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ABSTRACT Deep sequencing technologies enable the study of the effects of rare variants in disease risk. While methods have been
developed to increase statistical power for detection of such effects, detecting subtle associations requires studies with hundreds or
thousands of individuals, which is prohibitively costly. Recently, low-coverage sequencing has been shown to effectively reduce the cost
of genome-wide association studies, using current sequencing technologies. However, current methods for disease association testing
on rare variants cannot be applied directly to low-coverage sequencing data, as they require individual genotype data, which may not
be called correctly due to low-coverage and inherent sequencing errors. In this article, we propose two novel methods for detecting
association of rare variants with disease risk, using low coverage, error-prone sequencing. We show by simulation that our methods
outperform previous methods under both low- and high-coverage sequencing and under different disease architectures. We use real
data and simulation studies to demonstrate that to maximize the power to detect associations for a fixed budget, it is desirable to
include more samples while lowering coverage and to perform an analysis using our suggested methods.

VER the last decade, many genome-wide association
studies (GWAS) have been conducted for a wide range
of diseases and phenotypes (Easton et al. 2007; Wellcome
Trust Case Control Consortium 2007; Schunkert et al. 2011)
that have successfully identified associations with hundreds
of single-nucleotide variants (SNVs). However, for many
conditions, only a small fraction of the heritability is cur-
rently explained by these SNVs (Manolio et al. 2009).
There are several possible explanations for this missing
heritability, including undiscovered gene-gene and gene-—
environment interactions, inaccurate phenotyping, and dis-
ease heterogeneity. One of the most appealing hypotheses
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is that a large portion of the missing heritability may be
explained by rare SNVs, which have not been explored by
GWAS due to technological limitations. Most GWAS have
been performed on a set of a few hundred thousand common
SNVs with a minor allele frequency (MAF) of at least 1% in
populations of European ancestry, and often low-frequency
SNVs were simply discarded from the analysis due to power
considerations. However, if rare variants do in fact contribute
to disease status, it is likely that each individual will carry
different rare variants with such effects (Cohen et al. 2004;
Kryukov et al. 2007; Gorlov et al. 2008).

Recent advances in sequencing technologies allow us to
explore the entire genome for several thousand dollars, and
thus whole-genome, sequence-based association studies are
becoming feasible. Using these technologies, we can perform
association studies on all SNVs in the genome, including rare
SNVs. However, the analysis of such new studies is compli-
cated by the fact that the power to detect association with
a single SNV depends on its minor allele frequency—the
higher the frequency is, the higher the power. SNVs with very
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low MAF require the sequencing of tens of thousands of
individuals to achieve reasonable power in association
studies.

To circumvent this problem, statistical tests have been
suggested that aggregate the rare SNV information across
a genomic region (Li and Leal 2008). The general principle
behind all of these methods is that in a gene or region of
interest that is associated with the disease, we expect to
observe substantially more (or less) rare alleles across the
region in cases compared with controls, particularly with
rare SNVs. For instance, in the analysis of Ahituv et al
(2007), the gene SIM1 had six rare mutations in obese indi-
viduals and no rare mutations in lean individuals. This ap-
proach has two advantages: first, it reduces the burden of
multiple hypotheses, as the number of regions is smaller
than the number of SNVs; second, the aggregated frequen-
cies of all SNVs in each region are much higher than the
frequency of individual rare SNVs. Both of these advantages
increase statistical power.

The cost of sequencing technologies, although consider-
ably cheaper than a decade ago, still prohibits GWAS on tens
of thousands of samples necessary for the discovery of subtle
associations. To perform studies with large numbers of samples,
researchers may compromise on the sequencing accuracy
to reduce costs. One strategy is the use of low-coverage
sequencing, where the amount of sequencing per sample is
reduced. Particularly, this strategy has been adapted by the
1000 Genomes Project Consortium (2010), where the major-
ity of individuals were sequenced at 5x coverage. This approach
obviously reduces cost considerably. However, it increases the
complexity of the downstream analysis due to missing and er-
roneous variant calls. Unfortunately, existing methods for aggre-
gate rare SNV statistics assume that genotype calls contain no
errors. Thus, these methods are not designed to work well with
sequencing data with low coverage or sequencing errors, and
they cannot be applied directly to most data collected as of today.

