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ABSTRACT Throughout history, the population size of modern humans has varied considerably due to changes in environment,
culture, and technology. More accurate estimates of population size changes, and when they occurred, should provide a clearer picture
of human colonization history and help remove confounding effects from natural selection inference. Demography influences the
pattern of genetic variation in a population, and thus genomic data of multiple individuals sampled from one or more present-day
populations contain valuable information about the past demographic history. Recently, Li and Durbin developed a coalescent-based
hidden Markov model, called the pairwise sequentially Markovian coalescent (PSMC), for a pair of chromosomes (or one diploid
individual) to estimate past population sizes. This is an efficient, useful approach, but its accuracy in the very recent past is hampered by
the fact that, because of the small sample size, only few coalescence events occur in that period. Multiple genomes from the same
population contain more information about the recent past, but are also more computationally challenging to study jointly in
a coalescent framework. Here, we present a new coalescent-based method that can efficiently infer population size changes from
multiple genomes, providing access to a new store of information about the recent past. Our work generalizes the recently developed
sequentially Markov conditional sampling distribution framework, which provides an accurate approximation of the probability of observing
a newly sampled haplotype given a set of previously sampled haplotypes. Simulation results demonstrate that we can accurately reconstruct
the true population histories, with a significant improvement over the PSMC in the recent past. We apply our method, called diCal, to the
genomes of multiple human individuals of European and African ancestry to obtain a detailed population size change history during recent
times.

WITH the rise of new sequencing technologies, it has
become easier to obtain genetic data from multiple

individuals at many loci. Such data have been providing
a new wealth of information from which to estimate popu-
lation genetic parameters such as mutation rates, recombi-
nation rates, effective population sizes, divergence times,
and migration rates. More data should enable more accurate
parameter estimation, but it is both theoretically and com-
putationally challenging to model the evolution of many
individuals.

Much can be learned about ancient population history
from present-day DNA data, since the genome of each in-
dividual is an imperfect mosaic of the genomes of its ancestors.
Accurately inferring the past demographic changes of humans
has several important applications, including properly account-
ing for population structure in association studies and reducing
confounding effects in inferences about natural selection. It may
also help to resolve archaeological and historical questions.
Humans are not the only organism for which demography
raises important questions. For example, the demography of
Drosophila has very interesting dynamics, as investigated by
several recent studies (Haddrill et al. 2005; Thornton and
Andolfatto 2006; Wang and Hey 2010).

In humans, ancient effective population size estimates
vary widely, as do the time estimates of demographic events
such as the out-of-Africa migration. Gronau et al. (2011)
used a coalescent-based approach with six diploid genomes
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each from a different population and estimated that Eura-
sians and Africans diverged �38–64 thousand years ago
(KYA) and that the effective population size of humans in
the ancient past was �9000. Gravel et al. (2011) used low-
coverage whole-genome data and high-coverage exome data
to fit a one-bottleneck model followed by exponential growth
in European and Asian populations. They estimated that the
timing of the out-of-Africa migration was �51 KYA and that
the effective population size in the ancient past was �7300,
which then increased to �14,500 at �150 KYA.

In their analysis, Gronau et al. considered 37,574 loci
each of length 1 kb and, for computational tractability, as-
sumed that the loci are all independent and that there is no
recombination within each locus. The method employed by
Gravel et al. (2011) is based on fitting allele frequency spectra,
assuming that all sites are independent. Incidentally, Myers
et al. (2008) investigated the limits of inferring population
size changes from the allele frequency spectrum alone and
showed that two distinct population size histories may yield
exactly the same expected allele frequency spectra. It remains
an open question whether taking linkage information into
account may remedy the problem of nonidentifiability.

The distribution of lengths of shared identity-by-descent
(IBD) tracts between pairs of unrelated individuals is in-
formative of recent demographic history. Recently, Palamara
et al. (2012) utilized the empirical distribution of IBD sharing
in pairs of 500 Ashkenazi Jewish individuals to infer two
rapid population expansions separated by a severe founder
event over the past 200 generations. This approach requires
first inferring IBD tracts from data, but the accuracy of exist-
ing IBD detection methods has not been fully characterized
when the population under consideration has undergone
a complex demographic history.

The pairwise sequentially Markovian coalescent (PSMC),
recently developed by Li and Durbin (2011) to estimate an
arbitrary piecewise constant population size history, does
take linkage information into account and efficiently models
recombination between sites, using the sequentially Markov
coalescent (McVean and Cardin 2005; Marjoram and Wall
2006) for a pair of sequences. The PSMC is based on a hid-
den Markov model (HMM) in which the hidden state at
a given position corresponds to the coalescence time of the
two lineages at that position and the observed state corre-
sponds to the observed genotype (homozygous/heterozygous)
at the position. As one moves along the sequence, the co-
alescence time may change as a result of recombination, and
the spatial distribution of homozygous and heterozygous
sites is informative of the distribution of coalescence times,
which depends on the past population sizes. While this ele-
gant approach produces reasonably accurate population size
estimates overall, its accuracy in the very recent past is ham-
pered by the fact that, because of the small sample size, few
coalescence events occur in that period. As a consequence,
the information in the pattern of genetic variation for a pair
of sequences is insufficient to resolve very recent demo-
graphic history.

The major obstacle to generalizing the PSMC to multiple
sequences is the explosion in the state space with the number
of sequences; the number of distinct coalescent tree topolo-
gies grows superexponentially with the number of leaves, and
we furthermore need to consider edge-weighted trees (i.e.,
include time information). In a related line of research, inter-
esting progress has been made (Hobolth et al. 2007; Dutheil
et al. 2009; Mailund et al. 2011) in performing “ancestral pop-
ulation genomic” inference under a coalescent HMM, but its
applicability is limited to only a modest number of sequences,
again due to the explosion in the state space.

In this article, we describe an alternative method that is
efficient in the number of sequences, while retaining the key
generality of the PSMC in incorporating an arbitrary piece-
wise constant population size history. More precisely, the
computational complexity of our method depends quadratically
on the number of sequences, and the computation involved can
be easily parallelized. As more sequences are considered, we
expect to see a larger number of coalescence events during the
recent past and should be able to estimate recent population
sizes at a higher resolution. With only two sequences, the
distribution of coalescence events is shifted toward the ancient
past, relative to the distribution of the time a new lineage joins
a coalescent tree for multiple sequences. Thus, even if all
sequences are considered pairwise, the resolution in the recent
past may not be as clear as that achieved by jointly modeling
multiple sequences.

The input to our method, which is also based on an HMM,
is a collection of haplotype sequences. At present, our method
assumes that mutation and recombination rates are given,
and it employs the expectation-maximization (EM) algorithm
to infer a piecewise constant history of population sizes, with
an arbitrary number of change points.

Our work generalizes the recently developed sequentially
Markov conditional sampling distribution (SMCSD) frame-
work (Paul et al. 2011) to incorporate variable population
size. This approach provides an accurate approximation of
the probability of observing a newly sampled haplotype
given a set of previously sampled haplotypes, and it allows
one to approximate the joint probability of an arbitrary num-
ber of haplotypes. Through a simulation study, we demon-
strate that we can accurately reconstruct the true population
histories, with a significant improvement over the PSMC
in the recent past. Moreover, we apply our method to
the genomes of multiple human individuals of European
and African ancestry to obtain a detailed population size
change history during recent times. Our software, called
demographic inference using composite approximate likeli-
hood (diCal), is publicly available at https://sourceforge.
net/projects/dical.

