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ABSTRACT Most modern population genetics inference methods are based on the coalescence framework. Methods that allow
estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the
calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that
contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition
probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of
calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current
implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of
TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the
estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree
structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs.

THE estimation of population genetics parameters such as
migration rates and effective population sizes is a com-

mon task for researchers in such fields as conservation bi-
ology, population biology, and biogeography. The theory of
coalescence, introduced in 1982 by Kingman (1982a,b,c), is
a formidable framework for describing population genetic
processes.

It has changed the inference of population genetic
parameters completely. We can calculate probabilities of
complex interactions among individuals within and between
populations, using the structured coalescent (Strobeck 1987;
Notohara 1990; Wilkinson-Herbots 1998). Probabilistic infer-
ences built on the structured coalescent (Kuhner et al. 1995;
Kuhner 2006; Beerli 1998, 2006; Beerli and Felsenstein
1999; Hey 2010) are now used by many researchers. Rou-
tinely, complex population models are evaluated and, more
recently, compared to each other (Beerli and Palczewski
2010). These approaches commonly integrate over many ge-
nealogies G that are augmented with migration or divergence
events, using the Felsenstein equation

pðDjPÞ ¼
Z
G
pðGjPÞpðDjGÞdG (1)

(Hey 2007), where D is the data and P is a set of model
parameters, for example the effective population size Ne

and immigration rates m. Beerli and Felsenstein (1999)
expressed the coalescence probability density of a genealogy
given the parameters

pðGjP ¼ ðN;m ÞÞ ¼
Yh
z¼1

bze
2lzt (2)

with h number of events on the tree. The rate at which the
zth event happens is

lz ¼
Xn
j

kzj
�
kzj 2 1

�
4Nj

þ
Xn
i

Xn
j; j 6¼i

kzj mij; (3)

where kzj is the number of lineages currently in popula-
tion j corresponding to the time before event z, and mij is
a migration rate defined as the percentage of individuals
in population j that were previously in i. The variable bz

is the contribution of the current event to the sum that
makes l. In other words, bz is the rate of the event con-
sidered. This rate of coalescence is 2=4Nj for a given pair
of lineages and the rate of migration is mij for a given
lineage.

Copyright © 2013 by the Genetics Society of America
doi: 10.1534/genetics.113.150904
Manuscript received February 26, 2013; accepted for publication April 30, 2013
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.113.150904/-/DC1.
1Corresponding author: Department of Scientific Computing, Florida State University,
400 Dirac Science Library, Tallahassee, FL 32306-4120. E-mail: mp05e@my.fsu.edu

Genetics, Vol. 194, 687–696 July 2013 687

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.150904/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.150904/-/DC1
mailto:mp05e@my.fsu.edu


This method allows for n2 parameters, where n is the
number of populations; the parameters can be partitioned
into n population sizes and n(n 2 1) migration rates, thus
allowing for asymmetric migration rates.

Often, we will not be able to estimate the absolute quantities
of Ne andm, but only the parameterQ, which is 4 · Ne · m, and
M, which is m/m. For both Q and M the mutation rate m is the
scalar.

Equation 2 is a potentially large product over all events in
the genealogy, including coalescences and migration events.
The state space for such augmented genealogies is poten-
tially huge because the number of events depends on the
magnitude of the parameters. For example, a low migration
parameter suggests that there are few migration events in
the genealogy whereas a large migration rate suggests that
there are many (Figure 1).

The calculation of the likelihood p(D|P) is analytically
intractable and is commonly solved using Markov chain
Monte Carlo (MCMC) methods (Metropolis et al. 1953;
Hastings 1970). This can be very time consuming because
the Markov chain needs to visit not only large numbers of
probable topologies and parameter sets but also an even
larger number of different configurations of migration events.
Particularly, data sets that were generated by models with
high migration rates among subsets of populations are diffi-
cult to analyze.

Here we propose a method that reduces the integration
over all of these different migration events. Instead of relying
on Monte Carlo methods to simulate many of these events,
a one-dimensional numerical integration is proposed. This
greatly simplifies the number of possible tree topologies that
need to be explored. Although for any data stemming from
multiple populations, there are an infinite number of possible
genealogies augmented by migration events, the number of
possible topologies when migration events are excluded is
large but finite. Furthermore these genealogies are much
simpler, since they include only coalescences. The analysis of
such genealogies requires less time for situations with high

migration rates where the standard methods augment the
genealogies with many migration events (Figure 1).

