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ABSTRACT Genomic best linear unbiased prediction (BLUP) is a statistical method that uses relationships between individuals
calculated from single-nucleotide polymorphisms (SNPs) to capture relationships at quantitative trait loci (QTL). We show that genomic
BLUP exploits not only linkage disequilibrium (LD) and additive-genetic relationships, but also cosegregation to capture relationships at
QTL. Simulations were used to study the contributions of those types of information to accuracy of genomic estimated breeding values
(GEBVs), their persistence over generations without retraining, and their effect on the correlation of GEBVs within families. We show
that accuracy of GEBVs based on additive-genetic relationships can decline with increasing training data size and speculate that
modeling polygenic effects via pedigree relationships jointly with genomic breeding values using Bayesian methods may prevent that
decline. Cosegregation information from half sibs contributes little to accuracy of GEBVs in current dairy cattle breeding schemes but
from full sibs it contributes considerably to accuracy within family in corn breeding. Cosegregation information also declines with
increasing training data size, and its persistence over generations is lower than that of LD, suggesting the need to model LD and
cosegregation explicitly. The correlation between GEBVs within families depends largely on additive-genetic relationship information,
which is determined by the effective number of SNPs and training data size. As genomic BLUP cannot capture short-range LD
information well, we recommend Bayesian methods with t-distributed priors.

GENOMIC best linear unbiased prediction (BLUP) is a sta-
tistical method that has been used to predict height in

humans (Yang et al. 2010) and breeding values for selection
in animal and plant breeding (VanRaden 2008). It uses a so-
called genomic relationship matrix that describes genetic
relationships between individuals calculated from genotypes
at single-nucleotide polymorphisms (SNPs). In genomic se-
lection applications (Meuwissen et al. 2001), those individ-
uals comprise both training individuals that are phenotyped
for a quantitative trait and genotyped at SNPs and selection
candidates that are genotyped only.

Genomic BLUP differs from the traditional pedigree BLUP
(Henderson 1975) in the replacement of the pedigree
relationship matrix with a genomic relationship matrix.
Coefficients of the pedigree relationship matrix describe

additive-genetic relationships (Malécot 1948) between indi-
viduals at quantitative trait loci (QTL) conditional on pedi-
gree information, but it is not obvious to what extent the
genomic relationship matrix explains genetic covariances
between individuals at QTL. Despite this, several authors
called the genomic relationship matrix the actual (Hill and
Weir 2011) or realized relationship matrix (Goddard 2009;
Hayes et al. 2009b; Lee et al. 2010) as it describes identity-
by-descent at SNPs (Hayes et al. 2009b), assuming an ancient
founder population. However, these terms are misleading
because only genetic relationships at QTL matter in quanti-
tative-genetic analyses.

To understand better how genomic relationships capture
relationships at QTL, we propose to apply concepts of
pedigree analyses that define founders in a recent past
generation. Based on these concepts, we show that coef-
ficients of the genomic relationship matrix do not explain
genetic covariances between individuals at QTL unless
either there is linkage disequilibrium (LD) between QTL
and SNPs measured in founders or selection candidates are
related by pedigree to the training individuals. The latter
results in cosegregation of alleles at QTL and SNPs that are
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linked, also known as linkage information, and in additive-
genetic relationships at QTL captured by SNPs. These three
types of information affect differently the persistence of ac-
curacy of genomic estimated breeding values (GEBVs) from
BLUP over generations (Habier et al. 2007), realized selec-
tion intensities, and inbreeding. The contributions of these
parameters to accuracy of GEBVs depending on training
data size, extent of LD, and mating design have not been
demonstrated; a better understanding will allow us to
optimize statistical models, training data, and selection
strategies.

LD observed in the training data were first believed to be
the only source of information until Habier et al. (2007) and
Gianola et al. (2009) demonstrated that SNP genotypes also
capture pedigree relationships. Habier et al. (2007) parti-
tioned the observed accuracy of GEBVs into a part due to
LD in the training data and a remainder due to pedigree
relationships. Accuracy due to LD is the component of accu-
racy that persists over generations without retraining and
provides the accuracy for individuals that are unrelated to
the training individuals. Compared to Bayesian methods
with t-distributed priors (Meuwissen et al. 2001), accuracy
due to LD tends to be lower with genomic BLUP (Habier
et al. 2007, 2010a, 2011).

Goddard (2009) presented formulas for calculating the
accuracy due to LD, but derivations assume that the markers
completely capture the variability at the QTL. Nevertheless,
that accuracy was calculated as a function of the effective
number of chromosomal segments, which was estimated
only from effective population size and genome length. Real
data analyses have shown that accuracy due to LD varies for
quantitative traits with similar heritability (Habier et al.
2010a, 2011), and thus different genetic architectures can-
not be described by those and similar formulas (Daetwyler
et al. 2008, 2010). Also, modeling pedigree relationships
between training individuals and selection candidates is
not straightforward if only LD parameters are used to ex-
plain accuracy.