Notation and a Review of the SMCSD Framework

Our work stems from the SMCSD framework (Paul et al.
2011), which describes the conditional genealogical process
of a newly sampled haplotype given a set of previously
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sampled haplotypes. In what follows, we briefly review the
key concepts underlying the SMCSD model.

We consider haplotypes each of length L from the same
genomic region. Suppose we have already observed n hap-
lotypes, On = {h1, . . . , hn} sampled at random from a
well-mixed population; note that some of the observed hap-
lotypes may be identical. In this article, we use the terms
“sites” and “loci” interchangeably. Recombination may occur
between any pair of consecutive loci, and we denote the set of
potential recombination breakpoints by B = {(1, 2), . . . ,
(L 2 1, L)}. Given a haplotype h, we denote by h[ℓ] the allele
at locus ℓ and by h[ℓ: ℓ9] (for ℓ # ℓ9) the subsequence
(h[ℓ], . . . , h[ℓ9]).

As described in Paul and Song (2010), given the geneal-
ogy AOn for the already observed sample On, it is possible to
sample a conditional genealogy C for the additional haplo-
type according to the following description: An ancestral
lineage in C undergoes mutation at locus ℓ at rate uℓ/2
according to the stochastic mutation transition matrix P(ℓ).
Further, as in the ordinary coalescent with recombination,
an ancestral lineage in C undergoes recombination at break-
point b 2 B at rate rb/2, giving rise to two lineages. Each pair
of lineages within C coalesces with rate 1, and lineages in C
get absorbed into the known genealogy AOn at rate 1 for
each pair of lineages. See Figure 1A for an illustration.

Unfortunately, we do not generally have access to the
true genealogy AOn, and marginalizing over all possibilities
is a challenging problem. However, Paul and Song (2010)
showed that the diffusion-generator approximation de-
scribed in De Iorio and Griffiths (2004a,b; Griffiths et al.
2008) implies the following approximation to AOn , which
simplifies the problem considerably.

Approximation 1 (the trunk genealogy)

Approximate AOn by the so-called trunk genealogy A*
On

in
which lineages do not mutate, recombine, or coalesce with
one another, but instead form a nonrandom “trunk” extend-
ing infinitely into the past, as illustrated in Figure 1B. Al-
though A*

On
is not a proper genealogy, it is still possible to

sample a well-defined conditional genealogy C for the addi-
tional haplotype given A*

On
in much the same way as de-

scribed above, except that rates need to be modified.
Specifically, lineages within C evolve backward in time sub-
ject to the following events:

Mutation: Each lineage undergoes mutation at locus ℓ with
rate uℓ according to P(ℓ).

Recombination: Each lineage undergoes recombination at
breakpoint b 2 B with rate rb.

Coalescence: Each pair of lineages coalesces with rate 2.
Absorption: Each lineage is absorbed into a lineage of A*

On

with rate 1.

The genealogical process described above completely char-
acterizes a conditional sampling distribution (CSD), which
Paul and Song (2010) denoted by p̂PS. Observe that the rate
of absorption is the same as before, but the rates for muta-

tion, recombination, and coalescence are each a factor of 2
larger than those mentioned earlier. Intuitively, this rate ad-
justment accounts for using the (inexact) trunk genealogy
A*

On
, which remains static. Note that the adjustment follows

as a mathematical consequence of the diffusion-generator
approximation (De Iorio and Griffiths 2004a,b; Griffiths
et al. 2008), and it is supported by the fact that the CSD
p̂PS has been shown to be exact for a one-locus model with
parent-independent mutation (Paul and Song 2010).

It can be deduced from the diffusion-generator approx-
imation that p̂PSðajOnÞ, the conditional probability of sam-
pling an additional haplotype a given a set of previously
sampled haplotypes On, satisfies a recursion. Unfortunately,
this recursion is computationally intractable to solve for even
modest-sized data sets. To address this issue, Paul et al.
(2011) proposed further approximations, described below,
to obtain a CSD that admits efficient implementation, while
retaining the accuracy of p̂PS.

Figure 1 Illustration of a conditional genealogy C for a three-locus model.
The three loci of a haplotype are each represented by a solid circle, with the
color indicating the allelic type at that locus. Mutation events, along with
the locus and resulting haplotype, are indicated by small arrows. Recombi-
nation events, and the resulting haplotype, are indicated by branching
events. Absorption events are indicated by dotted horizontal lines. (A) The
true genealogy AOn for the already observed sample On. (B) Approximation
by the trunk genealogy A*

On
. Lineages in the trunk do not mutate, recom-

bine, or coalesce. (C) Marginal conditional genealogy for each locus.
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Approximation 2 (sequentially Markov CSD)

A given conditional genealogy C contains a marginal condi-
tional genealogy (MCG) for each locus, where each MCG
comprises a series of mutation events and the eventual
absorption into a lineage of the trunk A*

On
. See Figure 1C

for an illustration. The key insight (Wiuf and Hein 1999) is
that we can generate the conditional genealogy as a se-
quence of MCGs across the sequence, rather than backward
in time. Although the sequential process is actually not
Markov, it is well approximated (McVean and Cardin
2005; Marjoram and Wall 2006; Paul et al. 2011) by a
Markov process, using a two-locus transition density. Ap-
plying this approximation to p̂PS yields the sequentially
Markov CSD, p̂SMC.

Conditional on the MCG Cℓ21 at locus ℓ2 1, the MCG Cℓ at
locus ℓ can be sampled by first placing recombination events
onto Cℓ21 according to a Poisson process with rate r(ℓ21,ℓ). If
no recombination occurs, Cℓ is identical to Cℓ21. If recombi-
nation does occur, Cℓ is identical to Cℓ21 up to the time Tr of
the most recent recombination event. At this point, the lin-
eage at locus ℓ, independently of the lineage at locus ℓ 2 1,
proceeds backward in time until being absorbed into a line-
age of the trunk. This transition mechanism for the Markov
process is illustrated in Figure 2. McVean and Cardin (2005)
use this approximation as well, while the transition process
in Marjoram and Wall (2006) does allow the lineage to co-
alesce back into itself.

Given Cℓ, mutations are superimposed onto it according
to a Poisson process with rate uℓ. The MCG is absorbed into
a trunk lineage corresponding to some haplotype h, which
specifies an “ancestral” allele h[ℓ]. This allele is then prop-
agated to the present according to the superimposed
mutations and the transition matrix P(ℓ), thereby generat-
ing an allele at locus ℓ of the additional haplotype a. We
refer to the associated distribution of alleles as the emis-
sion distribution.

The generative process described above for the SMCSD
p̂SMC can be formulated as an HMM, in which the hidden
state at locus ℓ corresponds to the MCG Cℓ, excluding muta-
tion events: We denote the hidden state at locus ℓ in the
HMM by Sℓ = (Tℓ, Hℓ), where Tℓ 2 [0, N) is the absorption
time and Hℓ 2 On is the absorption haplotype. The emission
at locus ℓ corresponds to the allele a[ℓ]. See Paul et al.
(2011) for explicit expressions for the initial, transition,
and emission densities in the case of a constant population
size.

Incorporating Variable Population Size

Here, we extend the SMCSD framework described in the
previous section to incorporate variable population size. A
history of relative effective population size is described by
the function

lðtÞ ¼ NðtÞ
Nref

; (1)

where t 2 [0, N), with t = 0 corresponding to the present
time, Nref is some reference effective population size, and
N(t) is the effective population size at time t in the past. The
population-scaled recombination and mutation rates are de-
fined with respect to Nref. Specifically, for b = (ℓ 2 1, ℓ), we
define rb = 4Nrefrb, where rb denotes the recombination rate
per generation per individual between loci ℓ 2 1 and ℓ, and
uℓ = 4Nrefmℓ, where mℓ denotes the mutation rate per gener-
ation per individual at locus ℓ.

