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ABSTRACT The population genetic behavior of mutations in sperm genes is theoretically investigated. We modeled the processes at
two levels. One is the standard population genetic process, in which the population allele frequencies change generation by
generation, depending on the difference in selective advantages. The other is the sperm competition during each genetic transmission
from one generation to the next generation. For the sperm competition process, we formulate the situation where a huge number of
sperm with alleles A and B, produced by a single heterozygous male, compete to fertilize a single egg. This “minimal model”
demonstrates that a very slight difference in sperm performance amounts to quite a large difference between the alleles’ winning
probabilities. By incorporating this effect of paternity-sharing sperm competition into the standard population genetic process, we
show that fierce sperm competition can enhance the fixation probability of a mutation with a very small phenotypic effect at the single-
sperm level, suggesting a contribution of sperm competition to rapid amino acid substitutions in haploid-expressed sperm genes.
Considering recent genome-wide demonstrations that a substantial fraction of the mammalian sperm genes are haploid expressed, our
model could provide a potential explanation of rapid evolution of sperm genes with a wide variety of functions (as long as they are
expressed in the haploid phase). Another advantage of our model is that it is applicable to a wide range of species, irrespective of
whether the species is externally fertilizing, polygamous, or monogamous. The theoretical result was applied to mammalian data to
estimate the selection intensity on nonsynonymous mutations in sperm genes.

FOR sexual organisms, reproduction is an essential process
that allows an individual’s genomic information to sur-

vive beyond its lifetime. Years ago, it was thought that the
functional constraints on genes involved in reproduction
should be as strong as those on functionally important genes
such as histones, etc. (e.g., Miyata and Yasunaga 1980; Li
1997); hence it was predicted that such genes should evolve
much more slowly than average. Therefore, it was a surprise
when the first molecular evolutionary analyses on reproduc-
tion-related genes (or proteins) revealed their faster than
normal evolutionary rates (see, e.g., Swanson et al. 2001;
Swanson and Vacquier 2002a,b). Since then, analyses of
additional reproductive genes in additional species continue
to support the initial observation that reproductive genes

evolve more rapidly than the genomic average (e.g., Cutter
and Ward 2005; Clark et al. 2006, 2009; Ramm et al. 2008;
Turner and Hoekstra 2008; Findlay and Swanson 2010;
Wong 2011). A common and particularly typical pattern
for reproductive genes is a higher ratio, often denoted as
dN/dS (= v), of the number of nonsynonymous nucleotide
substitutions per nonsynonymous site (dN) to the number of
synonymous nucleotide substitutions per synonymous site
(dS). This pattern seems to be particularly remarkable among
“sperm genes”, namely, genes whose protein products are
found in sperm (e.g., Wyckoff et al. 2000; Torgerson et al.
2002; Swanson et al. 2003; Nielsen et al. 2005; Artieri et al.
2008; Dorus et al. 2010). When dN/dS is computed for the
entire coding region of a gene, we call it a “gene-wide” dN/dS
value. Sperm genes usually show higher gene-wide dN/dS
values than the average over all genes in the genome. Fur-
thermore, sperm genes commonly have local regions (or do-
mains) whose dN/dS values significantly exceed 1.

There are a variety of potential explanations for this
observation. Some of them are not suitable to explain the
general trend that a wide variety of sperm genes exhibit
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high dN/dS values in various species. For example, (i) re-
laxation of selective constraints could account for elevated
gene-wide dN/dS values (Swanson and Vacquier 2002a), but
does not explain the common observation that many genes
have local regions with dN/dS � 1 (e.g., Ramm et al. 2008;
Dorus et al. 2010; Wong 2011); (ii) defense against patho-
gens could explain the elevated dN/dS values in reproductive
genes (e.g., Vacquier et al. 1997), but this applies only to
genes that are involved in battles against pathogens; and
(iii) reinforcement of reproductive incompatibility in a speci-
ation event can also accelerate the evolution of sperm genes
(Dobzhansky 1940; Howard 1993), but this works only on
special occasions where two closely related sympatric species
coexist.

Most other models and hypotheses invoke either post-
copulatory sexual selection, namely selection on reproduc-
tive genes after mating (reviewed, e.g., in Birkhead and
Pizzari 2002; Swanson and Vacquier 2002b; Clark et al.
2006; Turner and Hoekstra 2008), or sexual conflict (e.g.,
Rice and Holland 1997; Frank 2000; Gavrilets 2000; Chapman
et al. 2003; Hayashi et al. 2007). So far, these models have
mainly focused on selection and/or competition at the indivi-
dual level; when they consider a competition among sperm, it
is almost always among sperm produced by different males. In
these models, competition among sperm from a single male
play only a secondary role, if any.

On the contrary, in real life, it is obvious that numerous
sperm compete with each other even when a female mates
with only a single male during a reproductive period (see,
e.g., Parker and Begon 1993; Manning and Chamberlain
1994). For a sperm to successfully fuse with an egg, it has
to win a fierce competition with millions to billions of all the
others, to be the only “winner”; the remaining 99.999. . .%
of the sperm are destined not to be involved in fertilization.
This process is quite complicated and involves many factors.
For example, the rate of success depends on how fast it can
swim in the right direction and how efficiently it can fuse
with the egg. The former process may involve chemotaxis,
and the latter may involve egg–sperm compatibility. There-
fore, any kind of selection on sperm performance may po-
tentially increase dN/dS values of a wide variety of sperm
genes, irrespective of whether the species is externally fer-
tilizing, polygamous, or monogamous.

The main goal of this study is to examine the effects of
such competition among paternity-sharing sperm, which, as
mentioned above, have almost always been neglected thus
far. For this purpose, we here provide a “minimal model” of
sperm gene population genetics that incorporates the intrin-
sic feature of the fertilization process. To be more specific,
our minimal model focuses on the competition among sperm
introduced by a single mating event with a single male. Even
in this case, sperm can have different genotypes; for a single
sperm gene, there would be two alleles if the male is het-
erozygous. With this minimal model, we demonstrate that
even a very tiny phenotypic effect of a mutation at the level
of a single sperm can amount to a substantial difference

between allelic fitnesses at the level of a single inheritance,
through fierce competition among millions to billions of
sperm per each. This result implies that mutations with
very weak effects at the molecular level can be a potential
explanation of the widely observed high dN/dS ratios of
sperm genes.

Because our theory applies only when each allele affects
solely (or preferentially) haploid sperm genomes carrying it,
the generality of our theory largely depends on how many
sperm genes have haploid expression, namely, are expressed
during the haploid phase of the sperm development. It used
to be thought that such haploid expression should be very
rare because the haploid phase spans only late stages of the
sperm development, during which both DNA and cytoplasm
are getting compactified (see, e.g., Steger 1999). However,
recent genome-wide expression analyses estimated that about
several hundreds of sperm genes are haploid expressed in
mammals (see, e.g., Joseph and Kirkpatrick 2004). This num-
ber is comparable to that of genes examined in each of other
proteome-scale analyses of mammalian sperm (see, e.g., Good
and Nachman 2005; Dorus et al. 2010). Furthermore, as
Good and Nachman (2005) showed, it is among sperm
genes expressed after the onset of meiosis, but not among
those expressed before it, that high dN/dS regions were
found significantly more frequently than the genome av-
erage. These results indicate that haploid expression
seems to be indeed quite common among sperm genes.
If so, the model we propose here could provide an impor-
tant explanation of rapid evolution of sperm genes with
a wide variety of functions, as long as they are haploid
expressed.

Theory

Modeling sperm-competition process

In the process of fertilization, selection works in an essentially
different way from that assumed in the standard population
genetics, in which what usually matters is the number of
offspring that mature enough to produce the next offspring.
As illustrated in Figure 1A, suppose an autosomal locus with
two alleles, A and B, that have different life span distribu-
tions. Assuming all else (such as fertility) being equal, selec-
tion should favor B because it has a higher possibility to
mature and produce offspring.

In contrast, in the fertilization process, millions to billions
of sperm compete for fertilizing an egg (or a handful of eggs),
and selection should act on the fertilizing ability of sperm. In
Figure 1B, we again consider two alleles at a single autosomal
locus, A and B, that have different “velocities” in the direction
to the egg. We suppose that sperm swim toward an egg, per-
haps in response to pheromone-like chemoattractants. How
fast a sperm can reach and fertilize the egg is determined by
traits such as responsiveness to pheromone-like chemoattrac-
tants, swimming speed, ability to overcome obstacles sur-
rounding the egg, and compatibility with the egg membrane.
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Here, to measure the performance of a sperm, we consider the
total time from ejaculation till the completion of fertilization.
Then, we define the velocity of the sperm, or the level of
performance in fertilizing the egg, as the reciprocal of the total
time, so that a sperm with a larger velocity is more likely to
win the race for fertilization.

Sperm competition is usually extremely fierce, where
only one (or a handful of) winner(s) among a huge number
of competitors can pass on the genome(s) to the next
generation, and the remaining 99.999. . .% of the sperm are
eliminated. In this situation, the important factor is the right
tail of each velocity distribution (red or blue shade in Figure
1B), to which the “fastest” sperm with each allele likely
belongs. Given the distributions in Figure 1B, selection
should favor A because it has a better chance to have the
winner sperm among all competitors.

