sufficient
information to attain predictions that are valid for all these
modified networks, and this information can be expressed
parsimoniously by assigning just one set of direct genetic ef-
fects for each subject (while the MTM approach would assign
scenario-specific genetic effects).

By bringing up the concept of external interventions and
combining it with the causal meaning of the SEM, the
usefulness of this modeling approach for animal breeding
applications gets clearer. Conversely, this method could be
useful for other tasks, such as predicting phenotypes for
individuals, instead of predicting their additive genetic effects
(i.e., the expected mean phenotype of their offspring). For this
purpose, combining the SEM and genomic information could
allow predictions of a different effect stemming from genes:
the genotypic effect (possibly accounting for nonadditive
effects such as dominance and epistasis), instead of additive
genetic effects as considered throughout this manuscript.
From a management point of view, the information conveyed
by genotypic effects would be more convenient than that from
additive genetic effects for the following reason: Deciding
whether each young individual should be culled, kept under
standard conditions, or kept and raised under personalized
management conditions depends on the effects of genes on
its phenotype and not on the mean phenotype of its offspring
(the latter effect would be relevant for a selection program).
These two effects are not identical if nonadditive effects take
place. A SEM that accounts for genotypic effects would enable
predictions of phenotypes in a scenario with interventions or
modifications in the causal network among phenotypes. These
predictions would aid in deciding what types of system (and
its external interventions) would be more suitable to each
individual, as well as aiding in the aforementioned manage-
ment decisions (i.e., culling, standard treatment, personalized
treatment, etc.), depending on how external interventions
take place.

Another possible application of the concepts presented here
is accounting for heterogeneous causal structures among
phenotypes (Wu et al. 2007), given that some of the structures

are a result of external interventions, and data are collected
under different circumstances. That could be applied to the
study of, for example, a system containing milk yield ð y1Þ,
feed intake ð y2Þ, incidence of estrus ð y3Þ, and a fertility trait
ð y4Þ, following that feed intake affects milk yield and inci-
dence of estrus (e.g., through the active metabolism of pro-
gesterone in the liver), and estrus affects fertility. Two
different structures to be simultaneously accounted for in
the model would be standard circumstances (Figure 8A)
and a timed artificial insemination program (Figure 8B), con-
sidering that in the last setting there is an external interven-
tion on incidence of estrus. In this case, although the SEM
would carry a single set of trait-specific direct genetic effects,
both causal structures would be accounted for in the analysis
and predictions for both scenarios would arise naturally,
changing according to how reproduction is managed. One
important issue about this system regards the uncertainty of
the nature of the negative association between milk yield and
reproduction: It is not established if it is as displayed in Figure
8A or if there is a direct causal effect from milk yield toward
fertility. Inference of causal relationships between phenotypes
is a topic currently under research by the authors, but it is
outside the scope of the present article.

In this study, it was assumed that the information carried
by the SEM was completely known. As the goal of this study
involved understanding the usefulness of causal models that
can be uncovered based on data and prior knowledge, we
considered causal structures that would allow parameter
identifiability from the likelihood function. Specifically, we
presented recursive structures with independent residuals.
In most applications that followed Gianola and Sorensen
(2004), causal structures among traits were assumed known
on the basis of prior knowledge on how traits are biologi-
cally associated or according to temporal information. In the
framework of these applications, the choice of causal struc-
tures could be aided by algorithms that explore spaces of
acyclic graphs (Pearl 2000; Spirtes et al. 2000; Valente et al.
2010) driven by data.

It should be stressed that the aforementioned assump-
tions cannot be avoided, because many distinct causal
models can generate exactly the same distribution, so that
the effects of interventions are not unambiguously discern-
ible from data alone. Causal assumptions are necessary to
establish the connection between the causal effect to be
inferred and some function of data. For the SEM applica-
tions, knowing the causal structures among traits is one of
these assumptions, but it is not sufficient to guarantee
identifiability of the causal effects. Take as an example data
generated from a SEM structured as depicted in Figure 1. If
inferences of causal effects are intended to be made by fit-
ting a SEM with correct causal relationship between pheno-
typic traits ðy1/y2/y3Þ, but without imposing any
restrictions on residual covariances, then data equally sup-
port infinite combinations of values for causal effects and
covariances among random terms, so that causal effects
(i.e., structural coefficients) are not identifiable. Given any
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pair of traits y1 and y2, the requirement for the identification
of direct causal effects between them (relative to a set of
traits and a causal graph G that contains them) is given by
the single-door criterion (Pearl 2000, Theorem 5.3.1).
According to this criterion, and using the d-separation con-
cept, the causal effect y1/y2 is given by the observed asso-
ciation between y1 and y2 conditionally on a set of variables Z
that does not contain a descendant of y2 and that d-separates
them in a graph Gl, which is G after removing the connection
between y1 and y2. Take as an example the causal effect
between yGL and ySB in Figure 7A. If the edge between these
traits is removed from the graph, both traits are still associ-
ated through two paths: one representing the indirect effect
of yGL on ySB through yCD and also a back-door path through
the associated genetic effects. The direct causal effects be-
tween yGL and ySB in a SEM structured as in Figure 7A are
identifiable because the equation for ySB, aside from present-
ing yGL in the RHS, would additionally account for both yCD
and sire effects for ySB ði:e:; uSBÞ, which act as a set Z that
satisfies the conditions of the single-door criterion. In general,
by postulating an acyclic causal structure and independent
residuals for the SEM, this criterion would be met for the
inference of every structural coefficient. However, this would
not apply if residuals were not assumed as independent. For
the example given, dropping this assumption would add
a back-door path through eGL and eSB that could not be
blocked and would then confound inference of structural
coefficients.