Initial density

In the case of a constant population size, the absorption time Tℓ
for locus ℓ follows an exponential distribution, but with a vari-
able population size the absorption time is described by a non-
homogeneous Markov chain. See Griffiths and Tavaré (1994)
for a more thorough discussion of the coalescent with variable
population size. As in the constant population size case, how-
ever, the prior distribution of absorption haplotype Hℓ is still
uniform over the observed haplotypes On in the trunk geneal-
ogy. In summary, the marginal density of the hidden state sℓ =
(t, h) is given by

zðlÞðt; hÞ ¼ nh
lðtÞ exp

�
2 n

Z t

0

1
lðtÞdt

�
; (2)

Figure 2 Illustration of the sequentially Markov approximation in which
the absorption time Tℓ at locus ℓ is sampled conditionally on the absorp-
tion time Tℓ21 = tℓ21 at the previous locus. In the marginal conditional
genealogy Cℓ21 for locus ℓ 2 1, recombination breakpoints are realized as
a Poisson process with rate r(ℓ21,ℓ). If no recombination occurs, Cℓ is
identical to Cℓ21. If recombination does occur, as in the example here,
Cℓ is identical to Cℓ21 up to the time Tr of the most recent recombination
event. At this point, the lineage at locus ℓ, independently of the lineage at
locus ℓ2 1, proceeds backward in time until being absorbed into a lineage
of the trunk. The absorption time at locus ℓ is Tℓ = Tr + Ta, where Ta is the
remaining absorption time after the recombination event.
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where nh denotes the number of haplotypes in On that are
identical to haplotype h.

Transition density

To obtain the transition density, we need to take into
account recombination, which causes changes in the hidden
state of our HMM. If no recombination occurs between loci
ℓ 2 1 and ℓ (prior to Tℓ21), then sℓ = sℓ21. If a recombination
event occurs between loci ℓ 2 1 and ℓ, the absorption time
for locus ℓ will be Tℓ = Tr + Ta, where Tr is the time of
recombination (which must be less than Tℓ21 and Tℓ) and
Ta is the remaining additional time to absorption, as illus-
trated in Figure 2. To compute the transition density, we
need to convolve the hidden variables Tr and Ta. Letting
b = (ℓ 21, ℓ) for ease of notation, the transition density from
sℓ21 = (t, h) to sℓ = (t9, h9) is given by

fðlÞðsℓjsℓ21Þ

¼ e2rbt � dsℓ21;sℓ þ
R minðt;t9Þ

0 rbe
2rbtr

"
zðlÞðt9; h9ÞRN
tr zðlÞðtÞdt

#
dtr;

(3)

where z(l)(t9, h9) is defined in (2) and zðlÞðtÞ :¼P
h2On

zðlÞðt; hÞ. Note that
RN
0 zðlÞðtÞdt ¼ 1.

Emission probability

The probability of emitting allele a at locus ℓ (i.e., a[ℓ] = a)
given hidden state sℓ = (t, h) is

jðlÞðajsℓÞ ¼ e2uℓt
XN
m¼0

1
m!

ðuℓtÞm
h�

PðℓÞ
�mi

h½ℓ�;a
: (4)

This is the same emission probability as in Paul et al. (2011),
but when we discretize the state space in the following sec-
tion we have to take into account the effects of variable
population size.

Sequentially Markov conditional sampling probability

Using the initial, transition, and emission densities described
above, we can write down an integral recursion for the
forward probability f ðlÞSMCða½1 : ℓ�; sℓÞ of observing the first
ℓ alleles a[1], . . . , a[ℓ] and the state at locus ℓ being sℓ.
For 2 # ℓ # L,

f ðlÞSMCða½1 : ℓ�; sℓÞ
¼ jðlÞða½ℓ�jsℓÞ �

R
fðlÞðsℓjsℓ21Þf ðlÞSMCða½1 : ℓ2 1�; sℓ21Þdsℓ21;

(5)

with base case

f ðlÞSMCða½1�; s1Þ ¼ jðlÞða½1�js1Þ � zðlÞðs1Þ:

Finally, the conditional probability of sampling an additional
haplotype a having previously observed On = {h1, . . . , hn} is
given by

p̂
ðlÞ
SMCðajOnÞ ¼

Z
f ðlÞSMCða½1 : L�; sLÞdsL: (6)

As with the constant population size HMM, a backward
algorithm can also be devised to compute p̂

ðlÞ
SMCðajOnÞ, al-

though we do not present it here.

Discretizing the State Space

To efficiently evaluate the recursion (5) and the marginal-
ization (6), we discretize the time component of the state
space. We partition time (in units of 2Nref generations) into
d intervals, demarcated by

t0 ¼ 0, t1,⋯, td ¼ N;

and assume that l(t) defined in (1) has a constant value li
in each interval Di := [ti21, ti), for i = 1, . . . , d,

lðtÞ ¼
Xd
i¼1

1ðti21 # t, tiÞli; (7)

where 1(�) is the indicator function. Using this piecewise
constant l(t), we can write the HMM probabilities in a more
workable form, as detailed below.

Initial probability

For t 2 Di, (7) implies that the initial density (2) can be
written as

zðlÞðt; hÞ ¼ nh
li

e2nðt2ti21Þ=li
Yi21

j¼1

e2nðtj2tj21Þ=lj : (8)

To obtain the initial probability in the time-discretized
model, we integrate over the time interval Di to obtain

ẑ
ðlÞðDi; hÞ ¼

Z
Di

zðlÞðt; hÞdt ¼ nh
n
wðiÞ; (9)

where

wðiÞ ¼
h
12 e2nðti2ti21Þ=li

i Yi21

m¼1

e2nðtm2tm21Þ=lm ;

which corresponds to the probability that a lineage in the
conditional genealogy gets absorbed into the trunk geneal-
ogy within the interval Di.

Transition probability

For the transition density from state sℓ21 = (t, h) to state sℓ =
(t9, h9), we let i denote the time interval index such that t 2
Di = [ti21, ti) and let j denote the index such that t9 2 Dj =
[tj21, tj). After some simplification, the transition density (3)
becomes
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fðlÞðsℓjsℓ21Þ

¼ e2rbt � dsℓ21;sℓ þ
nh
lj

e2nðt92tj21Þ=lj
Yj21

m¼1

e2nðtm2tm21Þ=lm

" #
Rði; t; j; t9Þ;

(10)

where R(i, t; j, t9) is defined in the Appendix.
To compute the transition probability in the time-discretized

model, we use Bayes’ rule and integrate the transition density
function to obtain

f̂
ðlÞ�

Dj; h9jDi; h
�

¼ 1

ẑ
ðlÞðDi; hÞ

Z
Dj

Z
Di

fðlÞðt9; h9jt; hÞzðlÞðt; hÞdt dt9

¼: yðiÞ � di;jdh;h9 þ zði;jÞ � nh9
n
;

(11)

where ẑ
ðlÞðDi; hÞ is defined in (9), and explicit formulas for

y(i) and z(i,j) are provided in the Appendix. The first term
arises from the case of no recombination, while the second
term accounts for the case when recombination does occur.
Note that y(i) and z(i,j) depend only on the time interval and
not on the absorbing haplotype.