This intuitive expectation can be mathematically expressed
as follows. Let x be the velocity as defined above. fZ(x)
denotes the probability density function (PDF) of x for a single
sperm with allele Z (= A or B), and let XZ (Z = A or B) be
a random variable following the PDF fZ(x). Then, the proba-
bility, P[XZ . x], that a sperm with allele Z has a velocity
larger than x is given by: P½XZ . x� ¼ RþN

x dj fZðjÞ (for Z =
A, B).

Now, let us consider the situation where NA sperm with
allele A and NB sperm with allele B compete to fertilize an
egg. Suppose that all NA + NB sperm start swimming for the
egg at the same time and that there will be only a single
sperm to win. If interactions between sperm are negligible,
the distribution of the velocity of the fastest among NZ sperm
with allele Z (= A or B) is given by the (cumulative)
probability
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The winner of the competition will have allele A if the

fastest sperm with allele A outperforms the fastest with al-
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The last equation could be derived via partial integration. It
should be noted that, as P [winner = A | NA, NB] + P
[winner = B|NA, NB] = 1, the second term of the right-hand
side of (2) is the probability that the winner has allele B. The
“master equation”, Equation 2, will provide the basis for
the theory of sperm competition in general situations. When
the mutation is exactly neutral, fA(x) [ fB(x), this master
equation can be easily integrated to give P½winner ¼
A  jNA;NB� ¼ NA=ðNA þ NBÞ, which faithfully reproduces the
expectation in an exactly neutral situation.

Here, let us define df(x) as the difference between fA(x)
and fB(x); that is, df(x) [ fA(x) 2 fB(x). In the following, we
set f(x) [ fB(x), although the result is essentially the same
even if we set f(x) [ fA(x). Suppose df(x) is small
(
RþN
2N dxjdf ðxÞj� 1); then the master equation, Equation 2

can be approximated up to O(df) as

P
�
winner ¼ A  jNA   A9s and NB   B9s

�
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�
1þ NB

NA þ NB
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�

� NA

NA þ NBð12cAÞ
� NAð1þ cAÞ

NAð1þ cAÞ þ NB
;

(3)

where cA is given by

cA � ðNA þ NBÞ
·
Z þN

0
dx   exp

�
2ðNA þ NBÞ P

�
Xf . x

��
df ðxÞ (4)

when NA + NB � 1 [For the derivation of (4) and the
equation for a wide range of NA and NB, refer to Note 1 of

Figure 1 Illustration of how selection works in the standard population
genetic framework (A) and in sperm competition (B). See text for details.
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Supporting Information, File S1.] It is very interesting to
note that the approximate Equation 3 demonstrates that
the sperm-competition process we model here can be de-
scribed similarly to the interindividual competition in the
standard population genetics; that is, allele A has a selec-
tive advantage, or “competitive advantage”, cA over al-
lele B in the “population” of competing sperm. This
selective advantage can be easily incorporated into the
basic framework of population genetics as we show in the
next section.

It is known that in mammals “intercellular bridges” con-
nect four haploid spermatids produced by the meiosis of
a single diploid male germline cell (spermatocyte) (e.g.,
Russell et al. 1990; de Rooji and Russell 2000; Yoshida
2010). Such intercellular bridges are believed to transport
gene products among the connected spermatids and there-
fore could violate our theory’s key assumption that the per-
formance of each sperm is determined by (the gene product
of) its own allele. However, the theory works as long as
intercellular bridges are imperfect so that there is some dif-
ference in the composition of allelic gene products between
sperm with different alleles. The only required adjustment is
that the PDF of velocity should take account of the effect of
intercellular bridges.

In Figure 2, we consider some typical cases where a mu-
tation changes the PDF of the velocity (f(x)): (i) The PDF is
exponential and the mutation from B to A increases the
mean (Figure 2A), (ii) the PDF is a normal distribution
and the mutation increases the mean (Figure 2B), (iii) the
PDF is a normal distribution and the mutation increases the
variance without changing the mean (Figure 2C), and (iv)
the PDF has a finite maximum and the mutation increases
the maximum (Figure 2D). As an example of case iv, we
consider a power-law function with the exponent a and
the maximum xM:

fðxÞ ¼
8<
:

aþ1
xM

�
12 x

xM

	a

for 0, x, xM;

0 for x$ xM:

(5)

In all cases, the mutation is adaptive because the winning
probability of A should be larger than that of B. These
cases should cover quite a wide variety of changes in the
PDF of the velocity, because what really matters in sperm
competition is the change in the right tail (or end) of the
PDF. Regarding the right tail, case iv may be the most
natural because the sperm velocity should never reach
infinity in nature. Other cases are considered because
exponential and normal distributions are very popular
functions. Each of the four cases specifies f(x) and df
(x), with which we can calculate cA as a function of the
numbers, NA and NB, of sperm with alleles A and B, re-
spectively, by using Equation 4. Here, we assume NA =
NB [ NhSp and investigate the enhancing effect of the
number of sperm on the competitive advantage, cA, by
defining

R½cA�
�
NhSp

�
[

cA
�
NhSp

�
cA

�
NhSp ¼ 1

�: (6)

R[cA](NhSp) represents how much the competitive advantage
is enhanced in comparison with the extreme case with NhSp =
1, where only one sperm with allele A competes against only
one with allele B. It should be noted that R[cA](NhSp) does
not depend on the magnitude of the PDF difference df(x) (as
long as |df(x)| � 1), because the scale factor of df(x) in the
denominator cancels out that in the numerator. Figure 3
shows the dependence of R[cA](NhSp) on NhSp for the cases
considered here.

In all cases, the sperm competitive advantage, cA,
increases as the half-number of sperm, NhSp, increases (Fig-
ure 3) (for derivation, refer to Notes 2 and 3 of File S1). For
cases i and ii, cA increases roughly proportionally to the
logarithm or its power of the total sperm number (cyan
and green lines in Figure 3). In case iv, cA is roughly pro-
portional to ðNhSpÞ1=ðaþ1Þ (red, blue, and purple lines in Fig-
ure 3), where a is the exponent used in Equation 5. The
slope is determined by a. The quantitative difference among
cases i, ii, and, iv depends on how the allelic difference in
the PDF distributes along the velocity axis, especially near
the right tail. Thus, regardless of the PDFs of velocity, Figure
3 shows that the efficacy of selection through a sperm com-
petition increases dramatically with the number of mutually
competing sperm.

Case iii is unique among the four cases because the PDFs
for the two alleles have the same mean, while there is
a difference in the shape of the right tail, which is the part
that really matters. The result for this case is not shown in
Figure 3 because the competitive advantage is zero in a one-
on-one competition. Nevertheless, the competitive advan-
tage is positive when NhSp . 1, and it increases roughly
proportionally to ln(NhSp) when NhSp � 1; its asymptotic
behavior is quite similar to that of case i. In a sense, this
case iii eloquently demonstrates the uniqueness of sperm
competition: A mutant allele could gain a big advantage in
a competition among numerous sperm even if it has on av-
erage no advantage in a one-on-one competition between two
sperm with different alleles.

Fixation probability of a mutation

In the previous section, we showed that the advantage of
allele A over allele B in sperm competition can be described
by a single parameter, cA, which can be readily incorporated
into the basic population genetic framework. We are here
interested in how the frequencies of alleles A and B change,
from which we can derive the fixation probability of a mu-
tant allele. We assume that A and B are selectively neutral
except in sperm competition. In other words, it is assumed
that the phenotypic effect at the sperm level determines the
fate of the mutation.

Let us consider the expected frequency of allele A at gen-
eration t + 1 conditional on the frequency at generation t.
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We ignore recurrent mutations between them. Here we
focus on only “successful competition”, where eggs are suc-
cessfully fertilized by sperm, because unsuccessful competi-
tion does not contribute to the population genetic process.
This should be reasonable under the assumption that the
overall probability of successful fertilizations is independent
of paternal and maternal genotypes. Let P(P)[Z | Z1Z2] de-
note the probability that a sperm with allele Z (= A or B)
wins a successful competition among sperm ejaculated by
a male individual with genotype Z1Z2 (Z1, Z2 = A or B).
Obviously, for homozygous males, we have P(P)[A | AA] =
P(P)[B | BB] = 1, and P(P)[A | BB] = P(P)[B | AA] = 0. For
heterozygous males, we can use Equation 3. We also assume
that there are as many sperm with allele A as those with
allele B; i.e., NA = NB. Note that this simplified assumption
should not be used for mutations that directly change the
numbers of active sperm with different alleles, such as muta-
tions on Poisson-antidote type genes and apoptosis-related
genes (e.g., Da Fonseca et al. 2010).