Methods

Transition-probability structured
coalescence framework

Our new framework, the transition-probability structured co-
alescence (TPSC), does not depend on explicit migration events,
but integrates over all possible population assignments. We
contrast TPSC with the event-based structured coalescence
(ESC) presently incorporated into MIGRATE (Beerli 1998; Beerli
and Felsenstein 1999). Although the TPSC allows for complex
population structure, we describe the method using a simple
two-population model with four parameters (Figure 2).

Assume that there is a single stretch of nonrecombining
genome L0; at the present time it is in population 1. Looking
backward in time, there is an exponential distribution for
the waiting time until this lineage migrates from a different
population.

The probability density of the waiting time until the
sample changes population one or more times during the
time interval from 0 to t is

m21e2m21t (4)

with the immigration rate m21 from population 2 to 1; t is
measured in generations and m is measured in terms of the
proportion of offspring coming from a new population. A similar
function can be applied to a sample from the other population.

To predict the probability of a particular lineage Li being
in a particular population Zi we use a continuous-time Mar-
kov process. First construct a transition rate matrix Q of
migration rates,

Q ¼
�
2m21 m21
m12 2m12

�
(5)

and a vector of initial probabilities

P0 ¼ ½ PðL 2 Z1   jt0Þ PðL 2 Z2   jt0Þ �: (6)

Now we can compute the probabilities of being in each
population at time t:�

PðL 2 Z1   jtÞ
PðL 2 Z2   jtÞ

�
¼ P0eQt: (7)

This framework can be extended to more than two popula-
tions: Q would still be a square matrix of migration rates, but
Q would have size n, the number of populations:

Figure 1 Number of migration events in genealogies. (A) Genealogy
generated with Nm = 0.400 into the population marked with open circles
(s) and Nm = 0.267 into the population marked with solid circles (•). (B)
Immigration rates are 10 times higher. Migration events on the genealogy
are shaded according to the receiving population, looking forward in
time.

Figure 2 Two-population model.
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Q ¼

2
664
2

Pn
i¼1mi1 m21 . . . mn1

m12 2
Pn

i¼1mi2 . . . mn2
⋮ ⋮ ⋱ ⋮

m1n m2n . . .
Pn

i¼1min

3
775: (8)

With this framework it is possible to compute the probability
density of one lineage going back in time. When looking at
multiple lineages, one must also take into account co-
alescence events. The rate of standard coalescence for two
lineages is the inverse of the population size or two times
the population size for diploids. The probability density of
the time t to coalescence of two independent lineages in the
same population with no migration is

PðtÞ ¼ 1
2Ne

eð2ðt=2NeÞÞ: (9)

Two lineages that are not in the same population do not
coalesce. Their rate of coalescence is zero. Calculating the
probability that two lineages are in the same population at
a specific time would require a conditional probability. This
would increase the size of the Q matrix, which would in-
clude both lineages and possible coalescences. Instead we
make a simplification and estimate the joint probability by
assuming independence.

Thus, we can combine the probability of being in
a particular population with the rate of coalescence to
estimate the rate of two independent lineages coalescing in
population Zp; from now on we mark Zp only by its indicator
p,

l1;2;pðtÞ ¼ PðL1 2 p; L2 2 pÞ
2Np

� PðL1 2 pÞPðL2 2 pÞ
2Np

; (10)

where Np is the effective population size of population p.
The total rate of coalescence of the two lineages is the
sum over all K populations:

l1;2ðtÞ ¼
XK
k¼1

l1;2;kðtÞ ¼
XK
k¼1

PðL1 2 kÞPðL2 2 kÞ
2Nk

: (11)

Expanding to multiple lineages, the total rate of coalescence
is

lðtÞ ¼
Xn
i¼1

Xn
j 6¼i

li; jðtÞ
2

¼
XK
k¼1

Xn
i¼1

Xn
j 6¼i

PðLi 2 kÞP�Lj 2 k
�

4Nk
:

(12)

The 2 in the divisor offsets the double counting of the
coalescence of li,j and lj,i; n is the total number of all
sampled lineages. For computational efficiency we trans-
form to

lðtÞ ¼
XK
k¼1

"
1

4Nk

Xn
i¼1

PðLi 2 kÞðKk2 PðLi 2 kÞÞ
#

(13)

with

Kk ¼
Xn
j¼1

P
�
Lj 2 k

�
: (14)

Disregarding the time it takes to calculate individual P(Li 2
k), both Equations 13 and 14 can be calculated in O(nk)
time.