Emission probability

Although thus far the emission density has not been affected
by the population size being variable, discretizing time intro-
duces dependence on the function l(t). Let a denote the emit-
ted allele of the newly sampled haplotype a at locus ℓ. Using
Bayes’ rule again and then integrating over the absorption time
interval gives

ĵ
ðlÞðajDi; hÞ

¼ 1

ẑ
ðlÞðDi; hÞ

Z
Di

jðlÞðajt; hÞzðlÞðt; hÞ  dt

¼
PN
m¼0

vðiÞ   ðmÞ �
��
PðℓÞ
�m	

h½ℓ�;a;

(12)

where a formula for v(i)(m) is provided in the Appendix.

Discretizing time and grouping parameters

To discover periods of population expansion or contraction
with the SMCSD, it is necessary to specify a time discretiza-
tion that has high resolution during such time periods. This
is challenging in cases where we have little a priori knowl-
edge of the demographic history. Ideally the (unknown) co-
alescence events would be distributed uniformly across the
time intervals of our discretization; if very few coalescence
events occur in an interval, the corresponding population
size will often be overestimated, leading to runaway behav-
ior. In our implementation, we employ a heuristic method,
detailed in the Appendix, for choosing the discretization time
points t1, . . . , td21 based on the spacing of SNPs in the data,
with the aim for coalescence events to be distributed evenly

across the d time intervals. Alternatively, users have the
option of specifying their own discretization time points to
achieve a desired resolution.

As noted by Li and Durbin (2011), allowing separate
population size parameters during time intervals that con-
tain too few expected coalescence events can lead to inac-
curate estimates. Following their lead, we mitigate this
problem by constraining a few consecutive time intervals to
have the same population size.

Modifying the Trunk Genealogy

The trunk genealogy approximation in Paul and Song (2010)
was derived by making an approximation in the diffusion
process dual to the coalescent for a constant population size.
It yields an accurate approximate CSD in the case of a popu-
lation at equilibrium, and for parent-independent mutation
models, the CSD becomes exact in the limit as the recombi-
nation rate approaches N. However, in the variable popula-
tion size setting, we must modify the trunk genealogy
approximation for the following reason: In the formulation
described earlier, the trunk absorbs a lineage in the condi-
tional genealogy C at the rate ndt/l(t) at time t. Our HMM
uses this inverse dependence and the inferred distribution of
absorption times to estimate the population size scaling
function l(t). In reality, at time t the number of ancestral
lineages is n(t) # n and a lineage in C gets absorbed at rate
n(t)dt/l(t). Hence, assuming that the trunk genealogy con-
tains n lineages in every time interval causes absorption
events to occur too quickly, leaving the ancient population
sizes overestimated. We later provide empirical results that
support this intuition (see Figure 8).

To remedy the problem described above, in our work we
use the expected number of lineages in the trunk to modify
the rate of absorption, while still forbidding mutation, re-
combination, and coalescence in the trunk genealogy. Let
An(t) denote the number of lineages at time t ancestral to
a sample of size n at time 0. Under the coalescent, the prob-
ability distribution of An(t) is known in closed form (Tavaré
1984), but using it directly to compute the expected number
of lineages leads to numerically unstable results, due to alter-
nating signs. However, one can obtain the following expres-
sion for the expectation (Tavaré 1984, equation 5.11), which
is numerically stable:

�nðtÞ :¼ E ½AnðtÞ�

¼
Xn
i¼1

exp


2

�
i
2

�Z t

0

1
lðtÞ dt

�
nðn2 1Þ⋯ðn2 iþ 1Þ
nðnþ 1Þ⋯ðnþ i2 1Þ

· ð2i2 1Þ:
(13)

For simplicity, we assume that throughout time interval
Di = [ti21, ti), there are �nðti21Þ lineages, creating what
we call a “wedding-cake genealogy,” as illustrated in
Figure 3.
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To modify the HMM formulas, we simply replace each
n in (9), (11), and (12) with the appropriate �nð�Þ from (13),
except in the ratio nh/n multiplying w(i) in (9) and the ratio
nh9=n multiplying z(i,j) in (11) (these ratios are kept intact to
preserve the relative contributions of different haplotypes).
Note that the trunk genealogy never actually loses any of the
n lineages, and absorption into any of the n lineages is
allowed at all times; we are modifying the absorption rate
only as a function of time. In the case of two sequences (one
trunk lineage and one additionally sampled lineage),
�nðtÞ ¼ 1 for all t, so the wedding-cake approximation does
not change the model. Making the number of lineages
more accurate by using this approximation improves our
ability to estimate absorption times and therefore popu-
lation sizes.

Population Size Inference with Expectation Maximization

To utilize all our data in an exchangeable way, we use
a “leave-one-out” approach where we leave each haplotype
out in turn and perform the SMCSD computation. More pre-
cisely, we define the leave-one-out composite likelihood
(LCL) as

LLCLðl; h1; . . . ; hnÞ ¼
Yn
i¼1

p̂
ðlÞ
SMCðhijh1; . . . ; hi21; hiþ1; . . . ; hnÞ:

(14)

Because we compute the conditional sampling probability
through dynamic programming and the probability depends
on the effective population sizes in complex ways, we cannot
find the maximum-likelihood estimates analytically. Although
direct optimization could be used, it is computationally
expensive. Thus we employ an EM algorithm to estimate the
piecewise constant function l(t). Our current implementa-

tion assumes that the population-scaled recombination rates
rb and mutation rates uℓ, as well as the mutation transition
matrices P(ℓ), are given and fixed. For computational sim-
plicity we currently assume that uℓ and P(ℓ) are the same for
each site ℓ and rb is the same for each pair of consecutive
sites. The time discretization is fixed throughout the EM
algorithm. The output of the algorithm is an estimated pop-
ulation size scaling factor li for each interval Di = [ti21, ti).
To convert these scaling factors into diploid effective popu-
lation sizes, one would need to multiply by Nref. Similarly,
the discretization times can be converted to years by multi-
plying them by 2Nrefg, where g is an average number of
years per generation.

The standard Baum–Welch algorithm gives an EM pro-
cedure for learning the parameters of an HMM in which the
transition probabilities and emission probabilities are trea-
ted as unknown independent parameters. However, our
HMM is more constrained than a general one, with (dn)2 +
d|S|2 (where S is the alphabet of alleles) unknown

Figure 3 Illustration of the wedding-cake genealogy approximation, in
which the varying thickness of a lineage in A*

On
schematically represents

the amount of contribution to the absorption rate. As shown, the wedding-
cake genealogy never actually loses any of the n lineages, and absorption
into any of the n lineages is allowed at all times; we are modifying the
absorption rate only as a function of time.

Figure 4 Population size histories considered in our simulation study,
with time t = 0 corresponding to the present. (A) History S1 containing
a bottleneck. (B) History S2 containing a bottleneck followed by a rapid
expansion.
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probabilities f̂
ðlÞðDj; h9jDi; hÞ and ĵ

ðlÞða½ℓ�jDi; hÞ that are
functions of the d parameters l1, . . . , ld. During the E-step,
we compute the matrix [Aij] of the expected number of Di to
Dj transitions. We also compute the matrix [Ei(b)] of the
expected number of times allele b is emitted from time in-
terval i. Then, during the M-step we maximize the likelihood
function�

l
ðkþ1Þ
1 ; . . . ; l

ðkþ1Þ
d

�
¼ argmax

lðkÞ

Q
i;j

h
f̂
ðlðkÞÞ�Dj

��Di
�iAðkÞ

ij Q
i;b

h
ĵ
ðlðkÞÞðbjDiÞ

iEðkÞ
i ðbÞ

;

(15)

where f̂
ðlÞðDjjDiÞ and ĵ

ðlÞðbjDiÞ refer to the transition and
emission probabilities where we have marginalized over the
absorption haplotype.