Then, assuming a very small mutational effect [i.e., df(x)
is small], we have

PðPÞ½A jAB� ¼ 1
2

�
1þ cA

2

	
; (7)

PðPÞ½B jAB� ¼ 1
2

�
12

cA
2

	
: (8)

Then, through some calculations detailed in Note 4 of
File S1, we get a recursion relation,

ptþ1ðAÞ¼ ptðAÞ þ cA
4

ptðAÞð12 ptðAÞÞ; (9)

and

ptþ1ðBÞ ¼ 12 ptþ1ðAÞ: (10)

Here,

ptðZÞ[ 1
2

n
pðPÞt ðZÞ þ pðMÞ

t ðZÞ
o

is the gender-averaged frequency of allele Z (= A or B) at
the tth generation. The variables pðPÞt ðZÞ and pðMÞ

t ðZÞ are the
frequencies of allele Z transmitted paternally and mater-
nally, respectively. As long as we use this equation, our the-
ory does not have to assume equal population sizes of males
and females.

We can incorporate the above deterministic recursion
equation directly into the standard population genetic
theory and obtain the fixation probability by taking genetic
drift into account. To do this, it is sufficient to note that our
recursion equation, Equation 9, is equivalent to the standard
deterministic recursion equation of the allele frequency,

ptþ1ðAÞ ¼ ptðAÞ þ s  ptðAÞð12 ptðAÞÞ;

when allele A has a selective advantage of s (�1) over allele
B. Therefore, the diffusion theory framework as unfolded in
section 8.8.3 of Crow and Kimura (1970) applies also to the
current case, if s is replaced by cA/4. Thus, we have the
fixation probability u(p) of allele Awhen its initial frequency
is p,

uðpÞ ¼ 12 expð2NecApÞ
12 expð2NecAÞ

; (11)

where Ne is the effective population size. The fixation prob-
ability of a single mutation with initial frequency p =1/(2N)
is given by

u
1
2N

¼ cANe=ð2NÞ
12 expð2NecAÞ

; (12)

where N is the actual population size. Or, more simply, if
Ne = N, Equation 11 is approximated as

Figure 2 Illustration of typical patterns of mutational
changes in the probability density function of the velocity.
A, B, C, and D correspond to cases i, ii, iii, and iv, respec-
tively, which are detailed in the text.
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u
1
2N

¼ cA=2
12 expð2NcAÞ

: (13)

This in turn reduces to u(p) � cA/2 when NcA � 1.
It should be noted that, in this equation, we set the initial

frequency of a mutant following the standard treatment in
population genetic theory; that is, a single haploid mutant
with frequency p =1/(2N) arises in the population at rate
2Nm, where m is the mutation rate per generation per hap-
loid locus. It should not be unreasonable to assume that this
also works in sperm genes. There are many cell divisions in
a single male individual, and a mutation that occurred in an
early stage would result in a large number of sperm having
the mutation. Mutations at later stages would occur more
frequently but generate fewer mutant sperm each. The prob-
ability that the winner is one of such mutant sperm may be
affected by selection on the mutation, but this effect should
be very small in a single generation. If so, we can approxi-
mate the mutation process in a single (male) individual as
a random process along a “genealogy” of competing selec-
tively neutral sperm that originates from a single zygote.
Then, m (i.e., the per-generation mutation rate) should be
defined as the expected number of mutations from the top
(i.e., root) to any tip (i.e., leaf) of the genealogy. This situ-
ation is analogous to the typical treatment in the standard
theory of population genetics.

It would be intriguing to compare Equation 13 and the
fixation probability of a normal adaptive mutation with
selective coefficient s; i.e., uð1=2NÞ ¼ 2s=ð12 expð2 4NsÞÞ.
The two equations are identical when s = cA/4 or the effect
of the sperm competitive advantage is one-quarter as large
as that of the standard additive selective advantage. There
are two factors, each contributing one-half independently,
that are multiplied together to give this ratio of 1/4. The
first factor comes from the assumption that the transmission
of alleles through females is selectively neutral. The other
factor comes from the fact that competition among pater-
nity-sharing sperm causes a selective bias only through het-
erozygous males.

Impact of paternity-sharing sperm competition
on dN/dS ratios

Now that we have established the population genetics
theory of sperm sharing the paternity, we can estimate their
impact on the dN/dS ratios of sperm genes. First, assuming
that synonymous mutations do not change the fertilization
efficiency of sperm at all, the fixation probability of a synon-
ymous mutation in a diploid population of size N is given by

�P½fixedjsynonymous� ¼ 1
2N

;

according to the neutral theory (Kimura 1968, 1983).
Next we consider nonsynonymous sites. According to

their impacts on the sperm fertilization efficiency, muta-
tions on such sites are classified into three categories,
namely, those that are competitively (a) disadvantageous,
(b) neutral, and (c) advantageous. Then, roughly speaking,
three parameters govern the average fixation probability of
nonsynonymous mutations: (i) the proportion, pN, of quite
strictly neutral mutations among all nonsynonymous mu-
tations; (ii) the proportion, pCA, of competitively advan-
tageous (CA) mutations; and (iii) the sperm competitive
advantage (cA) that follows a PDF, FCA(cA), over competi-
tively advantageous mutations. Note that because of the
inflation in the competitive (dis)advantage deduced above,
even slightly disadvantageous mutations will be imme-
diately removed from the population. Therefore, the
proportion of competitively disadvantageous mutations,
pCD (= 1 2 pN 2 pCA), contributes only negligibly little,
if any, to the dN/dS ratio.

Given these three key parameters, applying Equation 13
will provide the average fixation probability:

�P½fixed  j  nonsynonymous�

¼ pCA

R þN

0
dcA   FCAðcAÞ

cA=2
12 expð2NcAÞ

þ pN
2N

:
(14)

This is a theoretically rigorous expression, but the functional
form of FCA(cA) is usually unknown. In such a case, it is

Figure 3 Enhancement, R[cA](NhSp), of sperm competitive
advantage (cA) for a range of the half-sperm number
(NhSp) compared to that in one-on-one competition. The
cyan and green lines represent case i and case ii, respec-
tively. All other lines represent case iv. The cases with a =
1, 2, and 3 are colored red, blue, and purple, respectively.
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more convenient and intuitive to define cA as the “mean” of
cA, via the following equation:

cA=2
12 expð2NcA Þ

[

Z þN

0
dcA FCAðcAÞ

cA=2
12 expð2NcAÞ

:

(15)

Now, taking the ratio of the two fixation probabilities and
assuming that the mutation rate is identical at synonymous
and nonsynonymous sites, we get a formula for the average
dN/dS ratio:

ðdN=dSÞ ¼
�P½fixed  j  nonsynonymous�
�P½fixed  j  synonymous�

¼ pCAðdN=dSÞ



CA þ pN:

(16)

Here ðdN=dSÞjCA is the average contribution to the dN/dS
ratio from competitively advantageous mutations:

ðdN=dSÞ



CA [

�P½fixed  j  nonsynonymous;CA�
�P½fixed  j  synonymous�

¼ NcA

12 expð2N   cAÞ
:

(17)

If the enhancement effect R[cA](N) is very large, say it
exceeds 100, we may be able to assume that there are vir-
tually no quite strictly neutral mutations, i.e., pN � 1, and
that almost all nonsynonymous mutations could be more or
less selected. In such a case, Equation 16 could be simplified
as

ðdN=dSÞ � pCAðdN=dSÞ



CA: (18)

Thus, the average dN/dS value is now approximately deter-
mined by two parameters, i.e., the proportion of competitively
advantageous mutations (pCA) and the mean competitive ad-
vantage of such mutations (cA).

The two colored curves in Figure 4 schematically illus-
trate the expected dN/dS ratio averaged over CA mutations
(ðdN=dSÞjCA) as functions of the winning probability, com-
puted by Equation 17, with N = 104 (green line) and N =
105 (cyan line). In all cases, ðdN=dSÞjCA monotonically
increases as the winning probability increases and becomes
asymptotically proportional to the competitive advantage:
ðdN=dSÞjCA � NcA. Hence the gradient of the curve depends
almost linearly on the population size N.

Application to data

Equation 16, or its approximation (18), could be used to
estimate the intensity of selection on sperm genes or on any
subregions within them. As an example, we use mammalian
sperm protein genes, for many of which rapid amino acid
substitutions have been demonstrated (Wyckoff et al. 2000;
Torgerson et al. 2002; Swanson et al. 2003). We use the

data in Torgerson et al. (2002) and in Swanson et al.
(2003). In their maximum-likelihood analyses, the propor-
tion of codon sites with elevated amino acid substitution
rates and the dN/dS value averaged over such sites were
inferred for each gene. Both studies compared two models
of codon evolution under the framework of Yang et al.
(2000). One is a purifying selection model known as
“M7”, in which the expected dN/dS is assumed to be beta-
distributed between 0 and 1, and the other is a composite
selection model known as “M8” that accommodates an ad-
ditional class of sites with dN/dS . 1 on top of the classes of
negatively selected sites as incorporated in M7. It was found
that M8 fitted significantly better than M7 for some sperm
genes (four genes in Torgerson et al. 2002 and six genes in
Swanson et al. 2003), strongly indicating that these genes
are likely involved in determining sperm performance. In
the class of positively selected sites, estimates of ðdN=dSÞ
ranged from 4.0 to 6.9 for the former four genes and from
1.3 to 3.9 for the latter six genes (red and blue shaded areas,
respectively, in Figure 4).