Cosegregation is traditionally exploited in linkage anal-
yses. The advantage of cosegregation information is the
ability to explain both rare allelic variants and structural
variations if they segregate within families. Several authors
(Goddard 2009; Hayes et al. 2009b; Habier et al. 2010a;
Goddard et al. 2011) assumed it is utilized in genomic BLUP,
but that has never been formally proven in the presence of
LD and pedigree relationships or quantified. A statistical
method that explicitly models both LD and cosegregation
was proposed for genomic selection (Calus et al. 2008),
but it did not outperform a Bayesian method similar to
BayesA (Meuwissen et al. 2001). The question remains,
how much cosegregation is captured implicitly by genomic
BLUP compared to methods that model LD and cosegrega-
tion explicitly (e.g., Meuwissen et al. 2002; Fernando 2003;
Pérez-Enciso 2003; Legarra and Fernando 2009)?

This article has two objectives: (1) to present concepts
that allow us to disentangle LD, cosegregation, and additive-

genetic relationships and (2) to study the contributions of
these parameters to accuracy of GEBVs depending on SNP
density, training data size, and extent of LD. Dairy cattle and
corn breeding scenarios were simulated to evaluate accuracy
of GEBVs both within and across families obtained by
different types of information, discrepancy between accu-
racy of GEBVs due to additive-genetic relationships and
accuracy of traditional pedigree-based selection indexes,
persistence of accuracy due to LD and due to cosegregation
from one generation to the next without retraining, and the
effect of each type of information on the correlation of
GEBVs within families. Accuracies within families for the
case of linkage equilibrium between QTL and SNPs were
used to demonstrate unambiguously that genomic BLUP
captures cosegregation, as there are no additive-genetic
relationships within family. In addition, formulas for the
covariance between true and estimated breeding values
were derived for a simplified scenario to prove that all three
sources of information are utilized by genomic BLUP.

Theory

Genetic model

Trait phenotypes of training individuals are simulated by the
assumed true genetic model

y ¼ 1mþWaþ e (1)

(Goddard 2009; Hayes et al. 2009b: Goddard et al. 2011),
where y, a, and e are vectors containing trait phenotypes,
additive QTL effects, and residual effects, respectively; m is
the overall mean; and W is a matrix of genotype scores at
biallelic QTL. Each score is coded as the number of one of
the two alleles at a locus adjusted by twice the frequency of
the counted allele in founders. Both QTL and residual effects
are treated as random with mean zero and with variance–
covariance matrices Is2

a and Is2
e , respectively. The aim of the

following statistical analysis is to use y for estimating the
true breeding value of an individual i given by gi ¼ w9ia,
where w9i contains QTL genotype scores.

Statistical model

Phenotypes generated by the genetic model are used in

y ¼ 1mþ g þ e; (2)

where g and e are vectors containing breeding values and
residual effects, respectively. Breeding values in g are ran-
dom with mean zero and variance–covariance matrix Gs2

b,
where G = ZZ9, Z is a matrix of genotype scores at K SNPs
(VanRaden 2008), s2

b ¼ s2
A=2

PK
k¼1pkð12 pkÞ (Habier et al.

2007), s2
A ¼ s2

a
PNqtl

q¼12pqð12 pqÞ is the additive-genetic var-
iance (Gianola et al. 2009, Equation 18), s2

a is the variance
of additive QTL effects with mean zero, pq is the allele fre-
quency at QTL q in founders, and pk is the allele frequency
at SNP k in founders. The genotype score of a training
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individual at SNP k is the number of one of its alleles ad-
justed by 2pk. Residual effects have mean zero and variance
Is2

e .

Statistical methods

Following Henderson (1973), the breeding value of individ-
ual i can be estimated by BLUP as

ĝi ¼ Gi2ðGþ IlÞ21ðy21m̂Þ;

where Gi2 ¼ z9iZ9 is a vector of genomic relationships be-
tween individual i and the training individuals, z9i is a vector
of adjusted SNP genotype scores of individual i, and
l ¼ s2

e=s
2
b. The overall mean, m, is estimated by generalized

least squares.

The three types of quantitative-genetic information

In pedigree analyses that model LD and cosegregation
explicitly (e.g., Pérez-Enciso 2003), genotype scores are re-
alized values of random processes that start with the sam-
pling of founder alleles and continue with the transmission
of those alleles from generation to generation down the
pedigree. Founder alleles from different loci, but on the
same gamete, are not sampled independently if loci are in
LD; and nonfounder alleles from different loci, but on the
same gamete, are not transmitted independently if loci are
linked. We define the following:

Linkage disequilibrium: Statistical dependency between
alleles at two or more loci on the same gamete. It is
measured only in founders and therefore summarizes
historic population events and describes genetic relation-
ships between founders.

Cosegregation: Deviation from independent segregation of
alleles on the same gamete if loci are linked. In other
words, it describes the inheritance of alleles at linked
loci. Thus, it is unnecessary to measure LD either in
nonfounder generations or within families, because
such LD is sufficiently explained by LD in founders
and cosegregation.