In this article, we propose a strategy for implicating rare
variants in disease, utilizing low-coverage sequencing data.
Our approach leverages on two novel methods for the
analysis of rare SNVs in the context of low-coverage
sequencing and sequencing errors. The first method we
present is based on a likelihood-ratio test (LRT) in which the
alternative hypothesis assumes that there exists a set of
specified causal SNVs, together with their effect sizes. This
approach extends the method by Sul et al. (2011a) to ad-
dress low-coverage sequencing, and it explicitly models se-
quencing errors. The second method we present is based on
an aggregate weighted sum of variance-stabilizing transfor-
mations (VSTs) of the difference of the allele frequencies
between cases and controls. Several previous methods have
suggested (Madsen and Browning 2009; Sul et al. 2011b)
calculating statistics based on the weighted sum of the allele
counts in the cases vs. the controls. Implicitly, many such
methods assume that allele frequency counts are normally
distributed. However, even though this assumption holds in
the limit, it is a well-known fact in probability theory that
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a binomial distribution X ~ B(n, p) with a small constant np
is not well approximated by a normal distribution, but much
better approximated by a Poisson distribution with parame-
ter A = np. Thus, the normality approximation is too crude
for rare SNVs, where the minor allele counts more closely
follow a Poisson distribution. Additionally, when modeling
the distribution of minor allele counts in the population, the
variance of the distribution often depends on the minor al-
lele frequency, whose misestimation may impair the accu-
racy of modeling and subsequent analysis. Therefore, the
proposed VST method considers a weighted sum of appro-
priate transformations of the counts, which have a variance-
stabilizing effect, instead of a weighted sum of the counts
themselves. We show that both approaches provide higher
power than previous methods for both low and high se-
quencing coverage.

We simulate rare variant disease association studies
under a variety of disease models under both high and
low coverage. From these simulations, we demonstrate that
VST and LRT methods are either superior to other methods
or comparable under a variety of disease models. We also
show that moving from high coverage to low coverage only
moderately reduces the power of a study. Thus, for the same
budget in terms of sequencing cost, low-coverage sequenc-
ing of a larger number of individuals has higher power than
high-coverage sequencing of fewer individuals.

While low-coverage sequencing reduces the cost of
sequencing considerably, barcoding of the samples is still
required for each sample, which can be a costly procedure.
We can eliminate the cost of barcoding through the use of
DNA pools, where DNA from several individuals is mixed
and sequenced together in each sequencing run without
barcoding. Our methods above are also applicable to the
scenario in which the study population is sequenced by
partitioning to small groups of 5-10 individuals each, and
the samples from each group are pooled and sequenced in
a single run. Clearly, this results in lower-coverage sequenc-
ing, with the added complexity introduced by the loss of
individual information. DNA pooling has been successfully
applied to GWAS data that reduce costs by one or two orders
of magnitude (Hanson et al. 2007; Brown et al. 2008; Skibola
et al. 2009). However, pooling DNA from a large number of
individuals can introduce a great deal of background noise in
the data that may reduce the reliability of and increase the
difficulty in the downstream analysis.

In contrast to pooling strategies in GWAS data where
a small number of pools are genotyped, each consisting of
a large number of samples, here we consider a strategy in
which a small number of individuals are sequenced in each
pool, making the noise amenable to explicit modeling.
Moreover, DNA pooling has been successfully applied to
next generation sequencing (Frlich et al. 2009) and we
therefore argue that the proposed application is feasible.
To assess the feasibility of applying the proposed methods
in the context of DNA pools, we first measured the coverage,
the sequencing error rate, and pooling accuracy in data from



a pooled sequencing study of non-Hodgkin lymphoma and
then used the measured parameters to simulate a study in
which the budget allows for sequencing of 80 pools, where
we vary the number of individuals per pool. We observed
that the power of the proposed methods increases consider-
ably when the number of individuals per pool increases. The
immediate conclusion from this simulated study is that in
a given study, it is generally preferable to perform the se-
quencing on the DNA of all available individuals, even if this
requires samples to be sequenced with low coverage or
pooled in small groups due to budget constraints.