To estimate the mean winning probability,
�PðPÞ½A  jAB� ¼ 1

2ð1þ cA=2Þ, corresponding to the above inter-
vals, we use Equation 18. The proportion of advantageous
mutations (pCA) is usually unknown although it may not be
very large as most mutations should be disadvantageous.
Therefore, we conventionally assume pCA = 1, which should
provide a possible lower bound of estimates of cA. Because
this assumption of pCA = 1 means that almost all nonsynon-
ymous mutations on the sites of interest are competitively
advantageous, it obviously causes an underestimation of cA.
A caveat in understanding this result is that the theory might

Figure 4 Average dN/dS as a function of the winning probability of a mu-
tant allele. The colored curves show the dependence of ðdN=dSÞjCA on the
winning probability (12ð1þ cA=2Þ) of the mutant allele A, computed from
Equation 17. The diploid population size (N) is set to be 10+4 (green line)
and 10+5 (cyan line). Red and blue shaded areas represent the ranges of
such dN/dS values obtained by Torgerson et al. (2002) and by Swanson
et al. (2003), respectively.
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overestimate the role of positive selection in the haploid
phase because it assumes neutrality of mutations in all other
phases.

Assuming the population size to be N = 104 (a typical
effective population size for humans, from Takahata 1993),
we estimated that the winning probability ranged from
50.010% to 50.017% and from 50.0014% to 50.010%, cor-
responding to that in Torgerson et al. (2002) and Swanson
et al. (2003), respectively. As demonstrated in Figure 3,
competition among millions to billions of sperm is expected
to enhance the effect of a mutation greatly, although the
degree of enhancement differs, depending on the PDF of
velocity and the type of its change. If we assume case iv
with a = 3 as an example, and given NhSp � 108 (an ap-
proximate number for humans, from, e.g., Manning and
Chamberlain 1994), we predict that the selective advantage
at the single-sperm level should be, on average, from 4.7 ·
1028 to 5.7 · 1027. If these values are directly applied, they
are equivalent to the population selection intensity, 2Ns, of
from 9.4 · 1024 to 0.011. If we assume a bigger population
size, e.g., N � 106 for mice (Keightley et al. 2005), the
obtained range of equivalent 2Ns is unchanged. This is be-
cause the population size, N, affects the average dN/dS ratio
only through the product NcA/4 or Ns (see, e.g., Equation
17). In contrast, if we are given a smaller number of sperm,
e.g., NhSp � 106 for mice (Manning and Chamberlain 1994),
the single-sperm level selective advantage would be equiv-
alent to 2Ns � 2.8 · 102320.034, which is about three times
larger than the range inferred for humans. This results from
the positive correlation between NhSp and cA (Figure 3).

Thus, this result indicates that typical selective advan-
tages of mutations at the single-sperm level should be very
small; if selection acted on these mutations in the standard
fashion (as in Figure 1A), the effect of selection would be
negligible and they would behave almost as if they were
neutral or nearly neutral. In other words, fierce competition
among paternity-sharing sperm enables selection to act
quite efficiently on mutations with such tiny phenotypic
effects, which could cause dN/dS values to significantly ex-
ceed 1 in some regions.

Discussion

In this article, we theoretically examined the population
genetic behavior of mutations in sperm genes. We modeled
the processes at two levels. One is the standard population
genetic process, in which the population allele frequencies
change generation by generation, depending on the difference
in selective advantages. The other is the sperm competition
during each genetic transmission from one generation to the
next generation.

For the sperm competition process, we considered a very
simple situation with monogamous mating, so that selection
needs to be considered only in matings involving heterozy-
gous males. In a single mating process involving a heterozy-
gous male, a huge number of sperm with alleles A and B

(approximately equal in number) compete to fertilize a sin-
gle egg. Our theory demonstrates that a very slight differ-
ence in sperm performance (i.e., velocity as we defined)
amounts to quite a large difference in the winning probabil-
ity. We found that this probability is given by a function of an
important parameter, cA, namely the competitive advantage
of allele A over allele B in a single mating. We also demon-
strated that cA is much larger than it would be in a one-on-
one competition between a pair of sperm, one with allele A
and the other with allele B. This suggests that a very small
phenotypic difference at the single-sperm level can be en-
hanced by fierce sperm competition.

For the generation-by-generation process, the standard
population genetic theory can be directly applied with slight
modifications. The only difference is that selection works
only through heterozygous males. In a simple one-locus,
two-allele model with alleles A and B, our theory shows that
the fixation probability of a newly arisen mutant with A is
given by Equation 13 if allele A has a competitive advantage
of cA over B. This equation indicates that 4 · cA in our
model is equivalent to the selective advantage s in the stan-
dard model of additive selection. Of this reduction to one-
quarter in the efficacy of selection, one-half is due to the
neutrality (actually, absence) of the process for females,
and the other half is due to selection operating only through
heterozygous males.

While the efficacy of selection is reduced to one-quarter
for sperm genes in the generation-by-generation process, the
enhancement of selection in the sperm competition during
each generation is much larger, potentially increasing
adaptive amino acid substitutions in sperm genes. Indeed,
as we demonstrated theoretically, the elevated dN/dS values
observed in sperm genes in mammals could be explained by
mutations whose effects on individual sperm are so weak
that they would be classified as “neutral” in a normal pop-
ulation genetic framework.

Our minimal model focuses on competition among sperm
that share paternity. These competitions are ubiquitous and
occur regardless of whether the mating system is mono-
gamous, polygamous, or external. Thus, our result could
provide a potentially important explanation of rapid evolu-
tion of sperm genes with a variety of functions in a wide
range of species, as long as they are expressed in the haploid
phase. The extent to which our model can be applied
depends on how common haploid expression is among
sperm genes. There are multiple lines of evidence that
haploid expression in sperm is indeed quite common as
mentioned in the Introduction (see, e.g., Joseph and Kirkpa-
trick 2004; Good and Nachman 2005; Dorus et al. 2010). A
notable work is the recent proteome-scale evolutionary anal-
ysis of mice by Good and Nachman (2005), which showed
that sperm genes expressed after meiosis tend to have
higher dN/dS values than other sperm genes. Their study
implies that, in such genes with haploid expression, the con-
tribution of sperm competition to the rapid amino acid evo-
lution should be large.
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Our model may be well merged with previous models of
postcopulatory sexual selection (e.g., Birkhead and Pizzari
2002; Swanson and Vacquier 2002b; Clark et al. 2006;
Turner and Hoekstra 2008) or sexual conflict (e.g., Rice
and Holland 1997; Frank 2000; Gavrilets 2000; Chapman
et al. 2003; Hayashi et al. 2007), all of which focus mainly
on competition or conflicts among individuals. Our results
suggest that competition among paternity-sharing sperm
can boost any mode of postcopulatory sexual selection
and/or sexual conflict. For example, coupling our model
with sexual conflict provides a more powerful explanation
of the long-term acceleration of dN/dS in sperm genes. Our
model alone does not guarantee that the acceleration of
amino acid substitution lasts long. This is because each
sperm gene eventually reaches the optimum of its fitness
landscape, from which no adaptive mutations are expected.
Thus a high dN/dS cannot be expected as long as the gene’s
fitness landscape keeps its shape (or optimum). This indi-
cates that a long-term acceleration may require factors that
shift the optimum.

Sexual conflict would be one example, which continuously
shifts the optimum by a “coevolutionary chase” between the
male and female genes (e.g., in Rice and Holland 1997; Frank
2000; Gavrilets 2000; Chapman et al. 2003; Hayashi et al.
2007). An interesting question in this regard is why high dN/
dS values are observed commonly among sperm genes but
quite rarely among female-reproductive genes in many spe-
cies (e.g., Swanson and Vacquier 2002b; Clark et al. 2006).
One important conclusion of our theory is that fierce sperm
competition could enable even a mutation with a tiny phe-
notypic benefit to be fixed as if it were strongly selected for.
This suggests that, even to a small shift in the female envi-
ronment (e.g., caused by only a single amino acid change),
a sperm gene could respond via a large number of amino
acid changes, each of which alters the sperm phenotype only
slightly.

Another potentially important factor would be intermale
competition through different phenotypes of sperm or other
reproductive apparatuses (such as copulatory plugs). This
could also change the environment in which sperm compete
against one another and thus could shift the optimum of the
fitness landscape of each sperm gene.

In this work, we focused only on the effects of mutations
on sperm performance and ignored their effects on other
phenotypes. If, however, a sperm gene is pleiotropic, it is
obvious that the fitness at the sperm level is not the entire
factor that determines the fate of the mutation (see, e.g.,
Crow 2012). Nevertheless, such pleiotropic effects might
not significantly affect the main conclusions of this study,
for two reasons. First, a majority of sperm genes observed
to have high dN/dS values seem to be specific to sperm (e.g.,
Good and Nachman 2005; Turner and Hoekstra 2008). Sec-
ond, even if a sperm gene is indeed pleiotropic, it is impor-
tant to note, again, that fierce sperm competition could
enhance the effect of a mutation on sperm functions but
not its effect on other tissues. Therefore, there should be

many occasions where sperm competition contributes to
the accelerated dN/dS in sperm genes with haploid expres-
sion. This, combined with the observation that haploid
expressed genes account for a substantial fraction of the
sperm proteome (e.g., Joseph and Kirkpatrick 2004; Good
and Nachman 2005), could be one of the major explanations
of the general trend that a wide variety of sperm genes show
high dN/dS ratios in various taxonomic lineages.