The probability that a specific coalescent of two lineages
has happened in a particular population can be calculated as
the ratio of the rate that lineages coalesce in that population
to the total coalescence rate,

P
�
coalescence 2 pjLi; Lj; t

� ¼ li;j;pðtÞ
li;jðtÞ : (15)

With this framework it is possible to calculate the probability
of an entire genealogy given the population sizes and
migration rates. The probability of each coalescent event is
modeled by a nonhomogeneous Poisson process. Therefore
the probability of two lineages Lx and Ly coalescing at time t
is

P
�
Lx; Ly; t

� ¼ lx;yðtÞe
�
2
R t

t0
lðtÞdt

�
: (16)

Here x and y are the indexes of the lineages in question.
Multiplying all coalescence probabilities results in the

probability of the genealogy G given the model parameters.
For our two-population model we get

PðGjN1;N2;m21;m12Þ ¼
Yn21

i

P
�
Li;x; Li;y; ti

�
(17)

Here Li,x and Li,y represent the ith coalescent even on the
tree where lineages x and y coalesce.

Testing the TPSC

To evaluate the merit of our approach, we evaluated the
TPSC for three different situations: We calculated exact
probabilities for two individuals collected in two different
populations. We calculated the maximum-likelihood esti-
mates of model parameters and compared coverage and
parameter estimates of a Bayesian implementation of TPSC
with MIGRATE for various simulated data sets.

Likelihood calculations

The likelihood of the genetic data D given the param-
eters is calculated using the Felsenstein et al. (1999)
equation

p
�
DjN1;N2;m21;m12;Mm

�
¼ P

G
pðGjN1;N2;m21;m12Þ  p

�
DjG;Mm

�
: (18)

For the mutation modelMm we used the F84 model (Felsenstein
and Churchill 1996). Without additional information the
population size parameters and the mutation rate are
confounded and we express the parameters of interest as
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a combination of m and a scalar, so that for diploid organ-
isms we report

P ¼ ðQ1 Q2 M21 M12 Þ ¼
�
4N1m 4N2m

m21

m

m12

m

	
;

(19)

where Qi is the mutation-scaled effective population size
and Mji is the mutation-scaled immigration rate.

Bayesian inference using TPSC

We construct a Bayesian estimator

pðP;GjDÞ ¼ pðPÞpðGjPÞPðDjGÞ
PðDÞ : (20)

The marginal posterior density for the parameters was
estimated using the Metropolis–Hastings (MH) method. The
implementation of such a method uses updates on the gene-
alogy and the population genetic model parameters (Ronquist
and Huelsenbeck 2003; Drummond and Rambaut 2007).

We implemented an MH algorithm, using a tree-update
method similar to the one described by Nielsen (2000). The
tree is updated by picking a random internal node represent-
ing a coalescence event and changing the time of the event
up or down on the genealogy. In our algorithm, the proba-
bility of choosing any coalescence event is uniform, whereas
in Nielsen’s algorithm the coalescence event selection is pro-
portional to the length of a branch away from the root. The
distance that each internal node is moved is a random value
drawn from a normal distribution as in Nielsen’s algorithm,
but unlike Nielsen’s algorithm the variance for this normal
distribution is not arbitrary but is adapted to the information
content of the data during the burn-in period (Appendix).

For parameter updates we use a method similar to
the sliding-window proposal implemented in Mr. Bayes
(Huelsenbeck et al. 2001; Ronquist and Huelsenbeck 2003).
Unlike Mr. Bayes’ sliding-window proposal, which uses a uni-
form random number, we update the parameter by adding
a normally distributed random variable. The variance of the
normally distributed random variable is also adapted to in-
formation content of the data during the burn-in period. Our
adaptive scheme is outlined in the Appendix.

Results

To analyze the effectiveness of our new method we have
done three types of analysis. The first is an analytic treatment
of two simple cases. We take a look at the probability density
of time until a coalescent event. For a simple case, we can
solve this analyticaly and compare the exact solution to the
TPSC approximation. In the second study we simulate
genealogies and use TPSC to infer the parameters used to
generate these genealogies. Knowing all details of a genealogy
is a rather unrealistic scenario. However, this second study
tests the new model directly and without the complication of
a mutation model needed to fit data to the genealogy. Finally,

we did full simulation tests using DNA sequence data. We
compared the ability of TPSC to the programMIGRATE, which
uses a discrete coalescent method, to infer the simulated
parameters.