We initialize the algorithm with li = 1 for all i= 1, . . . , d.
To compute [Aij] and [Ei(b)], we use the forward and back-

ward probabilities of our HMM. The exact details of making
this step computationally efficient are provided in the Appen-
dix. After the E-step, we use the Nelder–Mead optimization
routine (Nelder and Mead 1965) to update the parameters in
the M-step. Because of local maxima in the likelihood surface,
we run this optimization routine several times (�10) with
different starting conditions and then retain the estimates
with the largest likelihood. In the analysis discussed in this
article, we ran the EM procedure for 20 iterations to obtain
convergence. As pointed out by Li and Durbin (2011), run-
ning the EM procedure for many iterations often leads to
overfitting.

Results

We compared the performance of our method, diCal, with
that of PSMC (Li and Durbin 2011) on both simulated and
real data. We compared diCal, using an n-haplotype leave-
one-out scheme (Equation 14), with PSMC, using the same

Figure 5 Results of PSMC and diCal on data sets simulated under history
S1 with sample size n = 10 and four alleles (A, C, G, and T). PSMC
significantly overestimates the most recent population size, whereas we
obtain good estimates up until the very ancient past. (A) Results for 10
different data sets. (B) Average over the 10 data sets.

Figure 6 Results of PSMC and diCal on data sets simulated under history
S2 with sample size n = 10 and four alleles (A, C, G, and T). The PSMC
shows runaway behavior during the recent past, overestimating the most
recent time by over three orders of magnitude on average. (A) Results for
10 different data sets. (B) Average over the 10 data sets.
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n haplotypes paired up sequentially (i.e., haplotype 1 paired
with haplotype 2, haplotype 3 with haplotype 4, etc.).

Unless stated otherwise, we used 16 discretization
intervals and inferred seven free population size parameters
in both PSMC and diCal. In the notation introduced by Li
and Durbin (2011), the pattern we used is “3 + 2 + 2 + 2 +
2 + 2 + 3,” which means that the first parameter spans the
first three discretization intervals, the second parameter
spans the next two intervals, and so on. We found that
grouping a few consecutive intervals to share the same pa-
rameter significantly improved the accuracy of estimates.
For example, due to an insufficient number of coalescence
events, the first and last intervals are particularly susceptible
to runaway behavior if they are assigned their own free
parameters, but grouping them with their neighboring inter-
vals prevented such pathological behavior. See Supporting
Information, File S1 for further details of running PSMC and
our method.

The accuracy of population size inference
on simulated data

We used ms (Hudson 2002) to simulate full ancestral re-
combination graphs (ARGs) under two different population
histories and then superimposed a quadra-allelic, finite-sites
mutation process on the ARGs to generate sequence data
over {A, C, G, T}. As illustrated in Figure 4, both histories
contained bottlenecks in the moderately recent past. History
S2 in Figure 4B in addition contained a recent rapid popu-
lation expansion relative to the ancient population size. For
each history, we simulated 10 independent ARGs for L= 106

sites and 10 haplotypes, with the population-scaled recom-
bination rate set to 0.01 per site in ms. To add mutations, we
set the population-scaled mutation rate to 0.014 per site and
used the quadra-allelic mutation matrix described in File S1.

As shown in Figures 5 and 6, our method performed
much better in the recent past than did PSMC. PSMC often
had the type of runaway behavior shown in Figure 6, where
it overestimated the most recent population size by over
three orders of magnitude. We note that our method began
to lose accuracy for more ancient times, most likely because
ancient absorption events in a 1-Mb region are few and
sparsely distributed in time in the leave-one-out SMCSD
computation. Both methods tend to smooth out sudden
changes in population size, which is why the inferred recov-
ery time from a bottleneck is more recent than it should be.
To quantify the improvement in accuracy of our method

over PSMC, we used an error metric described in Li and
Durbin (2011), which is a normalized integral of the abso-
lute difference between the true ms history and the inferred
history over time. The results, summarized in Table 1, show
that our method had a substantially lower overall error than
PSMC.

For inference using diCal, we examined the impact of
considering more haplotypes on the accuracy of population
size estimation. In this study, we focused on history S1 and
grouped adjacent parameters to fit roughly with population
size change points for illustration purposes. Figure 7 shows
qualitatively that increasing the sample size n makes our es-
timate of the recent population size more accurate. Interme-
diate sizes changed little with increasing n, and ancient sizes
were somewhat variable depending on the distribution of
coalescence events. Note that for n = 2, our method is very
similar to PSMC; we compute the transition probabilities
slightly differently, but the wedding-cake approximation does
not change the model in this case. We used the same error
metric mentioned above to quantify the advantage of increas-
ing the sample size. As shown in Table 2, the overall error
decreased as the sample size increased, with improvement
tapering to �8–10 haplotypes for this particular history.

Impact of the wedding-cake genealogy approximation

We examined the advantage of using the wedding-cake
genealogy approximation in the SMCSD computation, com-
pared to assuming an unmodified trunk genealogy. Figure 8
illustrates that the unmodified trunk genealogy leads to
overestimation of population sizes in the distant past, as
discussed in Modifying the Trunk Genealogy. The wedding-
cake genealogy approximation, which adjusts the absorption

Table 1 Goodness-of-fit for PSMC and diCal, averaged over 10
simulated data sets, each with a sample of n = 10 haplotypes

Simulated history PSMC error diCal error

S1 0.40328 0.10283
S2 0.71498 0.29992

The underlying population size histories are shown in Figure 4. The error metric used
is a normalized integral of the absolute difference between the true history and the
inferred history over time. These results demonstrate that diCal is substantially more
accurate than the PSMC method.

Figure 7 The effect of considering more haplotypes in diCal, using the
SMCSD-based leave-one-out likelihood approach. Data were simulated
under population size history S1 with two alleles. In this study, we
grouped adjacent parameters to fit roughly with population size change
points for illustration purposes. Shown is the increase in the accuracy of
our method with an increasing sample size n. The recent sizes are the
most dramatically affected, while intermediate sizes remain accurate even
with few haplotypes.
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rate by accounting for the expected number of ancestral
lineages of the already observed sample, leads to a signifi-
cant improvement in the accuracy of population size infer-
ence in the ancient past.

Accuracy of estimated coalescence times

To assess the accuracy of estimated coalescence times, we
produced the posterior decoding and the posterior mean of
the times that a left-out haplotype got absorbed into
a wedding-cake genealogy. The data were simulated under
the full coalescent with recombination, using ms assuming
a constant population size. The true coalescence time at
each site was taken as the time the left-out lineage joined
the rest of the coalescent tree at that site. As shown in Figure
9, we found that our estimated absorption times closely
tracked the true coalescence times.

Results on real data

We applied our method to data from 10 of the 179 human
genomes that were sequenced at low coverage and phased
as part of the 1000 Genomes pilot project. Five of the
individuals were Yorubans from Ibadan, Nigeria (YRI) and
five were Utah residents of central European descent (CEU)
(1000 Genomes Project Consortium 2010). To minimize
potential confounding effects from natural selection, we
chose a 3-Mb region on chromosome 1 with no genes and
then used the middle 2 Mb for analysis. We used the human
reference (version 36) to create a full multiple-sequence
alignment of 10 haplotypes (five diploid individuals) for
each of the CEU and YRI populations. Although we filtered
out unphased individuals and sites, the final sequences are
based on low-coverage short read data, so phasing and
imputation errors could affect the accuracy of our coalescence
time inference. We assumed a per-generation mutation rate
of m = 1.25 · 1028 per site, which is consistent with recent
studies of de novo mutation in human trios (Awadalla et al.
2010; Roach et al. 2010; Kong et al. 2012), and a mutation
transition matrix estimated from the human and the chimp
reference genomes (shown in File S1). For simplicity, we
assumed that the per-generation recombination rate r be-
tween consecutive bases is constant and equal to m. The gen-
eration time was assumed to be 25 years. For a reference
population size, we used Nref = 10,000.