Our theory may explain some previous observations that
seemed enigmatic. One is on the role of postcopulatory
sexual selection among (male) individuals as a potential
major cause of the elevated dN/dS values. If this plays the
major role, one would expect a positive correlation be-
tween dN/dS and the intensity of sexual selection. However,
there was no significant correlation in a molecular evolu-
tionary analysis of male sperm genes in rodents (Ramm
et al. 2008). Why can dN/dS be elevated in a species with
weak sexual selection as much as in species with intense
sexual selection? One possible and simple answer could be
that, at least in rodents, competition among paternity-shar-
ing sperm is much more potent than intermale sperm com-
petition. The former competition takes place irrespective of
whether sexual selection occurs at the individual level or
not, and our theory predicts that the former greatly enhan-
ces the selective advantage of a mutation. Thus, if the for-
mer’s “baseline” effects are much larger than the effects
influenced by individual-level sexual selection, the cor-
relation between the protein evolution rate and the inten-
sity of sexual selection would be relatively too small to be
observed.

It should be noted here that our theory applies exclu-
sively to sperm genes, especially haploid expressed ones, but
that it does not apply to male reproductive genes lacking
expression in sperm. Some genes of the latter type are
known to have high dN/dS and show positive correlation
between dN/dS and the intensity of (intermale) sexual selec-
tion. Among those showing the correlation is a seminal ves-
icle-derived protein, Svs2, which is a major component of
the copulatory plug in rodents (Ramm et al. 2008). Simi-
larly, semenogelins, SEMG1 and SEMG2, that are known to
prevent other males’ sperm from reaching the oocyte, also
showed correlations in the primate lineages (e.g., Ramm
et al. 2008, and references therein). The rapidly evolving
Drosophila male accessory gland proteins (e.g., Swanson
et al. 2001) also belong to this type. From their functions,
it is obvious that these genes play important roles in inter-
male competition and that their rapid evolution is not
caused by sperm competition. It is indicated that intermale
sexual selection is an important mechanism to increase dN/
dS especially of such male reproductive genes not expressed
in sperm.

Flies are unique in that their sperm genes do not show
significantly higher dN/dS values than the genome average
(Dorus et al. 2006). Given that any kind of selection works
very efficiently through fierce competition among sperm
sharing the paternity, this unique observation should
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indicate that such sperm competition may not be very in-
tensive in flies. Indeed, there are several lines of evidence
that flies have quite small numbers of competing sperm per
egg and little haploid expression (see, e.g., Erickson 1990;
Manning and Chamberlain 1994). This agrees with our pre-
diction that mutational effects on sperm genes should be
enhanced in a manner positively correlated with the number
of sperm per egg (e.g., Figure 3).

Acknowledgements

We thank two anonymous reviewers for their helpful com-
ments. This work is in part supported by grants from the
Japan Society for the Promotion of Science (to H.I.).

Literature Cited

Artieri, C., W. Haerty, B. Gupta, and R. Singh, 2008 Sexual selec-
tion and maintenance of sex: evidence from comparisons of rates of
genomic accumulation of mutations and divergence of sex-related
genes in sexual and hermaphroditic species of Caenorhabditis. Mol.
Biol. Evol. 25: 972–979.

Birkhead, T., and T. Pizzari, 2002 Postcopulatory sexual selection.
Nat. Rev. Genet. 3: 262–273.

Chapman, T., G. Arnqvist, J. Bangham, and L. Rowe, 2003 Sexual
conflict. Trends Ecol. Evol. 18: 41–47.

Clark, N., J. Aagaard, and W. Swanson, 2006 Evolution of repro-
ductive proteins from animals and plants. Reproduction 131:
11–22.

Clark, N. L., J. Gasper, M. Sekino, and S. A. Springer, C. F. Aquadro
et al., 2009 Coevolution of interacting fertilization proteins.
PLoS Genet. 5: e1000570.

Crow, J., 2012 Upsetting the dogma: germline selection in human
males. PLoS Genet. 8: e1002535.

Crow, J. F., and M. Kimura, 1970 An Introduction to Population
Genetics Theory. The Blackburn Press, Caldwell, NJ.

Cutter, A., and S. Ward, 2005 Sexual and temporal dynamics of
molecular evolution in C. elegans development. Mol. Biol. Evol.
22: 178–188.

Da Fonseca, R., C. Kosiol, T. Vinař, A. Siepel, and R. Nielsen,
2010 Positive selection on apoptosis related genes. FEBS Lett.
584: 469–476.

de Rooji, D., and L. Russell, 2000 All you wanted to know about
spermatogonia but were afraid to ask. J. Androl. 21: 776–798.

Dobzhansky, T., 1940 Speciation as a stage in evolutionary diver-
gence. Am. Nat. 74: 312–321.

Dorus, S., S. Busby, U. Gerike, J. Shabanowitz, D. Hunt et al.,
2006 Genomic and functional evolution of the Drosophila ma-
lanogaster sperm proteome. Nat. Genet. 38: 1440–1445.

Dorus, S., E. Wasbrough, J. Busby, E. Wilkin, and T. Karr,
2010 Sperm proteomics reveals intensified selection on mouse
sperm membranes and acrosome genes. Mol. Biol. Evol. 27:
1235–1246.

Erickson, R., 1990 Post-meiotic gene expression. Trends Genet. 6:
264–269.

Findlay, G., and W. Swanson, 2010 Proteomics enhances evolu-
tionary and functional analysis of reproductive proteins. Bioes-
says 32: 26–36.

Frank, S., 2000 Sperm competition and female avoidance of poly-
spermy mediated by sperm-egg biochemistry. Evol. Ecol. Res. 2:
613–625.

Gavrilets, S., 2000 Rapid evolution of reproductive barriers
driven by sexual conflict. Nature 403: 886–889.

Good, J., and M. Nachman, 2005 Rates of protein evolution are
positively correlated with developmental timing of expression
during mouse spermatogenesis. Mol. Biol. Evol. 22: 1044–1052.

Hayashi, T., M. Vose, and S. Gavrilets, 2007 Genetic differentia-
tion by sexual conflict. Evolution 61: 516–529.

Howard, D., 1993 Reinforcement: origin, dynamics, and fate of an
evolutionary hypothesis, pp. 46–69 in Hybrid Zones and the Evo-
lutionary Process, edited by R. Harrison. Oxford University Press,
New York.

Joseph, S., and M. Kirkpatrick, 2004 Haploid selection in animals.
Trends Ecol. Evol. 19: 592–597.

Keightley, P., M. Lercher, and A. Eyre-Walker, 2005 Evidence for
widespread degradation of gene control regions in hominid ge-
nomes. PLoS Biol. 3: e42.

Kimura, M., 1968 Evolutionary rate at the molecular level. Nature
217: 624–626.

Kimura, M., 1983 The Neutral Theory of Molecular Evolution. Cam-
bridge University Press, Cambridge, UK.

Li, W.-H., 1997 Molecular Evolution. Sinauer Associates, Sunder-
land, MA.

Manning, J., and A. Chamberlain, 1994 Sib competition and
sperm competitiveness: an answer to ‘why so many sperms?’
and the recombination/sperm number correlation. Proc. Biol.
Sci. 256: 177–182.

Miyata, T., and T. Yasunaga, 1980 Molecular evolution of mRNA:
a method for estimating evolutionary rates of synonymous and
amino acid substitutions from homologous nucleotide sequen-
ces and its application. J. Mol. Evol. 16: 23–36.

Nielsen, R., C. Bustamante, A. Clark, S. Glanowski, T. Sackton et al.,
2005 A scan for positively selected genes in the genomes of
humans and chimpanzees. PLoS Biol. 3: e170.

Parker, G., and M. Begon, 1993 Sperm competition games: sperm
size and number under gametic control. Proc. Biol. Sci. 253:
255–262.

Ramm, S., P. Oliver, C. Ponting, P. Stockley, and R. Emes,
2008 Sexual selection and the adaptive evolution of mamma-
lian ejaculate proteins. Mol. Biol. Evol. 25: 207–219.

Rice, W., and B. Holland, 1997 The enemies within: intergenomic
conflict, interlocus contest evolution, and the intraspecific red
queen. Behav. Ecol. Sociobiol. 41: 1–10.

Russell, L., R. Ettlin, A. Hikim, and E. Clegg, 1990 Mammalian
spermatogenesis, pp. 1–40 in Histological and Histopathological
Evaluation of the Testis, edited by L. Russell, R. Ettlin, A. Hikim,
and E. Clegg. Cache River Press, Clearwater, FL.

Steger, K., 1999 Transcriptional and translational regulation of
gene expression in haploid spermatids. Anat. Embryol. 199:
471–487.