Analysis for two lineages

Symmetric model: First, we analyzed the structured co-
alescent of a two-population model with identical popula-
tion sizes (N) and symmetrical migration rates (m). At the
present time there are two lineages of interest, one in each
population. This can be modeled by a continuous-time Mar-
kov model with the following exact transition probability
matrix:

Qe ¼

2
6664
0 0 0
1
N

2
1
N
2 2m 2m

0 2m 2 2m

3
7775: (21)

There are three states: State 3, represented by the third
row, is the initial state of the lineages being in different
populations. Looking backward in time, each lineage can
migrate at the rate m. Either lineage migrating will result in
both lineages existing in the same population. State 2, rep-
resented by the second row, is the state of both lineages
existing in the same population. Either lineage can immi-
grate at the rate m, per lineage, or the two lineages can
coalesce at the rate 1

N. State 1, represented by the first
row, is an absorbing state. Once the lineages are coalesced
we are no longer interested in them. The probability density
of time to coalescence is the derivative of the probability
that the lineage is in state 1:

pðtcoal¼tÞ ¼
d
dt

Pðtcoal, tÞ ¼ d
dt

�
eQet

�
ð3;1Þ: (22)

An analytic solution for this matrix exponential and de-
rivative exists. However, the equation is very long and
inconsequential. Instead of writing it out we have plotted it
in Figure 4, but we have included it as a Mathematica
worksheet with Supporting Information, File S1.

This simple two-population model analyzed using TPSC
leads to the transition probability matrix that takes into
account only migration events:

Qm ¼
�
2m m
m 2m

�
: (23)

The first step requires the calculation of the probability that
the two lineages are in the same population (Ptogether). This
probability is the sum of probabilities that both lineages are
in population 1 and that both lineages are in population 2:

Ptogetherðt;mÞ ¼ eQmt
ð1;1Þe

Qmt
ð1;2Þ þ eQmt

ð2;1Þe
Qmt
ð2;2Þ: (24)

This is a function of m because Q depends on m. The rate of
coalescence then becomes
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lðt;N;mÞ ¼ Ptogetherðt;mÞ
N

: (25)

Finally we can compute the probability density of a coalescent
event. Again this is analytically tractable, but the equation is
rather long, and we have included it as a Mathematica
worksheet in File S1:

pðtcoalÞ ¼ lðt;N;mÞe2
R x

0
lðx;N;mÞdx

: (26)

We have plotted Equations 26 and 22 for various values of
Nm in Figure 4. Although both N and m can vary indepen-
dently, the shapes of these curves depend only on the ratio
of N to m.

Asymmetric model: In the first analytic example we created
a symmetric model. In this section we explore another simplified
model, one with unidirectional rather than symmetric
migration.

We simplify the model from Figure 2 and consider only
a two-parameter model. The parameters are the population
size of population 1, Nð1Þ

e , and the immigration rate m1/2;
the immigration rate m2/1 is zero. The population size of
population 2 is inconsequential. This model is shown in
Figure 3.

Just as before, two individuals were sampled, one in each
population. We are interested in calculating the probability
density of time until coalescence. This simple scenario can
be modeled by a continuous-time Markov process. The state
probabilities can be calculated exactly, using a continuous-
time Markov model with a three-state Q matrix:

Qf ¼

2
6664

0 0 0
1
Ne

2
1
Ne

0

0 m 2m

3
7775: (27)

Here state 1 represents the coalesced state. This is an
absorbing state. State 3 is the initial state with each sample
in a different population. Since migration is a one-way
state the Markov chain will go from state 3 to state 2 at
the migration rate. State 2 represents both lineages being
in the same population. These will coalesce at a rate that is
the inverse of the population size.

The exact probability density of the time to coalescence
can be calculated as

pðtcoalÞ ¼
d
dt

Pðtcoal, tÞ ¼ d
dt

�
eQf t

�
ð3;1Þ ¼

me2mt 2me2ðt=NeÞ

12mNe
:

(28)

Using TPSC, first we compute the probability that these two
populations are in the same population. This is governed by
a simple exponential distribution, because there is an
exponential waiting time until the lineage that is able to
migrates:

Ptogether ¼ 12 e2mt: (29)

The rate of coalescence can be computed:

lðtÞ ¼ 12 e2mt

Ne
: (30)

This is the probability of both lineages being in the same
population. Then the probability density function becomes

pðtcoalÞ ¼ lðtÞe2
R t

0
lðxÞdx

¼ �
12 e2mt� e2 ð1=NeÞ½ðe2mt21Þ=mþt� 1

Ne
: (31)

Comparisons between the exact method and TPSC, shown in
Figure 4 for a symmetric migration model, reveal that the
approximation works well in scenarios when the migration
rate is high (Nm $ 1.0) and poorly when the migration rate
is low (Nm # 1.0). Graphs for the asymmetric case reveal
the same general pattern (not shown, but included in File
S2).