Additive-genetic relationships: Statistical dependency be-
tween alleles from the same locus but from two different
gametes. In genomic BLUP, any SNP can contribute ad-
ditive-genetic relationship information between two indi-
viduals at QTL because, if there is a possibility that the
SNP alleles on the two gametes can be traced back to
a common founder allele, the same would be true at
any QTL.

In pedigree analyses, these principles used to model
dependence between allele states at different loci on
a gamete are analogous to those used to model additive-
genetic covariances between pedigree members, using
a single additive-genetic variance defined in the founders
together with the additive-genetic relationship matrix con-
structed for the pedigree. In many analyses, however, the
pedigree is ignored and only a single value of LD is used to

characterize the dependence between alleles at different
loci. In modeling covariances, this is analogous to ignoring
the pedigree and estimating a single additive-genetic
variance for the entire pedigree, which is not done in
practice. In other situations, LD is defined for each family.
This is analogous to defining a family-specific additive-
genetic variance, which also is not done.

Simulations

The aim was to study contributions of LD, cosegregation,
and additive-genetic relationships to accuracy of GEBVs in
dairy cattle and corn breeding scenarios. Factors analyzed
were SNP density, training data size, extent of LD, and
different relationships between training and validation
individuals.

Designs for analyzing different types of information

Four designs were considered that differ in the types of
genetic information utilized in genomic BLUP. As summa-
rized in Table 1, these designs utilized (1) only founder LD
(LD only), (2) only additive-genetic relationships (RS) (RS
only), (3) additive-genetic relationships and cosegregation
(CS) (RS + CS), and (4) all three sources of information
(RS + CS+ LD). In LD only, training and validation individuals
were unrelated, whereas in all other cases each validation
individual had the same number of relatives in training. In
RS only, QTL were located on different chromosomes than
SNPs to avoid linkage between these two types of loci, and
chromosomes carrying the QTL were simulated indepen-
dently from the chromosomes with SNPs to exclude LD be-
tween QTL and SNPs. In designs with cosegregation or LD,
all loci were located on the same chromosomes to ensure
linkage. In the RS + CS design, QTL and SNPs were in
linkage equilibrium by resampling founder alleles at QTL,
using founder allele frequencies. Importantly, SNPs were
always in LD, because this has a large effect on capturing
information from additive-genetic relationships and cosegre-
gation. In RS + CS + LD, QTL and SNPs were in LD.

Pedigree structure

Two types of pedigrees were simulated as summarized in
Table 2: one represents a cross-validation scenario from
dairy cattle breeding, and the other one is a top-cross design

Table 1 Simulated designs that differ in the quantitative-genetic
information available for genomic prediction

QTL and SNPs are

Design Linked In LDa SNPs are in LDa Relatedb

LD only Yes Yes Yes No
RS only No No Yes Yes
RS + CS Yes No Yes Yes
RS + CS + LD Yes Yes Yes Yes
a LD measured in founders.
b Training and validation individuals are related.
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(Falconer and Mackay 1996, p. 276) from corn breeding
similar to those in Albrecht et al. (2011). The dairy cattle
pedigree consisted of 14, 143, or 285 families, each having 7
half sibs in training and 10 in validation. Hence, each vali-
dation individual had 7 half sibs in training. In the LD-only
design, none of the validation individuals was related to the
training individuals, while the half-sib structure in training
was retained to capture the same LD information as in the
other information designs. The total numbers of training
individuals were 98, 1001, and 1995, according to the num-
ber of half-sib families in the pedigree.

The corn breeding pedigree consisted of either 15 or 60
families, each having 60 doubled haploids (Bernardo
2010) that descended from two inbred parents. Each dou-
bled haploid was crossed to a single inbred called tester
(Bernardo 2010) that is used across all families to gener-
ate hybrids. Half of the hybrids were used for training and
the other half for validation, so that each validation hybrid
had 30 closely related hybrids in training. In the LD-only
design, training and validation hybrids were unrelated. In
total, the training set consisted of either 450 or 1800
hybrids depending on the number of families simulated
(Table 2). Persistence of LD and cosegregation informa-
tion without retraining was evaluated by simulating vali-
dation hybrids that were derived from the next generation
of doubled-haploid families (Figure 1). These doubled
haploids were the grand-progeny of the original inbred
parents, where one parent was a founder, while the other
parent was a full sib of those doubled haploids that had
training hybrids. A family of the next generation had 30
doubled haploids, each having one validation hybrid,
where the tester was the same in both generations.

Genome structure

The number of chromosomes, their length, and the number
of SNPs per chromosome differed for the two types of
pedigrees. These data were provided by DuPont Pioneer for
maize and by the US Department of Agriculture (USDA) for
dairy cattle (G. Wiggans, personal communication) as
presented in Supporting Information, File S2 and File S3,
respectively. The ten Zea mays chromosomes with 55,843
SNPs were used in the corn breeding scenario, and the 29
bovine autosomes with 47,833 SNPs were used in the dairy
cattle scenario. SNPs were evenly spaced and 200 QTL were
randomly positioned on each chromosome in addition to the
SNPs.