Swanson, W., and V. Vacquier, 2002a Reproductive protein evo-
lution. Annu. Rev. Ecol. Syst. 33: 161–179.

Swanson, W., and V. Vacquier, 2002b The rapid evolution of re-
productive proteins. Nat. Rev. Genet. 3: 137–144.

Swanson, W., A. Clark, M. Waldrip-Dail, M. Wolfner, and C. Aquadro,
2001 Evolutionary EST analysis identifies rapidly evolving male
reproductive proteins in Drosophila. Proc. Natl. Acad. Sci. USA 98:
7375–7379.

Swanson, W., R. Nielsen, and Q. Yang, 2003 Pervasive adaptive
evolution in mammalian fertilization proteins. Mol. Biol. Evol.
20: 18–20.

Takahata, N., 1993 Allelic genealogy and human evolution. Mol.
Biol. Evol. 10: 2–22.

Torgerson, D., R. Kulathinal, and R. Singh, 2002 Mammalian
sperm proteins are rapidly evolving: evidence of positive selec-
tion in functionally diverse genes. Mol. Biol. Evol. 19: 1973–
1980.

Turner, L., and H. Hoekstra, 2008 Causes and consequences of the
evolution of reproductive proteins. Int. J. Dev. Biol. 52: 769–
780.

718 K. Ezawa and H. Innan



Vacquier, V., W. Swanson, and Y. Lee, 1997 Positive Darwinian selec-
tion on two homologous fertilization proteins: What is the selective
pressure driving their divergence? J. Mol. Evol. 44: S15–S22.

Wong, A., 2011 The molecular evolution of animal reproductive
tract proteins: What have we learned from mating-system com-
parisons? Int. J. Evol. Biol. 2011: 908735.

Wyckoff, G., W. Wang, and C. Wu, 2000 Rapid evolution of male
reproductive genes in the descent of man. Nature 403: 304–309.

Yang, Z., R. Nielsen, N. Goldman, and A. Pedersen, 2000 Codon-
substitution models for heterogeneous selection pressure at
amino acid sites. Genetics 155: 431–449.

Yoshida, S., 2010 Stem cells in mammalian spermatogenesis. Dev.
Growth Differ. 52: 311–317.

Communicating editor: L. M. Wahl

Population Genetics Model of Sperm Genes 719



GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.152066/-/DC1

Competition Between the Sperm of a Single Male
Can Increase the Evolutionary Rate of Haploid

Expressed Genes
Kiyoshi Ezawa and Hideki Innan

Copyright © 2013 by the Genetics Society of America
DOI: 10.1534/genetics.113.152066



File S1. Supplementary Notes

Note 1. Competitive Advantage of a Mutant in Sperm Competition

In the main text, we derived a master equation for the probability that a mutant sperm with

allele A at a focal locus wins in a competition among NA mutant sperm and NB wild-type

sperm (with allele B):

P [winner = A | NA A
′s & NB B′s ]

=

∫ +∞

−∞
dx

d

dx

{
P [max{XA

1 , ..., X
A
NA
} < x]

}
P [max{XB

1 , ..., X
B
NB
} < x]

=

∫ +∞

−∞
dx NAfA(x)

(
1− P [XA > x]

)NA−1 (1− P [XB > x]
)NB

= 1 −
∫ +∞

−∞
dx
(
1− P [XA > x]

)NA NBfB(x)
(
1− P [XB > x]

)NB−1 , (S1)

which is identical to Eq. 2 in the main text. Here fA(x) and fB(x) are the probability density

functions of a sperm competitiveness measure x for allele A and allele B, respectively. When

NA, NB � 1, it can be approximated as:

P [winner = A | NA A
′s & NB B′s ]

≈
∫ +∞

−∞
dx NAfA(x) exp

{
−
(
NAP [XA > x] + NBP [XB > x]

)}
≈ 1 −

∫ +∞

−∞
dx NBfB(x) exp

{
−
(
NAP [XA > x] + NBP [XB > x]

)}
. (S2)

The exact master equation Eq. S1 provides the winning probability:

P [winner = A | NA A
′s & NB B′s ] =

NA

NA +NB

,

when the mutation (from B to A) is exactly neutral, i.e. fA(x) ≡ fB(x).

(1-0) Perturbation formula in general case

In population genetics, it is very common to deal with a situation where the effect of the

mutation is fairly small at a generation but could become large when accumulated through
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generations. To deal with such situations, let us assume that the probability density functions

(PDFs) for the two alleles are almost identical:

fA(x) ≡ f(x) + δf(x) , fB(x) ≡ f(x) , with

∫ +∞

−∞
dx|δf(x)| � 1.

And let Xf denote a random variable conforming to the PDF f(x). Then the probability,

Eq. S1, that the winner has allele A is rewritten and approximated up to O(δf) as:

P [winner = A | NA A
′s & NB B′s ]

= 1−
∫ +∞

−∞
dx NBf(x)

[
1−

∫ +∞

x

dξ (f + δf)(ξ)

]NA [
1−

∫ +∞

x

dξ f(ξ)

]NB−1
≈ 1−NB

∫ +∞

−∞
dx f(x)

[
1−

∫ +∞

x

dξ f(ξ)

]NA+NB−1
+NB

∫ +∞

−∞
dx

{
f(x)

[
1−

∫ +∞

x

dξ f(ξ)

]NA+NB−2
NA

∫ +∞

x

dξ δf(ξ)

}

= 1− NB

NA +NB

+
NA NB

NA +NB − 1

∫ +∞

−∞
dx

{
d

dx

[
1−

∫ +∞

x

dξ f(ξ)

]NA+NB−1 ∫ +∞

x

dξ δf(ξ)

}

=
NA

NA +NB

+
NA NB

NA +NB − 1

∫ +∞

−∞
dx

[
1−

∫ +∞

x

dξf(ξ)

]NA+NB−1
δf(x) . (S3)

Partial integration was used to achieve the last equation. Now, define a quantity:

ψA(NA, NB) ≡ (NA +NB)2

NA +NB − 1

∫ +∞

−∞
dx

[
1−

∫ +∞

x

dξf(ξ)

]NA+NB−1
δf(x)

=
NA +NB

NA +NB − 1

∫ NA+NB

0

dy

(
1− y

NA +NB

)NA+NB−1
δ ln f(x(y)) .(S4)

The latter equation results from changing dummy integration variables from x to y ≡ (NA+

NB)P [Xf > x] and introducing the notation, δ ln f(x) ≡ δf(x)
f(x)

. When NA + NB � 1, it is

approximated as:

ψA(NA, NB) ≈ (NA +NB)

∫ +∞

−∞
dx exp (−(NA +NB)P [Xf > x]) · δf(x)

=

∫ +∞

0

dy e−y δ ln f(x(y)) . (S5)

The first approximate equation gives exactly Eq. 4 in the main text.
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With Eq. S4 (or Eq. S5), Eq. S3 can be rewritten and rearranged as:

P [winner = A | NA A
′s & NB B′s ] ≈ NA

NA +NB

{
1 +

NB

NA +NB

ψA

}
≈ NA

NA +NB(1− ψA)

≈ NA(1 + ψA)

NA(1 + ψA) +NB

, (S6)

which is referred to as Eq. 3 in the main text. Here we omitted the dependence of ψA

on NA and NB for notational convenience. The approximate equations Eq. S6 demonstrate

that allele A has an advantage as much as ψA, as defined in Eq. S4, over allele B in the

sperm competition. Thus the problem boils down to estimating the competitive advantage

ψA(NA, NB).

Let us now calculate the competitive advantage in several specific cases.

(1-1)Increased mean in exponential distribution

First we consider a simplest example, where the measure x follows an exponential distribution

and the mutation slightly increases the mean:

f(x) = exp(−x) , and f(x) + δf(x) = (1− δτ) exp(−(1− δτ)x) .

Here we rescaled x so that the mean is 1 for the wild-type.

In this case, y = (NA +NB) exp(−x), and

δ ln f(x) ≈ δτ(x− 1) = δτ

{
ln

(
NA +NB

y

)
− 1

}
.

Substituting this into Eq. S5, we get:

ψA ≈
∫ +∞

0

dy e−y δτ

{
ln

(
NA +NB

y

)
− 1

}
= δτ {ln(NA +NB)− 1 + γ} , (S7)
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where γ ≡ −
∫ +∞
0

dye−y ln y = 0.57721... is Euler’s constant. Thus, ψA in this case roughly

scales as ln(NA +NB).

(1-2) Shift of normal distribution

Next let us consider a case where the measure x is governed by a normal distribution and

the mutation shifts the mean of the distribution:

f(x) =
1√
2π

exp

(
−x

2

2

)
, and f(x) + δf(x) = f(x− δm) .

Here, we rescaled and shifted x so that its mean and variance become 0 and 1, respectively,

for the wile-type.

In this case, δ ln f(x) ≈ δm x, and

y(x) = (NA +NB)

∫ +∞

x

dx√
2π
e−

x2

2 ≈ NA +NB√
2π x

e−
x2

2 .