Simulated genealogies

To test our method we simulated genealogies from known
population parameters. Using the true genealogy is equiva-
lent to assuming that there is an infinite amount of sequence
data to define the genealogy; therefore we can find the
maximum-likelihood estimate of Equation 18 (cf. Felsenstein
1992). An example of such an analysis is shown in Figure 5.
Each panel presents the profile-likelihood curve for each of
the four parameters of a two-population model: Q1, Q2, M21,
and M12. The genealogy was generated using the structured
coalescent with parameters Q1 = 0.012, Q2 = 0.01,M21 = 0,
and M12 = 1000. The 95% confidence intervals bracket the
true parameter value for all parameters. The profile likeli-
hood curves are strongly peaked for the mutation-scaled
population sizes, but the migration parameters have wide
confidence intervals.

We calculated several statistics over the maximum-likelihood
estimates (MLEs) from 1000 simulated genealogies of 40
individuals, 20 per population (Table 1).

Simulated DNA sequence data

To test the effectiveness of the TPSC we simulated DNA
sequence data from two populations for a total of 40
individuals. We examined all nine combinations of three
mutation-scaled population sizes Q of 0.001, 0.01, and 0.1
and three mutation-scaled immigration rates of 10, 100, and
1000. The smallest population size is typical for nuclear data
in human populations whereas the largest population size

Figure 3 Population model with two parameters.
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seems appropriate for species with very large effective pop-
ulation sizes, such as viruses or bacteria. The number of
migrants 4Nem per generation ranged from 0.01 to 100,
covering many potential natural scenarios. For each of
the nine scenarios we simulated 100 data sets, using
the simulation software MIGTREE and MIGDATA (avail-
able at http://people.sc.fsu.edu/�pbeerli/software). DNA
sequences with lengths of 500 bp were simulated using
the F84 model (Hasegawa et al. 1985; Felsenstein and
Churchill 1996). We chose for our simulations a DNA se-
quence length short enough so that even in natural pop-
ulations we could expect few or no recombination events
to occur.

These data sets were then run in TPSC and MIGRATE.
Comparison with other programs that estimate migration
rates (IMa and LAMARC) failed because of run-time
constraints. Either programs did not converge within 48
hr or memory requirements were prohibitive to run 900
simulations.

TPSC and MIGRATE were run on the high-performance
computing cluster at Florida State University. The run time
of each separate data set was on the order of a few hours.
Convergence was assessed by running TPSC multiple times
from random starting genealogies on the same data to
check for similar results. This procedure was then repeated
using MIGRATE. Convergence of the runs of MIGRATE was
assessed by repeated runs; there were potential conver-
gence problems for data sets generated with high numbers
of migrants (4Nem = 100).

Table 2 summarizes standardized mean square errors
(MSE) [ð1=nÞPn

i ðx̂i2xtÞ2=x2t ] for TPSC and MIGRATE of
n = 100 replicates for each set of Q and M. Although we
used a symmetric model of migration for simulation, the

inference used a model with two population sizes and two
migration rates that were allowed to vary independently. We
report all four estimated parameters Q̂1, Q̂2, M̂2/1, and
M̂1/2 for each combination of the true parameters, resulting
in 36 comparisons of TPSC and MIGRATE. Because the true
values for these parameters are symmetric, we expect that
Q̂1 ¼ Q̂2 ¼ Qt and M̂2/1 ¼ M̂1/2 ¼ Mt.

TPSC and MIGRATE performed similarly on the estima-
tion of mutation-scaled effective population sizes; differences of
the MSE were mostly small, although TPSC estimates usually
with slightly higher MSE values. The standardized MSEs for M
are larger than those for Q for both programs. TPSC outper-
forms MIGRATE in the estimation of mutation-scaled migration
most of the time (37 of 54). In particular TPSC’s MSE of the
median of M with low true effective population size and high
true migration rates is smaller than the corresponding MSEs of
MIGRATE. With large population sizes (Q = 0.1) and large
migration rates (M = 1000), TPSC seems to have difficul-
ties achieving good estimates. These are cases in which the
number of migrants is so high that distinguishing large
from very large values becomes difficult. The likelihood
surface becomes very flat, making it difficult to get accurate
estimates. Although MIGRATE seems to work better in these
cases, convergence to a unique solution for a particular data
set becomes difficult.