LD was simulated by starting with a base population of
1500 individuals in linkage and Hardy–Weinberg equilibria
and allele frequencies of 0.5. As outlined in Table 3, this
population was randomly mated, excluding selfing, for
1000 discrete generations to generate short-range LD due
to genetic drift between biallelic loci. Afterward, the popu-
lation was reduced to a size of 100 individuals and randomly
mated for another 15 discrete generations to extend the
range of LD. The same simulation scheme was used by Hab-
ier et al. (2010b), showing good agreement between simu-
lated LD and LD observed in real dairy cattle populations
(De Roos et al. 2008). Simulations using short-range LD
were generated by omitting the last 15 generations with
100 individuals. For comparisons of accuracies from the
pedigree-based selection index with accuracies of GEBVs
due to additive-genetic relationships, founders of simulated
pedigrees were not allowed to be closely related. Therefore,
in the scenario with long-range LD (short-range LD) the 100
(1500) individuals from generation 1015 (1000) were ran-
domly mated to create 10,000 offspring, which were then
randomly mated for another 2 discrete generations, while
retaining a constant population size (Table 3). Founders of
pedigrees used to simulate training and validation individu-
als were drawn without replacement from the last genera-
tion of 10,000 individuals. The number of crossovers in
meiosis was simulated by a binomial mapping function with
mean of 1 crossover per morgan (Karlin 1984), crossover
positions were uniform, and the mutation rate was
2.5 · 1025 as in other simulations (Habier et al. 2007,

Table 2 Dairy cattle and corn breeding scenarios simulated in combination with short- and long-range LD, the four information designs,
various SNP densities, and 20 QTL per chromosome

Pedigree type No. chromosomes h2 Family type Family size in traininga Scenario No. families Training size No. replicates

Dairy cattle 29 0.5 Half sibs 7 1 14 98 750
2 143 1001 300
3 285 1995 75

Corn 10 0.33 Full sibs 30 4 15 450 1000
5 60 1800 200

a Corresponds to the number of relatives of a validation individual in training.

Figure 1 Top-cross design showing one of the families used in cross-
validations with training hybrids descending from the first generation of
doubled haploids and validation hybrids descending from the next gen-
eration of doubled haploids. Both training and validation hybrids come
from the same inbred tester, ITester.
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2009; Daetwyler et al. 2010; Calus and Veerkamp 2011;
Bastiaansen et al. 2012). The average LD between adja-
cent SNPs in the scenarios long-range LD and short-range
LD was 0.21 and 0.15, respectively, and LD between QTL
and SNPs is depicted in Figure 2.

SNP density was varied by sampling a subset of SNPs for
each analysis from the total number of available SNPs,
where the number of SNPs per chromosome was propor-
tional to chromosome length as shown in File S2 and File
S3. In the corn breeding designs, 195, 996, 4995, 9995,
19,995, and 39,996 SNPs were used in the statistical anal-
ysis, while in the dairy cattle designs 564, 2885, 14,483,
28,984, 43,483, and 47,831 SNPs were used. From the
200 QTL that were initially positioned on each chromosome,
only 20 were randomly selected in each replicate and effects
were sampled from a standard normal distribution. These
QTL effects were standardized such that the additive-genetic
variance was 1 in founders of the dairy cattle pedigrees and
2 in inbred founders of the corn breeding pedigrees.

Phenotypes

Phenotypes of training individuals followed the genetic
model of Equation 1, where the residual effects were
sampled from a standard normal distribution. Consequently,
heritability was 0.5 in cattle scenarios, whereas only one-
third of the variance of hybrid phenotypes was due to
additive-genetic effects as a result of the single tester.

Evaluation criteria: Accuracy of GEBVs was defined as
correlation between GEBVs and true breeding values of
validation individuals and was estimated both within and
across families. Across families means that one correlation was
calculated using validation individuals from all families,
whereas within families means that a correlation was calcu-
lated for each family. These accuracies were calculated for
each replicate of the simulation and averaged across repli-
cates. Accuracy of the pedigree-based selection index (pedi-
gree index) was calculated for the dairy cattle scenario by

rgi; Îi ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
nþ ð42 h2Þ=h2

r

(Mrode 2005, p. 9), where n is the number of half sibs of
validation individual i in training, and h2 is the heritability.

Another criterion of interest regarding the avoidance of in-
breeding and improving selection intensities in breeding
schemes is the correlation between GEBVs of selection can-
didates from the same family, rĝi ĝi9 (Hill 1976). It can be
estimated by the intraclass correlation (Snedecor and
Cochran 1967) with

r̂ĝi ĝi9¼
s2
b

s2
b þ s2

w
;

where s2
b and s2

w are variances between and within families,
respectively, estimated by a one-way ANOVA (Snedecor and
Cochran 1967). This intraclass correlation is used here to
determine the role of additive-genetic relationships in the
presence of LD and cosegregation as detailed in Discussion.