The right-most hand side is the leading term of an asymptotic expansion for x� 1. Solving

it for x iteratively, we get:

x(y) ≈

√
2 ln

(
NA +NB√
2π y x(y)

)

≈

√√√√√√√2 ln

 NA +NB√
2π × 2 ln

(
NA+NB√
2π y x(y)

)
− 2 ln y

≈

√√√√√√√2 ln

 NA +NB√
2π
{

2 ln
(
NA+NB√
2π x(y)

)
− 2 ln y

}
− 2 ln y

≈

√√√√√√√2 ln

 NA +NB√
4π ln

(
NA+NB√

4π

)
− ln y√√√√√2 ln

 NA+NB√
4π·ln

(
NA+NB√

4π

)


. (S8)
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Substituting the last approximation into Eq. S5, we have:

ψA ≈
∫ +∞

0

dy e−y δm x(y)

≈ δm

√√√√√√√2 ln

 NA +NB√
4π ln

(
NA+NB√

4π

)



1 +
γ

2 ln

 NA+NB√
4π ln

(
NA+NB√

4π

)



. (S9)

Because ln(NA+NB) is fairly small compared to NA+NB(� 1) yet considerably larger than

1, we see that the competitive advantage ψA roughly scales as
√

ln(NA +NB) in this case.

(1-3) Variance increase in normal distribution

Once again, we assume that the measure x behaves according to a normal distribution:

f(x) = 1√
2π

exp(−x2

2
). This time, we consider that the mutant increased the variance of the

distribution:

f(x) + δf(x) =
1− δσ√

2π
exp

(
−{(1− δσ)x}2

2

)
.

In this case, the dummy variable y, and consequently the function x(y) as well, are the same

as in the last subsection. Regarding δ ln f(x), we have:

δ ln f(x) ≈ δσ(x2 − 1) .

Substituting these approximations into Eq. S5, we get:

ψA ≈
∫ +∞

0

dy e−y δσ
[
(x(y))2 − 1

]

≈ δσ

2 ln

 NA +NB√
4π ln

(
NA+NB√

4π

)
+ 2γ − 1

 . (S10)

Thus, the competitive advantage ψA roughly scales as ln(NA +NB) in this case.
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(1-4) Increased maximum of an upper-bounded distribution

So far, the distribution of the measure x for the sperm performance was either exponential

or normal, neither of which is bounded from above.

In actual sperm competitions, however, it may be more natural to assume a performance

measure bounded from above by a positive maximum value. We could consider that all

characters influencing the sperm competitiveness could be integrated into a single measure,

which we call the “velocity”, which is the reciprocal of the total time from the start (ejacula-

tion) till the completion of the fertilization. No matter how good the sperm performance is,

the total time remain finite and can never be zero, thus there must always be a finite non-

zero upper bound in the “velocity”. Considering this way, a natural form of the probability

distribution f(x) near the upper-boundary xM would be:

f(x) ∝

 (α + 1)(xM − x)α for x < xM ,

0 for x ≥ xM ,
(S11)

where the exponent α > 0 determines the steepness of the distribution. At this point, the

asymptotic distribution (Eq. S11) still has a freedom of a multiplication factor. For later

convenience, we choose such a factor that the functional form should be valid in the entire

region, 0 ≤ x, and we also rescale x so that xM will be 1:

f(x) =

 (α + 1)(1− x)α for 0 ≤ x < 1 ,

0 for x ≥ 1 .
(S12)

In this case, the dummy integration variable becomes:

y =

 (NA +NB)(1− x)α+1 for x < 1 ,

0 for x ≥ 1 .

Because y is zero all across x ≥ 1, the second equation in Eq. S5 needs a slight modification

if δf(x) > 0 in x > 1:

ψA =

∫ +∞

0

dy e−y δ ln f(x(y)) + (NA +NB)

∫ +∞

1

dx (f(x) + δf(x)) . (S13)
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Now, let us consider a particular case where the mutation slightly widen the region of x by

increasing the upper-bound:

f(x) + δf(x) =
α + 1

1 + δxM

(
1− x

1 + δxM

)α
.

Then, for x < 1, we have

δ ln f(x) ≈ δxM

(
α x

1− x
− 1

)
≈ δxM

[
α

(
NA +NB

y

) 1
α+1

− (α + 1)

]
. (S14)

Substituting the above two equations into Eq. S13 yields:

ψA ≈ δxM

∫ +∞

0

dy e−y

[
α

(
NA +NB

y

) 1
α+1

− (α + 1)

]

+(NA +NB)

∫ 1+δxM

1

dx
α + 1

1 + δxM

(
1− x

1 + δxM

)α
= δxM

[
(NA +NB)

1
α+1 α Γ

(
α

α + 1

)
− (α + 1)

]
+ (NA +NB)

(
δxM

1 + δxM

)α+1

≈ δxM(NA +NB)
1

α+1 α Γ

(
α

α + 1

)
. (S15)

The last approximation holds because we are now considering δxM that is small enough

to give δxM (NA + NB)
1

α+1 � 1, and because we now consider (NA + NB)
1

α+1 � 1. The

approximate equation Eq. S15 states that the competitive advantage ψA roughly scales as

(NA +NB)
1

α+1 in this case.
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Note 2. Calculation of Advantage in One-on-One Competition

Here we derive a formula for competitive advantage in one-on-one competitions, then apply

it to the aforementioned four particular cases. They will serve as a basis for assessing the

enhancement of the advantage by fierce competitions among numerous sperm.

(2-0) General formula

As in the main text (or in Supplementary Materials and Methods), consider the case where

the mutation from B to A changed the distribution only slightly:

fB(x) = f(x) , fA(x) = f(x) + δf(x) .

Then, the probability that allele A wins in a one-on-one competition with B is:

P [winner = A | 1 A& 1 B ] =

∫ +∞

−∞
dx

[
(f(x) + δf(x))

∫ x

−∞
dξf(ξ)

]
=

1

2
+

∫ +∞

−∞
dx

[
δf(x)

∫ x

−∞
dξf(ξ)

]
. (S16)

If we set

ψA ≡ 4

∫ +∞

−∞
dx

[
δf(x)

∫ x

−∞
dξf(ξ)

]
, (S17)

the above equation is rearranged as:

P [winner = A | 1 A& 1 B ] =
1

2

(
1 +

1

2
ψA

)
≈ 1

1 + (1− ψA)

≈ 1 + ψA
(1 + ψA) + 1

. (S18)

Thus ψA is interpreted as the competitive advantage of allele A over allele B. [ Actually,

these equations are special cases of Eqs. S3, S4 and S6 when NA = NB = 1. ] Now we will

calculate Equation S17 for specific cases.
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(2-1) Increased mean in exponential distribution

In this case, f(x) = exp(−x) and δf(x) ≈ δτ (x−1) exp(−x) (for x ≥ 0). Substituting them

into Equation S17, we have:

ψA ≈ 4

∫ +∞

0

dx

[
δτ (x− 1) exp(−x)

∫ x

0

dξ exp(−ξ)
]

= 4 δτ

∫ +∞

0

dx [(x− 1) exp(−x)(1− exp(−x))]

= 4 δτ

[
Γ(2)− Γ(1)−

(
1

2

)2

Γ(2) +

(
1

2

)
Γ(1)

]
= δτ . (S19)

(2-2) Shift of normal distribution

In this case, f(x) = 1√
2π

exp
(
−x2

2

)
and δf(x) ≈ δm xf(x) = −δm d

dx
f(x). Substituting

them into Equation S17, we have:

ψA ≈ 4

∫ +∞

−∞
dx

[
−δm d

dx
f(x)

∫ x

−∞
dξf(ξ)

]
= −4 δm

[
f(x)

∫ x

−∞
dξf(ξ)

]x=+∞

x=−∞
+ 4 δm

∫ +∞

−∞
dx (f(x))2

= 4 δm

∫ +∞

−∞
dx {f(x)}2 .

Actually, equations up to this point hold for an infinitesimal constant shift of any distri-

bution that is differentiable in the interval −∞ < x < +∞. Now, substituting f(x) =

1√
2π

exp
(
−x2

2

)
into the rightmost hand side, we get:

ψA ≈ 4
δm

2π

∫ +∞

−∞
dx exp(−x2)

=
2√
π
δm . (S20)
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(2-3) Variance increase in normal distribution

In this case, f(x) = 1√
2π

exp
(
−x2

2

)
and δf(x) ≈ δσ(x2 − 1)f(x) = δσ

(
d
dx

)2
f(x). Substitut-

ing them into Equation S17, we have:

ψA ≈ 4

∫ +∞

−∞
dx

[
δσ

(
d

dx

)2

f(x)

∫ x

−∞
dξf(ξ)

]

= 4 δσ

[
d

dx
f(x)

∫ x

−∞
dξf(ξ)

]x=+∞

x=−∞
− 4 δσ

∫ +∞

−∞
dx

(
d

dx
f(x)

)
f(x) .