The results of PSMC and our method are shown in Fig-
ure 10. PSMC displayed runaway behavior and produced

rather unrealistic results; see Figure 10A, for which we
truncated the y-axis at 40,000 for ease of comparison with
Figure 10B. The data set may be too small for PSMC to
work accurately. We note that PSMC was able to produce
more reasonable results on simulated data sets, probably
because they were generated with much higher mutation
and recombination rates, thus representing a larger geno-
mic region for humans.

As shown in Figure 10B, our method inferred that CEU
and YRI had very similar histories in the distant past up until
�117 KYA; discrepancies up to this point are most likely due
to few observed ancient coalescence events with the leave-
one-out approach. We inferred that the European popula-
tion underwent a severe (out-of-Africa) bottleneck starting
�117 KYA, with the effective population size dropping by
a factor of �12 from �28,000 to �2250. Furthermore, at
the level of resolution provided by our time discretization,
our results suggest that the European population has recov-
ered from the bottleneck to an average effective size of
�12,500 for the past 16,000 years.

In contrast to previous findings (e.g., Li and Durbin
2011), our method did not infer a significant drop in the
YRI population size during the early out-of-Africa bottleneck
phase in Europeans. Instead, the African effective popula-
tion size seems to have decreased more gradually over time
(possibly due to changes in structure) to an average effective
size of �10,000 for the past 16,000 years. We note that our
results for real data are fairly robust to the choice of

Table 2 Goodness-of-fit for diCal on simulated bottlenecked
history S1 for different sample sizes

Sample size n diCal error

2 0.2914
4 0.1901
6 0.1446
8 0.0802
10 0.0899

We used the same error metric as in Table 1. As the sample size n increases, the
error decreases, with global improvement tapering at �8–10 haplotypes.

Figure 8 A comparison of the SMCSD-based leave-one-out likelihood
approach in diCal, using the wedding-cake genealogy (blue line), with
that using the unmodified trunk genealogy (green line). The results
shown are for n = 10 haplotypes simulated under history S1 with two
alleles. Without the wedding-cake genealogy, absorption of the left-out
lineage into the trunk occurs too quickly, and the lack of absorption
events in the midpast to the ancient past leads to substantial overestima-
tion of the population sizes. Recent population sizes remain unaffected
since during these times the absorption rates in the wedding-cake gene-
alogy and in the trunk genealogy are roughly the same. In this example,
we grouped adjacent parameters to fit roughly with population size
change points for illustration purposes.
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discretization, given that a sufficient number of coalescence
events occur within each set of grouped intervals.

Run time

The run time of our method is O(Ld(d + n)n), where n is the
number of sequences, L is the number of bases in each se-
quence, and d is the number of time discretization intervals;
the run time for each CSD computation is O(Ld(d + n)), and
each sequence is left out in turn (although this step is paral-
lelizable). The run time for PSMC is O(Ld2P), where P is the
number of pairs of sequences analyzed. In practice, PSMC
can run much faster when consecutive sites are grouped into
bins of size 100; a bin is considered heterozygous if it con-
tains at least one SNP and homozygous otherwise. Creating
a reasonable binning scheme for multiple sequences is less
clear. We are currently exploring this avenue, which could
significantly improve our runtime and potentially enable
whole-genome analysis.

Discussion and Future Work

In this article, we have generalized the recently developed
sequentially Markov conditional sampling distribution
framework (Paul et al. 2011) to accommodate a variable
population size. One important new idea central to the suc-
cess and accuracy of our method is the wedding-cake gene-
alogy approximation, which modifies the rate of absorption
into the trunk by accounting for the varying number of lin-
eages over time. Under simulated data, we have shown that
our method produces substantially more accurate estimates
of the recent effective population size than does PSMC (Li
and Durbin 2011).

Applying our method to a 2-Mb intergenic region of
chromosome 1 from five Europeans and five Africans,
sequenced as part of the 1000 Genomes Project, and using
a per-generation mutation rate of m = 1.25 · 1028 per site,

we have inferred a severe (out-of-Africa) bottleneck in Euro-
peans that began �117 KYA, with a drop in the effective
population size by a factor of 12. In contrast, we have ob-
served a much more mild population size decrease in the
African population. We remark that our estimate of the tim-
ing of the bottleneck may not be very accurate, since we
used only 16 discretization intervals and seven free popula-
tion size parameters. Furthermore, all of our inferred times
and population sizes would be smaller by a factor of 2 if we
had used m = 2.5 · 1028. See Scally and Durbin (2012) for
a more thorough discussion of how new mutation rate esti-
mates are changing the way we view ancient population
history. An earlier initial human dispersal out of Africa
would fit with archaeological evidence of human artifacts
dated at 74 KYA in India and 64 KYA in China (Scally and
Durbin 2012).

During the recent past, our results demonstrate that the
effective population size of Europeans has grown in the past
16,000 years, slightly surpassing the effective population
size of Africans, which does not show a growth at this
resolution. Recent studies (Gutenkunst et al. 2009; Gravel
et al. 2011) suggest that the European population size re-
cently grew much faster than the African population size,
although the sample size we considered is not large enough
to confirm this.

The main strength of our method is in the recent past.
Large-scale sequencing studies (Coventry et al. 2010; Keinan
and Clark 2012; Nelson et al. 2012) of a subset of genes
suggest that humans underwent recent explosive population
growth. Our method should be well equipped to infer such
recent demographic histories, but we would need to con-
sider a very large sample to accurately infer the rate of
expansion and the time of onset. Because of issues of com-
putational speed and memory footprint, our current imple-
mentation of the SMCSD computation can handle up to �20
haplotypes and a few megabases, but we are in the process

Figure 9 Estimated absorption times in diCal using the leave-one-out SMCSD method vs. the true coalescence times for a 100-kb region. The data were
simulated using ms for n = 6 haplotypes, assuming a constant population size. The true coalescence time at each site, obtained from ms, was taken as
the time the ancestral lineage of a left-out haplotype joined the rest of the coalescent tree at that site. Shown is the true coalescence time for the nth
haplotype and our corresponding inferred absorption times, obtained from the posterior decoding and the posterior mean. Our estimates generally
track the true coalescence times closely.
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of exploring ways to increase the scalability. One way in
which we should be able to reduce our run time is by in-
corporating recently developed algorithms for blockwise
HMM computation (Paul and Song 2012), which have been
shown to result in a speedup of several orders of magnitude
for large data sets.

All the results in this article make use of a leave-one-out
approach (Equation 14) instead of the well-used product of
approximate conditionals (PAC) method proposed by Li and
Stephens (2003). Briefly, the PAC approach utilizes the ap-
proximate likelihood p̂ðhsð1ÞÞp̂ðhsð2Þjhsð1ÞÞ⋯p̂ðhsðnÞjhsð1Þ; . . . ;
hsðn21ÞÞ, where p̂ is an approximate conditional sampling
distribution and s is some permutation of {1, . . . , n}. A
well-known drawback of this approach is that different per-

mutations may produce vastly different likelihoods. Li and
Stephens suggested averaging the PAC likelihood over sev-
eral random permutations to alleviate this problem and this
strategy seems to work reasonably well in practice. In our
work, we have avoided the problem by adopting the leave-
one-out approach, which yields accurate estimates of popu-
lation sizes for the recent past, but not as good results for
the ancient past. Employing the PAC approach may produce
accurate estimates for all times, but a challenge that needs
to be addressed in the SMCSD framework is that the wed-
ding-cake genealogy, which is based on the prior expectation
of the number of lineages, may not be accurate when there
are few lineages, since coalescence times are more variable
when they involve fewer lineages. We are working on im-
proving the accuracy of the SMCSD computation by using
the posterior absorption time distributions in a recursive fash-
ion so that locus-specific absorption rates tailored to data can
be used. This approach, together with the PAC model, should
yield more accurate estimates of population sizes.