Results

Dairy cattle pedigree

Accuracies of GEBVs across families obtained with long-
range LD and 1001 training individuals are shown in Figure
3. Accuracies increased with SNP density and reached pla-
teaus in all four information designs, where those of RS only
and RS + CS plateaued at a lower SNP density than those of
LD only and RS + CS + LD. Even at the highest SNP density,
accuracy for RS only was 0.14 (60.002), lower than that for
the pedigree index. Cosegregation information contributed
only little to accuracy, both across (RS + CS) and within
half-sib families (results not shown). With LD, genomic
BLUP outperformed pedigree index with an accuracy of
0.56 (60.002) when each validation individual had seven
half sibs in training (RS + CS + LD), while the accuracy for
an unrelated validation individual was 0.09 (60.002) lower
(LD only). Figure 4A depicts accuracies of GEBVs with in-
creasing training set size obtained with long-range LD and
47,831 SNPs. As expected, accuracy due to LD increased
with training set size (LD only), but accuracy due to addi-
tive-genetic relationships declined (RS only), thereby in-
creasing the discrepancy to accuracy of pedigree index.
Similarly, cosegregation contributes less with increasing
training set size, both across (Figure 4A, RS + CS) and
within families (results not shown). As a result, the differ-
ence in accuracy for validation individuals that were either
related or unrelated to the training data decreased from
0.21 (60.005) to 0.05 (60.003) (LD only vs. RS + CS +
LD). Accuracies from LD only were lower for short-range LD
than those for long-range LD, while those from RS only and
RS + CS were higher (Figure 4B vs. 4A).

Intraclass correlations were 0.25 (60.002) at low SNP
density, increased with increasing SNP density (results not
shown), and quickly plateaued at values shown in Figure 5
for different training set sizes and information designs using
long-range LD. In general, a low intraclass correlation is
favorable in mass selection for low inbreeding and high re-
alized selection intensities. For LD only, intraclass correla-
tions were 0.29 (60.002) across all training set sizes, but

Table 3 Number of generations of random mating and population
size used to generate short-range and long-range LD

Short-range LD Long-range LD

Generation Size Generation Size

1 1,500 1 1,500
1,000 1,500 1,000 1,500
1,001 10,000 1,001 100
1,003 (founders) 10,000 1,015 100

1,016 10,000
1,018 (founders) 10,000
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when training and validation individuals were related, they
decreased with increasing training set size irrespective of LD
and cosegregation from 0.81 (60.002) to 0.37 (60.002).
Thus, intraclass correlations were very similar at a given
training set size for the information designs RS only, RS +
CS, and RS + CS + LD. The explanation is that the variance
of GEBVs both within and between families increased with
LD and cosegregation information.

Corn breeding pedigree

Accuracies of GEBVs within and across families increased
with SNP density and plateaued at different levels, depend-
ing on information utilized. In designs with LD, plateaus
were reached at higher SNP densities than in RS only and
RS + CS, especially as training set size increased (results not
shown). Figure 6A depicts accuracies of GEBVs across fam-
ilies obtained with long-range LD and 39,996 SNPs for 15
and 60 doubled-haploid families used in cross-validations.
Accuracies were much higher for validation individuals that
were related to the training data (LD only vs. other designs),
because 30 related training hybrids per validation individual
provided extensive additive-genetic relationships, resulting
in an accuracy of 0.56 (60.003) for RS only. Cosegregation
information increased that accuracy considerably by 0.09
(60.004), while LD added only little more (RS only vs.
RS + CS and RS + CS vs. RS + CS + LD). As training set
size increased from 450 to 1800 hybrids, accuracies of LD
only and RS + CS + LD increased by 0.2 (60.003) and 0.05
(60.003), respectively, whereas those of RS only and RS +
CS remained constant (Figure 6A). Accuracies within fami-
lies are depicted in Figure 6B for all information designs but
RS only, because additive-genetic relationships explain no
variation of GEBVs within families. For 15 families, cosegre-
gation provided more information than LD (RS + CS vs. LD
only). The difference between the designs LD only and RS +
CS + LD shows the contribution of cosegregation in the

presence of LD, which was 0.15 (60.003). As training set
size increased, more LD information and less cosegregation
information were exploited, so that accuracies of LD only
and RS + CS + LD increased by 0.19 (60.003) and 0.11
(60.002), respectively, while the accuracy of RS + CS de-
creased by 0.07 (60.002). Consequently, the contribution of
cosegregation in the presence of LD decreased by 0.09
(60.002) to 0.06 (60.002) (LD only vs. RS + CS + LD).

Figure 7 depicts accuracies within families for validation
hybrids of both the same generation as the 450 training
hybrids and the next generation. Accuracy of LD only
remained constant from one generation to the next, whereas
the accuracies of RS + CS and RS + CS + LD dropped by
0.17 (60.007) and 0.11 (60.006), respectively, due to the
decline of cosegregation information.