= −4 δσ

∫ +∞

−∞
dx

[
1

2

d

dx
(f(x))2

]
= −4

δσ

2

[
(f(x))2

]x=+∞
x=−∞

= 0 . (S21)

Therefore, just increasing the variance of a normal distribution gives no competitive advan-

tage (of O(δσ)) to the mutant as far as one-on-one competitions are concerned.

(2-4) Increased maximum of an upper-bounded distribution

In this case, f(x) = (α + 1)(1 − x)α (for 0 ≤ x ≤ 1) and δf(x) ≈ δxM
(
αx
1−x − 1

)
f(x).

Substituting them into Equation S17, we have:

ψA ≈ 4

∫ 1

0

dx

[
δxM

(
αx

1− x
− 1

)
(α + 1)(1− x)α

∫ x

0

dξ (α + 1)(1− ξ)α
]

= 4 δxM (α + 1)

∫ 1

0

dx
{[
αx(1− x)α−1 − (1− x)α

] [
1− (1− x)α+1

]}
= 4 δxM(α + 1)

[
α B(2, α)− 1

α + 1
− α B(2, 2α + 1) +

1

2α + 2

]
= 4 δxM

[
α(α + 1)

1

α(α + 1)
− 1− α(α + 1)

1

(2α + 1)(2α + 2)
+

1

2

]
=

2(α + 1)

2α + 1
δxM . (S22)
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Note 3. Enhancement Factor of Sperm Competitive Advantage

Now that we know the competitive advantage both for one-on-one competition and for

competition among numerous competitors, we can calculate the enhancement factor for the

specific cases.

(3-1) Increased mean in exponential distribution

In this case, ψA(NA = NB = 1) ≈ δτ , and ψA(NA, NB � 1) ≈ δτ {ln(NA +NB)− 1 + γ}.

Thus, we have:

R[ψA](NA, NB) ≡ ψA(NA, NB)

ψA(NA = NB = 1)
≈ ln(NA +NB)− 1 + γ . (S23)

(3-2) Shift of normal distribution

In this case, ψA(NA = NB = 1) ≈ (2δm)/
√
π and

ψA(NA, NB � 1) ≈ δm

√√√√√√√2 ln

 NA +NB√
4π ln

(
NA+NB√

4π

)
 .

Taking the ratio of these two yields:

R[ψA](NA, NB) ≈

√√√√√√√π

2
ln

 NA +NB√
4π ln

(
NA+NB√

4π

)
 . (S24)

(3-3) Variance increase in normal distribution

In this case, ψA(NA = NB = 1) ≈ 0 and

ψA(NA, NB � 1) ≈ δσ

2 ln

 NA +NB√
4π ln

(
NA+NB√

4π

)
+ 2γ − 1

 .
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Thus, R[ψA] is +∞, because there is no advantage in an one-on-one competition.

(3-4) Increased maximum of an upper-bounded distribution

In this case, ψA(NA = NB = 1) ≈ δxM × 2(α + 1)/(2α + 1) and

ψA(NA, NB � 1) ≈ δxM (NA +NB)
1

α+1 α Γ

(
α

α + 1

)
.

Taking the ratio, we have:

R[ψA](NA, NB) ≈ (NA +NB)
1

α+1
α(2α + 1)

2(α + 1)
Γ

(
α

α + 1

)
= (NA +NB)

1
α+1

2α + 1

2
Γ

(
2α + 1

α + 1

)
. (S25)
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Note 4. Population Genetic Behavior of Mutant Frequency under

Paternity-Sharing Sperm Competition

In the previous subsection, we examined the effect of an allelic difference on each instance of

sperm competition, which we expressed in terms of the probability that a better allele will

win. In population genetics, such competitions will take place here and there throughout

the population. Thus, we expect that even a small competitive advantage could accumulate

through generations to make a big difference.

Here, we want to focus on the effect of competitions among sperm sharing paternity,

which have been overlooked in the previous studies. For this purpose, we consider an ex-

treme situation in which a population consists of individuals that are strictly monogamous

(and especially mono-androus). In this situation, there will never be post-copulatory com-

petitions, including sperm competitions, between different males.

As in the previous section (or in the main text), we focus on a single locus (or site) and

assume that the locus has two alleles, A and B, which are selectively neutral except in sperm

competition. Here the locus is assumed to be on an autosome. We also assume that there

are no further mutations at the locus (or site) and that the two alleles were present from

the beginning in the current generation. Let P (P ) [Z | Z1Z2] denote the probability that a

sperm with allele Z (= A or B) wins a successful competition among sperm ejaculated by

a male individual with the genotype Z1Z2 (Z1, Z2 = A or B). Obviously, for homozygous

males, we have:

P (P ) [A | AA] = P (P ) [B | BB] = 1 ,

P (P ) [A | BB] = P (P ) [B | AA] = 0 . (S26)

For heterozygous males, we can use Eq. S6. Assuming that there are an equal number of

sperm with alleles A and B , NA = NB, and assuming that the allele difference has only a
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small effect, we have:

P (P ) [A | AB] =
1

2

(
1 +

ψA
2

)
, P (P ) [B | AB] =

1

2

(
1− ψA

2

)
. (S27)

Let p
(P )
t (Z1Z2) be the frequency of paternal genomes with the genotype Z1Z2 (Z1, Z2 = A

or B) at the locus in the current (i.e., the t-th) generation. Then, the expected frequency,

p
(P )
t+1(Z), of allele Z (= A or B) of paternal origin at the next (i.e., the (t+ 1)-th) generation

is in general:

p
(P )
t+1(Z) =

∑
Z1Z2=AA,AB,BB

P (P ) [Z | Z1Z2] p
(P )
t (Z1Z2) .

This equation, after substituting Eq. S26 and Eq. S27 into it, reduces to:

p
(P )
t+1(A) = p

(P )
t (AA) +

1

2

(
1 +

ψA
2

)
p
(P )
t (AB) , (S28)

p
(P )
t+1(B) = 1− p(P )

t+1(A) .

In the deterministic limit, the diploid frequencies p
(P )
t (Z1Z2) are given by the Hardy-

Weinberg principle (see e.g. section 2.2 of ?):

p
(P )
t (AA) = p

(P )
t (A) p

(M)
t (A) ,

p
(P )
t (AB) = p

(P )
t (A) p

(M)
t (B) + p

(P )
t (B) p

(M)
t (A) ,

p
(P )
t (BB) = p

(P )
t (B) p

(M)
t (B) , (S29)

where p
(M)
t (Z) is the frequency of allele Z of maternal origin at the current (i.e. the t-th)

generation. Substituting Eq. S29 into Eq. S28, we get:

p
(P )
t+1(A) =

1

2

{
p
(P )
t (A) + p

(M)
t (A)

}
+
ψA
4

{
p
(P )
t (A) p

(M)
t (B) + p

(P )
t (B) p

(M)
t (A)

}
, (S30)

and p
(P )
t+1(B) = 1− p(P )

t+1(A).

Let us next consider the evolution of the maternal allele frequency. If we assume that

the alleles A and B have the same probability of transmission to the next generation, the

reasoning leading to paternal allele frequency also applies here, with ψA = 0. The result is:

p
(M)
t+1 (A) =

1

2

{
p
(P )
t (A) + p

(M)
t (A)

}
, (S31)
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and p
(M)
t+1 (B) = 1− p(M)

t+1 (A).

Taking the arithmetic mean of Eq. S30 and Eq. S31, and ignoring terms of O((ψA)2), we

get a simple recursion relation:

pt+1(A) = pt(A) +
ψA
4
pt(A)(1− pt(A)) , (S32)

and pt+1(B) = 1− pt+1(A). In the main text, they are Eqs. 9 and 10, respectively. Here,

pt(Z) ≡ 1

2

{
p
(P )
t (Z) + p

(M)
t (Z)

}
,

is the gender-averaged frequency of allele Z (= A or B) at the t-th generation.

Although we have ignored genetic drift so far, taking account of genetic drift is not so

difficult. For this purpose, it is sufficient to notice that our recursion equation, Eq. S32, is

equivalent to the deterministic recursion equation of the allele frequency:

pt+1(A) = pt(A) + s pt(A)(1− pt(A)) ,

when allele A has a selective advantage of s (� 1) over allele B. Therefore, the diffusion

theory framework such as unfolded in section 8.8.3 of (?) applies also here, if s is replaced

by ψA
4

. Thus we have the fixation probability u(p) of allele A when its initial frequency is p:

u(p) ≈ 1− exp(−NeψA p)

1− exp(−NeψA)
, (S33)

where Ne is the effective population size. This is Eq. 11 in the main text. The initial

frequency of a new mutation should be p = 1/(2N), where N is the actual population size.

If Ne = N , the equation is approximated as:

u(p) ≈ ψA/2

1− exp(−NψA)
, (S34)

which in turn reduces to u(p) ≈ ψA/2 when exp(NψA)� 1. The effect of sperm competitive

advantage is 1/4-fold smaller than that of selective advantage of the same intensity (i.e.

when s = ψA). A multiplicative factor of 1/2 comes from the neutrality of the alleles in

the maternal transmission, and the other multiplicative factor of 1/2 originates from the

fact that thecompetition among paternity-sharing sperm is effective only when the male is

heterozygous.
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