Discussion

Recently, several researchers have described similar meth-
ods to TPSC. Takahata (1988) and Hobolth et al. (2011)
integrated out migration events similarly to the method de-
scribed in this article, but their formulation requires much
larger transition probability matrices to calculate all potential

Figure 4 Graphs showing the
probability density of time to co-
alescence of two lineages in
a two-population scenario with
symmetric migration. The dashed
line is the exact probability den-
sity whereas the solid line is the
TPSC approximation. The effec-
tive population size for each
panel is Ne = 1000.
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interactions among lineages. This makes it difficult to employ
their methods for large numbers of individuals k. TPSC, in
contrast, depends only on the number of populations n in the
analysis and work increases on the order O(n3k2) instead of O
((kn)k). Usually, k .. n. The program BEAST (Lemey et al.
2009) contains a phylogeographic model that may relate
distantly to our method in that it presents probabilities of
origin for particular pathogen strains or populations. The
model of Lemey et al. (2009) similarly uses a continuous-
time Markov chain to calculate location probabilities of
past events. In this model, however, migration and coales-
cence are not intertwined. Instead a coalescent prior with
a single population is used for the entire genealogy. After-
ward, the locations of past states are computed on this tree.
This does not take into account that individuals in small
populations coalesce faster than those in large populations.
In contrast, TPSC takes into account multiple population
sizes, which gives information on spatial location of coa-
lescent events.

TPSC is an approximation; it assumes independence of
lineages for the calculation of the population assignment

probability for the nodes in the genealogy. This leads to
biased estimates for low migration rates (Figure 5, Table 1);
however, TPSC outperforms event-based methods such
as MIGRATE in scenarios with high immigration rates
and moderate population sizes (Table 2). In such scenar-
ios immigration events happen similarly as often as

Figure 5 Plots of profile-likelihood curves. Data were simulated from a two-population model with migration in one direction. Labels indicate
the maximum-likelihood estimate, the “true” parameter value used to generate the genealogy, and the 95% confidence interval of the
estimate.

Table 1 Accuracy of TPSC

M

Statistic 2.5 25 250

Average Q̂ 0.048 0.043 0.047
Median Q̂ 0.045 0.041 0.045
Average M̂ 10.265 31.874 365.95
Median M̂ 4.448 19.845 237.67
Coverage of Q 86% 91% 85%
Coverage of M 81% 92% 86%

Shown are maximum-likelihood estimates of mutation-scaled migration ratesM and
mutation-scaled population size Q assuming the genealogy is known. For each M,
1000 genealogies were simulated using “true” parameter values Q = Q1 = Q2 =
0.04 andM =M12 =M21 = [2.5, 25, 250]. The true number of migrants 4Nem = QM
is [0.1, 1, 10].
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coalescence events (cf. Nordborg and Krone 2002) . With
moderate immigration numbers (Nm � 1) the TPSC approx-
imation and the full solution lead to similar distributions,
suggesting that TPSC can replace event-based methods for
all data sets except those that include isolated populations.

We distribute our method in a stand-alone program
(http://people.sc.fsu.edu/�pbeerli/software) and will in-
corporate it into our program MIGRATE, allowing for
switching between event-based and transition-probability
structured coalescence methods.

Acknowledgments

We thank Thomas Uzzell for comments on several revisions
of our text. We acknowledge the use of the high-performance
computing facility at Florida State University. Our work was
supported by grants DEB-0822626 and DEB-1145999 from
the National Science Foundation.

Literature Cited

Beerli, P., 1998 Estimation of migration rates and population
sizes in geographically structured populations, pp. 39–53 in Ad-
vances in Molecular Ecology, NATO Science Series A: Life Sciences,
Vol. 306, edited by G. Carvalho. IOS Press, Amsterdam.

Beerli, P., 2006 Comparison of Bayesian and maximum likelihood
inference of population genetic parameters. Bioinformatics 22:
341–345.

Beerli, P., and J. Felsenstein, 1999 Maximum-likelihood estima-
tion of migration rates and effective population numbers in
two populations using a coalescent approach. Genetics 152:
763–773.

Beerli, P., and M. Palczewski, 2010 Unified framework to evalu-
ate panmixia and migration direction among multiple sampling
locations. Genetics 185: 313–326.

Drummond, A., and A. Rambaut, 2007 Beast: Bayesian evolution-
ary analysis by sampling trees. BMC Evol. Biol. 7: 214.

Felsenstein, J., 1992 Estimating effective population size from
sample sequences: A bootstrap Monte Carlo integration method.
Genet. Res. 60: 209–220.