Discussion

The objectives of this article were (1) to present concepts that
allow us to disentangle LD in founders, cosegregation, and
additive-genetic relationships and (2) to study their contribu-
tions to accuracy of GEBVs by simulation of four designs that
differ in the types of information available (Table 1). In addi-
tion, formulas were derived in File S1 and File S4 for a simpli-
fied scenario proving that the three types of information
contribute to accuracy of GEBVs. In the following, mechanisms
that lead to the results are elaborated and then consequences
for practical application of genomic BLUP are discussed.

Concepts and simulation designs

The concepts presented here can be applied to any statistical
method. As for all pedigree analyses, contributions attrib-
uted to the three types of information depend on pedigree
depth. Generally, cosegregation is expected to become more
important as pedigree depth increases, but this requires
further investigations. Here, the pedigree consisted of only
one nonfounder generation in training, which allowed us to
evaluate cosegregation information from half- and full-sib
families. If the pedigree had more nonfounder generations
in training, cosegregation would also comprise information
from more distant relatives. Thus, a better understanding
can be gained by varying pedigree depth.

The LD-only design is a realistic scenario, whereas RS
only and RS + CS seem contrived. However, RS only always
occurs in reality when a SNP on one chromosome explains
variation at a QTL on another chromosome that is not
explained by LD and cosegregation. Also, intraclass correla-
tions have shown that the findings from RS only are relevant
for realistic scenarios, which are detailed later. As for RS +
CS, LD patterns vary across the genome; hence there may be
QTL that are in low LD with SNPs.

Information from LD

In the LD-only design, extent and amount of LD determine
both SNP density at which the plateau is reached (Figure 3)
and accuracy of GEBVs at the plateau (Figure 4A vs. 4B). For

Figure 2 Linkage disequilibrium between QTL and SNPs measured as r2

against map distance in centimorgans for the two scenarios long-range
and short-range LD and using formulas by Ohta and Kimura (1969) with
an effective population size of 1500.
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short-range LD as in humans (Reich et al. 2001) that SNP
density is expected to be higher and accuracy to be lower
than for long-range LD found in animals and plants under
selection (Andreescu et al. 2007). The reason is that with
increasing SNP density the shrinkage of SNP effects in ge-
nomic BLUP becomes stronger. An extreme case was de-
scribed by Fernando et al. (2007) in which loci were in
linkage equilibrium, but QTL were included together with
SNPs in genomic BLUP and BayesB (Meuwissen et al. 2001).
While BayesB found the QTL and provided high accuracies,
the accuracies of genomic BLUP decreased with increasing
SNP density until approaching the accuracy of pedigree
BLUP. This does not happen under realistic conditions, be-
cause with increasing SNP density more SNPs support the
same QTL and compensate shrinkage, which results in a bal-
ance expressed by the accuracy at the plateau. Under long-
range LD, QTL effects are captured by more SNPs than with
short-range LD, so that shrinkage has a smaller impact. Even
if QTL are included in the statistical model for genomic
BLUP, accuracy of GEBVs obtained under short-range LD
did not change for training data sizes used in this study. In
humans, training data sizes are much larger, but also mil-
lions of SNPs that affect shrinkage are used. Therefore, as
the amount of LD information is responsible for missing her-
itability in humans (Yang et al. 2010), we argue that Bayes-
ian methods with t-distributed priors, which are expected to
exploit LD better than genomic BLUP (Fernando et al. 2007;
Habier et al. 2007, 2010a, 2011), are more suitable than
genomic BLUP. This disagrees with results from Ober et al.
(2012), but that study used only 124 training individuals.

Information from additive-genetic relationships
and cosegregation

It can be shown that additive-genetic relationships are
captured best when SNPs are in linkage equilibrium,

segregate independently, and have a minor allele frequency
of 0.5. These SNPs are referred here to as ideal SNPs. In
Habier et al. (2007, 2010a), the accuracy of GEBVs due to
additive-genetic relationships obtained by genomic BLUP
approached the accuracy of pedigree BLUP when the num-
ber of simulated ideal SNPs exceeded the number of training
individuals. In reality, however, SNPs are in LD, linked on
a limited number of chromosomes, and the average minor
allele frequency is ,0.5. Thus, the actual number of SNPs in
the model is not informative about the ability to explain
additive-genetic relationships. Therefore, we define the ef-
fective number of SNPs (MSNP) as the number of ideal SNPs
that gives the same accuracy due to additive-genetic rela-
tionships as the actual number of SNPs in the model for
a given cross-validation scenario. The effective number of

Figure 3 Accuracy of GEBVs obtained by genomic BLUP, long-range LD,
and 47,831 SNPs for the four information designs and accuracy of ped-
igree index using 1001 training individuals structured into 143 half-sib
families and a heritability of 0.5. Each validation individual had 7 half sibs
in training in all designs but LD only. The number of replicates was 300.