Considering that residuals in the SEM represent a set of
the effects of variables that affect the trait in the LHS of
structural equations but are not explicitly modeled, residual
covariance would represent that some of these variables

affect two traits simultaneously. Accordingly, the causal
meaning of postulating independent residuals is assuming
that every common causal parent of two or more traits is
already accounted for in the model. In the applications that
followed Gianola and Sorensen (2004), the diagonal struc-
ture of residual covariance matrices is generally presented as
something adopted for the sake of statistical identifiability of
parameters while its causal meaning is scarcely discussed.
However, the causal content of this assumption is generally
difficult to be absolutely guaranteed in real-world applica-
tions, especially in studies of observational data, as gener-
ally is the case in animal breeding.

Evidently, the assumptions involved in inferring causal
effects from observational data are stronger than those
required by models used simply for describing probabilities
or making predictions under no interventions. However,
these difficulties are actually key motivations for the study
presented here. Before making decisions about using or not
such models in the context of animal and plant breeding, it
is imperative to investigate whether they offer any advan-
tages in such contexts. It is obvious that if there were no
advantages, there would be no point in using a model that
accounts for causality, especially considering the challenges
in meeting the requirements for identifiability of causal
effects. Here, we have attempted to conduct this investiga-
tion, answering the questions of if and when the information
provided by such models is useful. To check how fruitful this
modeling strategy can potentially be, it is important to carry
out this study in the best-case scenario, where all assump-
tions hold. Nevertheless, it should be stressed that we con-
sidered no further or stronger assumptions in comparison to
the SEM applications that followed Gianola and Sorensen
(2004). As the goal of this study was to understand the
relevance of these studies for breeding purposes, we ac-
cepted their terms, followed their assumptions, and, using
the concept of intervention, made clearer what their results
would mean for breeding programs.

Because of these extra assumptions required to infer
causal effects from observational data, it is harder to obtain
results with the same level of certainty as, say, an estimated
correlation. Conversely, standard statistical models are not
exactly an alternative, because they do not provide the same
information. As presented here, from data recorded under
no interventions or modifications in the causal relationships
between traits, predictions for genetic effects valid for
scenarios under interventions cannot be provided by the
MTM, regardless of how much easier it is to accept its
assumptions. Additionally, abandoning the task of causal
inference because assumptions cannot be absolutely guar-
anteed ignores that assumptions may present a whole range
of degrees of certainty. Because absolute ignorance is not the
only alternative to absolute knowledge, it seems reasonable
to still perform such studies with suitable care, while
understanding the meaning of their assumptions and how
trustworthy they are. Under more difficult situations, the
SEM (and graph models in general) could still be used to

Figure 8 Hypothetical recursive causal structures involving four traits (y1,
y2, y3, and y4) influenced by genetic effects u1, u2, u3, and u4 and
residuals e1, e2, e3, and e4, respectively. Bidirected arcs connecting u’s
represent genetic correlations. The structure B represents the structure A
after external intervention, setting the value of y3 to c.
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evaluate and generate hypotheses or to identify variables to
be measured so that causal effects identifiability could be
achieved with more confidence in future studies or even to
articulate why a given causal effect is impossible to be
inferred (Pearl 2000).

We focused on advantages of using the SEM in animal and
plant breeding applications, where the target is to obtain
predictions of genetic effects. In this regard, some extensions
seem possible, e.g., developing selection index (Hazel 1943)
methodologies coupled with a SEM that account for such
interventions and modifications in causal networks. Here,
not only the location effects may be expressed differently as
direct and overall effects, but also the economic values of
each trait. On the other hand, the advantages of the SEM
are even clearer if the focus of the study is to explore the
causal relationships among phenotypic traits, because these
generally cannot be assessed via randomized experiments
(Shipley 2002). By performing causal modeling involving
economically important traits, it is possible to make pre-
dictions of effects of external interventions, and this could
be useful for farm management decisions and veterinary
practices such as application of drugs and related issues.
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