Table 2 Mean square errors of TPSC and MIGRATE

True values MSE

Parameter QT MT
Mean Median Mode

T M T M T M

Q1 0.001 10 3.034 1.258 2.094 0.860 0.972 0.542
100 3.033 1.814 2.141 1.244 1.095 0.639

1000 4.531 4.078 2.981 2.630 1.476 1.585
0.01 10 0.609 0.312 0.463 0.245 0.301 0.158

100 0.714 0.440 0.461 0.289 0.196 0.178
1000 4.451 4.256 2.110 2.260 0.223 0.440

0.1 10 0.154 0.128 0.114 0.104 0.083 0.072
100 3.352 2.935 1.928 1.838 2.516 2.354

1000 4.164 6.259 0.835 4.966 0.111 4.903
Q2 0.001 10 3.947 1.591 2.875 1.091 1.472 0.596

100 3.153 2.146 2.289 1.610 1.172 0.917
1000 4.539 3.823 3.127 2.657 2.053 1.631

0.01 10 0.411 0.269 0.310 0.220 0.211 0.161
100 1.029 0.709 0.728 0.469 0.292 0.254

1000 4.180 4.116 2.054 2.256 1.070 1.494
0.1 10 0.151 0.121 0.111 0.095 0.084 0.074

100 2.227 1.832 1.046 0.937 0.146 0.195
1000 4.281 6.160 0.941 4.733 0.088 3.201

M2/1 0.001 10 3.454 8.819 2.757 7.998 1.730 11.001
100 7.346 7.458 6.170 6.298 7.616 8.502

1000 10.089 11.410 8.751 10.786 11.034 17.790
0.01 10 5.244 5.259 3.787 3.920 3.260 2.268

100 4.794 4.607 3.491 3.574 2.159 3.124
1000 12.180 12.759 10.732 11.660 7.941 9.279

0.1 10 4.086 3.207 3.051 2.287 1.881 1.211
100 10.492 11.636 8.986 10.507 13.187 12.015

1000 14.950 6.581 14.484 6.145 14.305 6.827
M1/2 0.001 10 4.082 8.313 3.398 7.295 2.997 8.058

100 6.473 8.478 5.247 7.554 6.590 13.072
1000 9.942 10.835 8.650 9.865 8.616 11.703

0.01 10 4.510 5.918 3.232 4.753 1.697 4.584
100 4.832 5.295 3.790 4.101 3.540 2.746

1000 12.708 12.476 11.385 11.398 9.535 10.421
0.1 10 2.919 4.100 2.024 3.122 1.095 2.005

100 11.357 10.410 10.106 9.300 15.358 9.477
1000 14.937 6.621 14.458 6.673 11.943 4.296

For each QT, MT pair, 100 simulations were performed.

694 M. Palczewski and P. Beerli



Felsenstein, J., and G. A. Churchill, 1996 A hidden Markov Model
approach to variation among sites in rate of evolution. Mol. Biol.
Evol. 13: 93–104.

Felsenstein, J., M. K. Kuhner, J. Yamato, and P. Beerli, 1999 IMS
Lecture Notes-Monograph Series, pp. 163–185 in Statistics in
Molecular Biology and Genetics: Likelihoods on coalescents:
a Monte Carlo sampling approach to inferring parameters from
population samples of molecular data, (Vol. 33), edited by
Francoise Seillier-Moiseiwitsch. Institute of Mathematical
Statistics and American Mathematical Society. Hayward,
California.

Gelman, A., W. R. Gilks, and G. O. Roberts, 1997 Weak conver-
gence and optimal scaling of random walk Metropolis algo-
rithms. Ann. Appl. Probab. 7: 110–120.

Hasegawa, M., K. Kishino, and T. Yano, 1985 Dating the human-
ape splitting by a molecular clock of mitochondrial DNA. J. Mol.
Evol. 22: 160–174.

Hastings, W. K., 1970 Monte Carlo sampling methods using Mar-
kov chains and their applications. Biometrika 57: 97–109.

Hey, J., 2007 A model in two acts: a commentary on ‘A model of
detectable alleles in a finite population’ by Timoko Ohta and
Motoo Kimura. Genet. Res. 89: 365–366.

Hey, J., 2010 Isolation with migration models for more than two
populations. Mol. Biol. Evol. 27: 905–920.

Hobolth, A., L. N. Andersen, and T. Mailund, 2011 On computing
the coalescence time density in an isolation-with-migration
model with few samples. Genetics 187: 1241–1243.

Huelsenbeck, J., F. Ronquist, R. Nielsen, and J. Bollback,
2001 Bayesian inference of phylogeny and it’s impact on evo-
lutionary biology. Science 294: 2310–2314.

Kingman, J., 1982a The coalescent. Stoch. Proc. Appl. 13: 235–248.
Kingman, J. F. C., 1982b Exchangeability and the evolution of

large populations: proceedings of the international confer-
ence on exchangeability in probability and statistics, pp.
97–112 in Exchangeability in Probability and Statistics, edited
by G. Koch, and F. Spizzichino. North-Holland Publishing,
Amsterdam.

Kingman, J. F. C., 1982c On the genealogy of large populations. J.
Appl. Probab. 19A: 27–43.