One factor that we have not investigated is the impact of
variable recombination (and/or mutation) rates, although it
is conceptually straightforward for our method to accom-
modate them. We have chosen not to incorporate recombi-
nation rate variation into our present implementation as it
would make the method even more computationally expen-
sive, since the transition probabilities would then be potentially
different at each site. In addition, most fine-scale recombina-
tion maps (Crawford et al. 2004; McVean et al. 2004; Fearn-
head and Smith 2005; Chan et al. 2012) are inferred under the
assumption of a constant population size, which is exactly the
assumption we are not making. We also note that Li and Dur-
bin (2011) found that recombination hotspots did not affect
their results significantly and that the important parameter is
the average recombination rate.

A good choice of time discretization is critical to the
performance of both diCal and PSMC. It is better to subdivide
time more finely during periods with small population size
than during periods with large population size when few
coalescences occur. However, since the demography is what
we are trying to infer, selecting an initial discretization is very
difficult. Creating adaptive discretization schemes for co-
alescent HMMs is an important area of future research.

We have shown that posterior decodings of diCal enable
accurate inference of coalescence times. Using this informa-
tion, it should be possible to develop an efficient method of
sampling marginal coalescent trees from the posterior distri-
bution. We expect such local tree inference to have interesting
applications, including genome-wide association studies and
tests of selective neutrality.

The SMCSD framework has been recently extended
(Steinrücken et al. 2013) to incorporate structured pop-
ulations with migration. We are currently working on
combining this extension with the work presented here
to implement an integrated inference tool (to be incorpo-
rated into diCal) for general demographic models. Such
a method could provide a detailed picture of the demographic

Figure 10 Variable effective population size inferred from real human
data for European (CEU) and African (YRI) populations. For each popula-
tion, we analyzed a 2-Mb region on chromosome 1 from five diploid
individuals (10 haplotypes), assuming a per-generation mutation rate of
m = 1.25 · 1028 per site. (A) The results of PSMC, which had some
runaway behavior and unrealistic results. The data set is probably too
small for PSMC to work accurately. (B) The results of diCal. We inferred
that the European population size underwent a severe bottleneck �117
KYA and recovered in the past 16,000 years to an effective size of
�12,500. In contrast, our results suggest that the YRI population size
did not experience such a significant drop during the early out-of-Africa
bottleneck phase in Europeans.
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history that created the diversity we see today in humans and
other species.
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Appendix

HMM Formulas

The expression R(i, t; j, t9) in (10) is defined as

R
�
i; t; j; t9

�
¼

�
RðiÞðtÞ þ

Pi21
k¼0 R

ðkÞ
�
; if i, j;�

RðjÞðt9Þ þ
Pj21

k¼0 R
ðkÞ
�
; if i. j;�

RðiÞðt∧t9Þ þ
Pi21

k¼0 R
ðkÞ
�
; if i ¼ j;

8>>><
>>>:

where ∧ denotes the minimum operator and, for u 2 [tk21, tk),

RðkÞðuÞ :¼ rblk
n2 rblk

�
e2rbuþnðu2tk21Þ=lk 2 e2rbtk21

� Yk21

m¼1

enðtm2tm21Þ=lm ;

RðkÞ :¼ rblk
n2 rblk

�
e2rbtkþnðtk2tk21Þ=lk 2 e2rbtk21

� Yk21

m¼1

enðtm2tm21Þ=lm :

After the state space has been discretized, we compute the transition probabilities using y(i) (the probability that no re-
combination occurs) and z(i,j) (the probability that recombination does occur),

yðiÞ ¼ 1

ẑ
ðlÞðDi; hÞ

Z ti

ti21

zðlÞðt; hÞe2rbtdt

¼ 1
wðiÞ

n
nþ rbli

Yi21

k¼1

e2nðtk2tk21Þ=lk

�
e2rbti21 2 e2rbti2nðti2ti21Þ=li

�

and

zði;jÞ ¼ n
wðiÞnhℓ21

Z tj

tj21

Z ti

ti21

Z tℓ21∧tℓ

0
rbe

2rbtr zðlÞðtℓ; hℓÞRN
tr

zðlÞðtÞdt
zðlÞðtℓ21; hℓ21Þdtr dtℓ21dtℓ

:¼ Zði;jÞ þ wðjÞ Pi∧j21

k¼1
RðkÞ;

where Z(i,j) corresponds to the case when the recombination event occurs during the time interval Di∧j (i.e., the latest it
could) and R(k) corresponds to a recombination event in the time interval Dk. R(k) is defined as before, and Z(i,j) is

Zði;jÞ ¼ n
wðiÞnhℓ21

Z tj

tj21

Z ti

ti21

Z tℓ21∧tℓ

tði∧jÞ21

rbe
2rbtr zðlÞðtℓ; hℓÞRN

tr zðlÞðtÞdt
zðlÞðtℓ21; hℓ21Þdtrdtℓ21dtℓ:

To evaluate Z(i,j), we must separate the computation into the cases i , j, i . j, and i = j,
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Zði;jÞ ¼

wðjÞ

wðiÞf
ðiÞ; if i, j

f ðjÞ; if i. j

1
wðiÞ

�
rbli

nþ rbli
e2rbti21 2 2e2nðti2ti21Þ=li2rbti21 2

rbli
n2 lir

e2rbti2122nðti2ti21Þ=li

þ 
2n2

ðn2 lirÞðnþ lirÞ
e2rbti2nðti2ti21Þ=liÞ

� Yi21

m¼1

e2nðtm2tm21Þ=lm ; if i ¼ j;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where we define

f ðiÞ :¼ e2rbti21 þ lirb
n2 lirb

e2nðti2ti21Þ=li2rbti21 2
n

n2 lirb
e2rbti :

To compute the emission probabilities we define v(i)(k) below,

vðiÞðkÞ :¼ nðuℓÞk

liwðiÞk!
enti21=li

Yi21

j¼1

e2nðtj2tj21Þ=lj
Xk
j¼0

c2ðjþ1Þ
i

k!
ðk2 jÞ!

h
e2citi21 tk2j

i21 2 e2citi tk2j
i

i
;

where

ci :¼ uℓ þ
n
li
:

Computation of the Expected Transition Counts During the E-Step

Naively, if we compute the expected number of transitions from state sℓ21 = (Di, hℓ21) to state sℓ = (Dj, hℓ) and then
marginalize over the haplotypes, we obtain an O(n2) algorithm. To improve the run time, we can decompose the probability
that a transition is used between locus ℓ 2 1 and ℓ into a part that depends on the absorption haplotype and a part that
depends on the absorption time interval, and thus we can reduce the run time to O(n). First we compute the posterior
probability A(ℓ)(sℓ21, sℓ) that a particular transition is used between locus ℓ 2 1 and ℓ, in terms of the discretized forward and
backward probabilities Fℓ(�) and Bℓ(�). Let the newly sampled haplotype have allele a at locus ℓ, so a[ℓ] = a. Then