Materials and Methods
Rare variants disease model

The methods described below are optimized for the disease
model proposed by Madsen and Browning (2009). In this
model, rarer causal variants have larger effect sizes than
common ones. We use p;“ and p; to denote true MAF in
cases and controls, respectively, and p;" and p; are

o YPL @)
P (vi—Dpi+1

p; ~Dpi (2)

where v; is the relative risk of variant i, and p; is the MAF in
the population, which can be estimated by the frequency in
the controls. The methods used to estimate p are described
in the section Estimating allele frequencies in the LRT frame-
work and in supporting information, File S1.

In the disease risk model, each group of variants has
group population attributable risk (PAR), and each variant
has marginal PAR denoted as w, which is the group PAR
divided by the number of causal variants in the group. Then,
the relative risk of variant i, vy;, is defined as

w
eI ®
We compute p;” using Equations 1 and 3.

We note that our methods can still be applied if this
model does not reflect the reality, and although the power is
reduced in this case, the power remains greater than for
previous methods under some of the conditions that we
tested in the Results section, e.g., in the case where some of
the variants are protective.

LRT statistic

Sul et al. proposed a likelihood-ratio test to detect an asso-
ciation of a group of rare variants (Sul et al. 2011a). The
method assumes that the true genotype of each individual is
known; in other words, it requires high coverage for each
individual. We propose a new likelihood-ratio test that can
be applied with low-coverage sequencing and where the
sequencing errors are modeled explicitly, and thus we ac-
count for uncertainty in sequencing reads.

Assume that for every individual k, we are given obser-
vations X* = (X}, ..., XK of the major and minor alleles at
each of the M variant positions. Each X is of the form
<xkyk>, where xf and y* are the numbers of
observed minor and major alleles of variant i in individual
k. We denote zF = xk + yk. Let D* and D~ be the sets of
observations in the cases and controls, respectively. In the
likelihood-ratio test, we calculate L,/Lg, the likelihood ratio

of the alternative vs. null models, where

Lo =P(D";D " |vo)P(vo) @
2M—1

L= Y P(D%D)P(v) (5)
j=1

and scenario v; is a binary vector indicating which variants
are causal among M variants: v; = {v],...,vM}. v, is the
scenario in which all variants are noncausal. The priors
P(v)) are given by

M i
Py) =[] (1-c)' ™, ©
i=1
where ¢; is the probability that variant i is causal. Addition-
ally, the probability P(D*; D~ |v;) is given by

M 2
PO*50 ) = T TT Do P(XE[r)P(ri+:v)
keDt i=1 r=0
M 2
11 ZP(Xlk r)P(r| =),
keD~ i=1 r=0

where r is the (hidden, unobserved) minor allele count of
variant i in chromosomes in individual k (and so r € {0, 1,
2}, where a heterozygous SNP is modeled by having r = 1).

Given the true value of r, zg‘, and the error rate, e, we have
that x* follows a binomial distribution with zf trials and
probability of success f<(r) as defined in File S1, Equation
3. Then, the probability of observing X given the true
r minor alleles is

- (e (e

Next, we show how to efficiently compute P(r|+; v;) and
P(r|—;v).

P(x}

Decomposition of likelihood function and efficient
permutation test

To avoid iterating over all 2M possible v/’s in Equation 5, we
assume that there is no linkage disequilibrium between rare
variants, which is reasonably justified in the case of rare
variants (Pritchard 2001; Pritchard and Cox 2002) and
has been generally assumed by previous aggregation meth-
ods. It is easy to see that P(r| —; v;) follows a binomial dis-
tribution with two trials and probability p; if v; = 1 or p; if
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v; = 0. Similarly, P(r| +; v;) follows a binomial distribution
with two trials and either probability p/” if v; = 1 or p; if v; =
0. Let B(k; n, p) be the probability mass function of the
binomial distribution, B(k;n,p) = (Z)pk(l—p)"fk. Then, Lo
in Equation 4 can be expanded as