Kuhner, M., 2006 Lamarc 2.0: maximum likelihood and Bayesian
estimation of population parameters. Bioinformatics 22: 768–770.

Kuhner, M. K., J. Yamato, and J. Felsenstein, 1995 Estimating
effective population size and mutation rate from sequence data
using Metropolis-Hastings sampling. Genetics 140: 1421–1430.

Lemey, P., A. Rambaut, A. J. Drummond, and M. A. Suchard,
2009 Bayesian phylogeography finds its roots. PLoS Comput.
Biol. 5: e1000520.

Metropolis, N., A. W. Rosenbluth, N. Rosenbluth, A. H. Teller, and
E. Teller, 1953 Equation of state calculation by fast computing
machines. J. Chem. Phys. 21: 1087–1092.

Nielsen, R., 2000 Estimation of population parameters and re-
combination rates from single nucleotide polymorphisms. Ge-
netics 154: 931–942.

Nordborg, M., and S. M. Krone, 2002 Separation of time scales
and convergence to the coalescent in structured populations, pp.
194–232 in Modern Developments in Theoretical Population Ge-
netics: The Legacy of Gustave Malécot, edited by M. Slatkin and
M. Veuille. Oxford University Press, Oxford.

Notohara, M., 1990 The coalescent and the genealogical process in
geographically structured population. J. Math. Biol. 29: 59–75.

Roberts, G. O., and J. S. Rosenthal, 1998 Optimal scaling of dis-
crete approximations to langevin diffusions. J. R. Stat. Soc. Ser.
B Stat. Methodol. 60: 255–268.

Roberts, G. O., and J. S. Rosenthal, 2009 Examples of adaptive
MCMC. J. Comput. Graph. Stat. 18: 349–367.

Ronquist, F., and J. P. Huelsenbeck, 2003 Mrbayes 3: Bayesian
phylogenetic inference under mixed models. Bioinformatics 19:
1572–1574.

Strobeck, C., 1987 Average number of nucleotide differences in
a sample from a single subpopulation: a test for population sub-
division. Genetics 117: 149–153.

Takahata, N., 1988 The coalescent in two partially isolated diffu-
sion populations. Genet. Res. 52: 213–222.

Wilkinson-Herbots, H. M., 1998 Genealogy and subpopulation
differentiation under various models of population structure.
J. Math. Biol. 37: 535–585.

Communicating editor: M. A. Beaumont

Transition Probability Structured Coalescence 695



Appendix

An Adaptive Scheme

The Metropolis–Hastings algorithms in this program adapt
themselves to the data to ensure faster convergence. For
Metropolis–Hastings the ideal acceptance rate can differ
from 20% to 60% (Gelman et al. 1997; Roberts and Rosenthal
1998; Roberts and Rosenthal 2009). In a typical MCMC
algorithm relatively small updates to a parameter will be
accepted at a high rate. If a parameter does not change
much, a likelihood and prior value will vary by only a small
amount. On the other hand, a large change in a parameter
when the value is already close to optimal is much more
likely to be rejected.

We use the following scheme to adjust the variance of
proposal distributions to adjust our acceptance ratio to
a theoretical ideal. During burn-in, whenever a value is
accepted for a parameter, the variance is increased by
multiplying it by a value B that is slightly .1.0,

s2
tþ1 ¼ Bs2

t ; (A1)

with t as the step number. Whenever a value is rejected, the
proposal variance is decreased by a small value b that is
slightly smaller than 1.0:

s2
tþ1 ¼ bs2

t : (A2)

If we assume that s2 has converged to some value, then we
can formulate a relation of B, b, and the acceptance rate R.
This relation is

B12R ¼ bR: (A3)

In our algorithm we choose to tune our acceptance ratio as
closely as possible to the ideal R= 0.44 proposed by Roberts

Figure A1 An example of the proposal variance adapting to an ideal. The
acceptance rate is cumulative and has an asymptote at 0.44.

and Rosenthal (2009). We use an arbitrary value of b =
0.99, thus ensuring that our variance is at most 1% away
from the ideal variance, and solve for B. Values of b close to
1 will converge to a value closer to the ideal, although they
will converge more slowly. Conversely, values of b that are
farther away from 1 will converge more quickly but the final
variance could be farther from the ideal. The convergence
rate is exponential and thus the desired acceptance ratio can
be found quickly during the burn-in.

In Figure A1 we show the convergence of a typical run to
the ideal variance. We have not seen any examples where
the convergence did not happen less quickly. The variance
converged very early in the burn-in. It should also be noted
that any errors in convergence do not result in an incorrect
algorithm. Instead the result would be worse mixing and
a longer run time required during the MCMC chain.
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