AðℓÞðsℓ21; sℓÞ ¼ 1
p̂ðaÞ � Fℓ21ðsℓ21Þ � f̂

ðlÞðsℓjsℓ21Þ � ĵ
ðlÞðajsℓÞ � BℓðsℓÞ:

Now we marginalize over the haplotypes, plugging in the transition density formula

P
hℓ21

P
hℓ

AðℓÞðsℓ21; sℓÞ ¼
1

p̂ðaÞ
X
hℓ21

X
hℓ

Fℓ21ðsℓ21Þ � f̂
ðlÞðsℓjsℓ21Þ � ĵ

ðlÞðajsℓÞ � BℓðsℓÞ

AðℓÞ�Di;Dj
�
¼ 1

p̂ðaÞ
X
hℓ21

X
hℓ

Fℓ21ðsℓ21Þ � ĵ
ðlÞðajsℓÞ � BℓðsℓÞ

�
yðiÞdsℓ21;sℓ þ zði;jÞ

nhℓ
n

�

¼ 1
p̂ðaÞ

"
di;jyðiÞ

 X
h

Fℓ21ðDi; hÞĵ
ðlÞðajDi; hÞBℓðDi; hÞ

!

þ  zði;jÞ
 P

hℓ21

Fℓ21ðsℓ21Þ
! P

hℓ

nhℓ

n
ĵ
ðlÞða  jsℓÞBℓðsℓÞ

!#
;

which is linear in n since we are only ever summing over one haplotype. To get the expected transition counts, we then sum
over all the breakpoints, so Aij ¼

PL
ℓ¼2 A

ðℓÞðDi;DjÞ.
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Discretizing Time

With an ideal time discretization, coalescence events would be uniformly distributed across intervals, but inferring the
distribution of coalescence times is equivalent to the problem of population size estimation. Our heuristic discretization
procedure seeks to avoid poor discretization by using the observed spacing of SNPs in the data. Let T be the empirical
distribution of absorption times for all the contiguous segments inferred by a posterior decoding of our data set. Then, for
a discretization with d intervals, our goal is to compute t1, . . . , td21 such that we see the same number (i.e., |T |/d) of
absorption times in each interval.

We first tackle the problem of breaking up our data into segments with the same pairwise coalescence time and then
compute the expectation of this time. The locations of ancestral recombination breakpoints divide up a sequence pair into
segments that each have a single coalescence time, but we do not know these breakpoints. However, it will often be the case
that all the base pairs between two adjacent SNPs will coalesce at the same time or be split between just two different times
on either side of a recombination breakpoint. Moreover, in many cases, the positional distribution of SNPs and that of
recombination breakpoints will be correlated—in particular, both SNPs and recombination breakpoints will be spaced
farthest apart in regions of recent coalescence time. With this rationale, we take the observed distances between SNPs as
a proxy for the length distribution of nonrecombining segments. To be more specific, let L be the list of all lengths between
adjacent SNPs for all pairs of haplotypes, and let the d empirical quantiles of L be bounded by L1, . . . , Ld21.

Now we need the expectated coalescence time of an l-base segment with no mutation or recombination. Conditional onm
mutation events and r recombination events, the coalescence time for two lineages under a constant population size is
distributed as G(1 + m + r, 1 + lu + lr) (see Tajima 1983 for a derivation with mutation only), so the expected coalescence
time for m = r = 0 is

1
1þ lðuþ rÞ:

In our implementation, we drop the 1 in the denominator since this represents our prior under constant population sizes of
two lineages coalescing at rate 1. We want to minimize the use of our prior, so we put more weight on the term related to the
empirical length distribution. Putting this all together, we plug the quantiles of L into this formula to obtain ti:

ti ¼
1

Ld2iðr þ uÞ:

If an approximate time range of interest is known (for example, in humans we might be interested in the last 1 million years),
then the user can specify an end-time Tmax. Then all times are scaled by Tmax/td21.
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1 Simulation details

The following ms commands were used to simulate data under three population size change histories:

S1: ms 10 1 -T -r 10000 1000000 -eN 0.05 0.1 -eN 0.2 0.5 -eN 0.5 1.25

S2: ms 10 1 -T -r 10000 1000000 -eN 0 10 -eN 0.05 0.1 -eN 0.2 0.5 -eN 0.5 1.25

Note that ms times are in units of 4N0 generations, so we multiplied the raw times above by 2 to compare
to PSMC and our method diCal. Mutation rates were not specified above, since the only ms output used
was tree at each base (-T flag). Mutations were then added to the trees using a finite sites model, the
mutation matrix in Table 1, and a mutation rate θ = 0.01 × 1.443. The factor of 1.443 accounts for the
fact that this mutation matrix allows mutations that do not actually change the base (i.e., an A → A
transition); see Chan et al. (2012) for further explanation. This mutation matrix was also used for the
real data analysis.

The following style of command was used to run PSMC. We used 20 iterations as described in the
PSMC paper (Li and Durbin, 2011), and the same pattern of parameters we used for diCal:

psmc -p 3+2+2+2+2+2+3 -t 7 -N 20 -r 1 -o output.psmc input.psmcfa

To run our method on simulated data, the following style of command was used:

java -Xmx25G -d64 diCal_EM -i input.fasta -p params.txt -n 9 -t 5 -a "3 2 2 2 2 2 3"

The parameter file includes the number of loci in each sequence, the number of alleles (4 in our case),
an estimate of the mutation rate, mutation matrix, and recombination rate, and the discretization. The
-n flag specifies the number of haplotypes to use in the trunk, so there are n + 1 total. The -t flag
specifies the number of threads to use; memory requirements scale linearly with this parameter. If -t 1

was specified in the case, then -Xmx5G could be used for the memory requirement. The -a flag specifies
the pattern of parameters, in an analogous fashion to PSMC.

To run our method on real data, the following style of command was used:

java -Xmx20G -d64 diCal_EM -i input.fasta -p params.txt -n 9 -t 2 -r 1.25 -a "4 2 2 2 2 2 2"

Table 1: Mutation matrix for realistic human data. The rows represent the original base, and the columns
represent the mutated base.

base A C G T

A 0.503 0.082 0.315 0.100
C 0.186 0.002 0.158 0.655
G 0.654 0.158 0 0.189
T 0.097 0.303 0.085 0.515
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The -r flag specifies the Tmax (analogous to the -t flag for PSMC), since for humans we know
the approximate date range of interest. For the real data we used a longer sequence, so the memory
requirements scale accordingly (linearly).

2 Comparison of diCal to PSMC

Although diCal and PSMC are both implementations of the sequentially Markov coalescent in a discrete-
time framework, they have significant differences that must be considered when comparing results from
the two programs. One difference is that PSMC scales all population sizes with respect to an inferred
parameter θpsmc = 4Npsmcµ. In contrast, diCal scales population sizes with respect to a fixed input
θsmcsd = 4Nsmcsdµ. Neither θ is right or wrong, they are just scaled with respect to a different N0. If we
arbitrarily set Nsmcsd = 1, then

Npsmc = θpsmc/θsmcsd

Thus when analyzing the results, we multiplied the PSMC sizes and times by Npsmc. We also multiplied
the ms times by 2, since they are in units of 4N0 generations.

To compare the performance of the two programs fairly, we gave both PSMC and diCal the same
amount of data. Specifically, we compared the performance of diCal with a n-sequence leave-one-out
scheme to the performance of PSMC with the same n sequences, but paired up sequentially (i.e. sequence
1 with 2, sequence 3 with 4, etc).
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