Figure 4 (A and B) Accuracy of GEBVs and standard errors obtained by
genomic BLUP and 47,831 SNPs for the four information designs accord-
ing to training data size and extent of LD and accuracy of pedigree index
using a heritability of 0.5. Training data were structured into half-sib
families of size seven, and each validation individual had seven half sibs
in training in all designs but LD only. The numbers of replicates for train-
ing data sizes 98, 1001, and 1995 were 750, 300, and 75, respectively.
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SNPs was estimated here by additional simulations of the
RS-only design, using only ideal SNPs. For accuracies of 0.22
and 0.3 obtained with long-range and short-range LD (Fig-
ure 4, A and B, RS only), respectively, using 1001 training
individuals and 47,831 actual SNPs, MSNP was �2000 for
long-range LD and 6000 for short-range LD. Thus, MSNP

decreases with increasing range of LD and therefore
depends on effective population size. Also, MSNP is smaller
than the number of SNPs on high-density SNP chips, which
explains why the accuracy due to additive-genetic relation-
ships did not improve beyond a certain SNP density (Figure
3). Cosegregation is also captured best when SNPs are in
linkage equilibrium and have high minor allele frequencies,
because each family can have most distinctive SNP haplo-
types around QTL. With increasing range of LD, however,
SNP haplotypes become similar across families, so that the
ability to capture cosegregation decreases.

Information with increasing training data size

The increase in accuracy due to LD with training data size is
well known, whereas the decrease in accuracy of GEBVs due
to additive-genetic relationships in the dairy cattle design is
new. This decrease is related to the effective number of SNPs
and the level of additive-genetic relationships between
individuals. In RS only, consider the genomic relationship
matrix as an estimate of the pedigree relationship matrix
(Habier et al. 2007; Gianola et al. 2009). Deviations be-
tween the coefficients of these two matrices cause the linear
combinations of phenotypes for estimating GEBVs to be-
come inaccurate. For example, phenotypes of training indi-
viduals that are unrelated to the validation individual
contribute to the GEBV of a validation individual in genomic
BLUP. As training data size increases, more erroneous con-

tributions occur. The decay of accuracy with increasing train-
ing data size was lower with short-range LD than with long-
range LD, because the effective number of SNPs was larger
under short-range LD, resulting in smaller deviations be-
tween those two matrices. In the corn breeding scenarios,
accuracies due to additive-genetic relationships did not de-
crease with increasing training data size (Figure 6) because
the level of pedigree relationships was higher than in dairy
cattle designs; with a higher level, the importance of inac-
curately weighted phenotypes relative to the phenotypes of
related training individuals becomes smaller.

In practice, decreasing information from additive-genetic
relationships may result in a smaller increase of accuracy
observed with real data or even a decay if LD information
cannot compensate for that loss. This can be suspected from
results of Habier et al. (2011), because the increase in accu-
racy due to LD from 4000–6500 training bulls was small.
Also, combining training data from different breeds (Hayes
et al. 2009a) may risk a reduction in accuracy due to additive-
genetic relationships. In contrast, if training data sets from
the same breed but different breeding regions are combined,
accuracy due to additive-genetic relationships can increase if
individuals are closely related as for example in dairy cattle
(Lund et al. 2011). The decline in accuracy due to additive-
genetic relationships with increasing training data size may
be avoided by simultaneously fitting polygenic effects via tra-
ditional pedigree relationships together with genomic breed-
ing values using Bayesian methods (Calus and Veerkamp
2007). This simultaneous inference of effects is necessary
because the partitioning of the genetic variance into poly-
genic and genomic components depends on training data
size.

Cosegregation information decreased with increasing
training data size (Figure 6) for similar reasons to those
described for additive-genetic relationships: genomic rela-
tionships estimate covariances between individuals at QTL,
where deviations from true covariances result in prediction
errors of GEBVs. Modeling LD and cosegregation explicitly
may avoid this decline in accuracy due to cosegregation.
Also, multiallelic markers such as copy number variants,
which are available from sequence data, may enhance utili-
zation of additive-genetic relationships and cosegregation.

Contributions to accuracy of GEBVs

The four information designs allowed us to evaluate the
maximal contribution of LD, cosegregation, and additive-
genetic relationships. The level of accuracy due to LD
depends on genome structure (Figure 4) and hardly on
the number of QTL (Daetwyler et al. 2010). However, this
may not be misinterpreted such that genetic architecture
does not affect the accuracy due to LD. Results of Habier
et al. (2010a, 2011) showed that even traits with similar
heritability, such as fat and protein yield, can have very
different accuracies due to LD. One explanation is that
QTL of different traits are in different LD with SNPs, because
the genome consists of long- and short-range LD patterns

Figure 5 Intraclass correlations and standard errors for GEBVs within
half-sib families obtained by genomic BLUP, long-range LD, and 47,831
SNPs according to training data size and information design. Training
data were structured into half-sib families of size seven, and each valida-
tion individual had seven half sibs in training in all designs but LD only.
The numbers of replicates for training data sizes 98, 1001, and 1995
were 750, 300, and 75, respectively.
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(Qanbari et al. 2010). However, the difference in accuracy
between those two traits was even larger with BayesA and
BayesB (Habier et al. 2011), which have different shrinkage
mechanisms than genomic BLUP. Thus, an explanation may
be epistasis.

Accuracy due to additive-genetic relationships and cose-
gregation can be regarded as lower bounds if accuracy due
to LD is small as for somatic cell score in dairy cattle (Habier
et al. 2011). However, that accuracy depends largely on the
number of close relatives in training such as parents and
siblings; for more distant relatives, the effective number of
SNPs may not be sufficient. This may be an emerging prob-
lem in dairy cattle, because information from parents and
siblings will not be available anymore due to accelerated
selection cycles by genomic selection. In dairy cattle, cose-

gregation from half sibs plays a minor role, because selection
candidates have a limited number of half sibs in training
(Habier et al. 2010a), a few selection candidates have only
one or two full sibs, and parents do not provide cosegre-
gation information. Additionally, the number of half-sib
families is large, which is unfavorable for capturing cose-
gregation (Figure 4). In plants, a top-cross design provides
extensive additive-genetic relationship information to the
accuracy across families due to many training hybrids that
are related to a validation hybrid. For the same reasons,
cosegregation contributes notably to the accuracy within
family. Therefore, if LD information does not increase fur-
ther with training data size, large full- or half-sib families
can be generated for training to exploit cosegregation
information.

Correlation between GEBVs within family

Intraclass correlations were evaluated to estimate correla-
tions between GEBVs within half-sib families, which give
additional insight into the use of additive-genetic relation-
ships in the presence of LD and cosegregation. There are at
least two notions: the accuracy of GEBVs is either (1) due to
LD plus a remainder due to additive-genetic relationships
and cosegregation (LD only vs. RS + CS + LD) or (2) due to
additive-genetic relationships plus a remainder due to LD
and cosegregation (RS only vs. RS + CS + LD). If accuracy
due to LD is high, the first notion, which was suggested by
Habier et al. (2007), can underestimate the importance of
additive-genetic relationships captured by SNPs for genomic
prediction as demonstrated by the intraclass correlations.
These were similar for all information designs in which val-
idation individuals were related to the training data despite
LD and cosegregation information and decreased with in-
creasing training data size (Figure 5). Thus, the correlation
of GEBVs within families depends mostly on additive-genetic
relationships captured by SNPs, and therefore they are sim-
ilarly important for realized selection intensities and
expected inbreeding in genomic selection with and without
cosegregation and LD information.

Persistence of LD and cosegregation information

Persistence of accuracy across generations without retrain-
ing is an important criterion in genomic selection. Results
of the corn breeding scenarios showed that LD is more
persistent than cosegregation from a single full-sib family
(Figure 7). Thus, the decay of accuracy within families for
individuals from the first few generations after training
may be due to the decay of cosegregation information
caused by recombinations of haplotypes surrounding QTL
(Figure 7, RS + CS + LD). The surprisingly large decay of
cosegregation information may indicate that cosegregation
was explained by rather large chromosome segments.
However, if the training data contain multigeneration
families, persistence of cosegregation information might
be different. As capturing additive-genetic relationships
becomes more difficult with decreasing genetic relatedness

Figure 6 (A and B) Accuracy of GEBVs and standard errors within and
across families obtained by genomic BLUP, long-range LD, and 39,991
SNPs for the four information designs using 450 and 1800 training
hybrids structured into families of size 30. Each validation hybrid had
30 related hybrids in training in all designs but LD only. The numbers
of replicates for training data sizes 450 and 1800 were 1000 and 200,
respectively.
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between training and validation individuals when train-
ing data size is large, capturing cosegregation may be
even more difficult. This also suggests modeling LD and
cosegregation explicitly (e.g., Calus et al. 2008) if LD in-
formation is captured at least as well as with BayesA and
BayesB.

Conclusions

We showed that genomic BLUP exploits LD, cosegregation,
and additive-genetic relationships captured by SNPs in
analyses that explicitly define LD and cosegregation in-
formation. We demonstrated that additive-genetic rela-
tionship information can decline with increasing training
data size, depending on extent of LD and level of additive-
genetic relationships. This suggests that polygenic effects
should be modeled jointly with either SNP effects or
genomic breeding values by a pedigree relationship matrix
using Bayesian methods. The correlation of genomic
estimated breeding values within families—an important
parameter in breeding schemes—depends largely on addi-
tive-genetic relationship information, which is determined
by the effective number of SNPs and training data size.
Little cosegregation information comes from half sibs in
current dairy cattle breeding designs, but cosegregation
information from full sibs can contribute considerably to
accuracy within families in corn breeding. However, its
persistence is lower than that of LD information because
cosegregation information declines quickly with increasing
training data size and over generations without retraining.
Thus, LD and cosegregation should be modeled explicitly.
As genomic BLUP is not suitable to capture LD information
in genome regions in which LD decays rapidly with map
distance, we recommend Bayesian methods with t-distrib-
uted priors.
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