Lo - ﬁ{a ) T Y PHB 2.0

i=1 keDt r=0

T ZP(X"[) r2pl}
keD~ r=0

i M
_-1_[1{( —c) I1 ZP(Xk|) (r;z,pi)}_nlAi.

keD* r=

(7

To compute L, we instead compute Ly + L; to simplify our
formula. We first denote (* as the case—control status of the
kth individual. If ¥ = 1, the individual is a case, and other-
wise it is a control. We can randomly permute case—control
status and set values of /¥ in the permutation test. Let P be
the total number of individuals. Then, Ly, + L, can be com-
puted as

Lo+1L1 = ﬁ {(1 —¢) [I iP(Xﬂr)B(r;Z,pi)

i=1 keD* r=0
2
+ ¢ [I X P(Xk|r)B(r;2,p])
keD+ r=0
11 ZP(XkI r)B <r;2»p:)}
keD~ r=0
M L 1- g
:H{A +clHBk ck }
k=1

where

and

2
ck = ZP(XI?(

r=0

r)B(r; 2,p;) €))

(see the Appendix of Sul et al. 2011a for the derivation). For
cases we compute B¥, and for controls we compute C;
moreover, A;, BF, and Cf in Equations 7 and 8 do not
change in the permutation test. Hence, we can precompute
values of all these variables. The number of A; values is M,
and the number of Bf and Cl’? values is P*M, which is the
number of individuals times the number of variants and
should not be too large to store in memory.

Estimating allele frequencies in the LRT framework

We use the following approach to estimate allele frequencies
(pi,pi,p7) used in the LRT method. First, we use the
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maximume-likelihood approach discussed in File S1 to detect
SNVs whose minor allele frequency is 0. These are SNVs
whose minor alleles are all errors, and hence they are non-
polymorphic sites. We remove these SNVs from subsequent
analysis. We then use the LRT statistic itself to estimate the
allele frequencies. To estimate p; in the A; term in Equation
7, we perform a grid search on p; to find the p; value that
maximizes the A; term for each SNV. To estimate p;" and p;,
we use the following approach. First we note that we can
calculate p;” from p; and the PAR, using Equation 1. Next,
we note that if the PAR value is fixed, we can perform an
independent grid search for each SNV, so that we find the
value of p;” (and therefore also p*) that maximizes the ex-
pression A; + ¢i[1_ 1Bkg ck” “of Equation 8. Thus, we per-
form a double-grid search we search over the space of PAR
values, and for each PAR we compute the LRT statistic by
searching over the space of p; for each SNV.

We note that the LRT algorithm can be easily extended to
deal with pools by replacing each individual in the above
description by a pool, and thus r € {0, 1, 2, ..., h*}, where
hk is the number of haplotypes in the kth pool. The assump-
tion is that the genotype of a pool is chosen from a binomial
distribution B(h*, p*) for a case pool or from B(h*, p~) for
a control pool.

VST-based method

Based on the Neyman-Pearson lemma (Neyman and Pearson
1933), the likelihood-ratio test proposed above should be
the most powerful possible test when the assumed model
accurately represents reality. However, the utility of the LRT
method may be impaired because it relies on prior knowl-
edge of the proportion of causal SNVs in the region, which
may be difficult to estimate. LRT also requires the grid
search to estimate allele frequencies, which may require
a search over a large space, resulting in an increased run-
time. Moreover, our proposed LRT method differs from pre-
vious methods for rare variants such as that of Madsen and
Browning (2009), where a weighted sum of minor allele
counts is compared between the cases and the controls, and
weights are adjusted according to the disease model. We
therefore present a simpler method based on VST, with
power similar to that of the LRT, but that directly uses the
allele counts of the SNVs.

The VST method is based on an aggregate weighted sum
of variance-stabilizing transformations of the difference of
the allele frequencies between cases and controls. It has
been previously suggested (Madsen and Browning 2009; Sul
et al. 2011b) to calculate statistics based on the weighted
sum of the allele counts in the cases vs. the controls. Implic-
itly or explicitly, many such methods assume that allele fre-
quency counts are normally distributed. However, this
assumption does not hold for rare SNVs, where the counts
more closely follow a Poisson distribution. Furthermore,
many methods implicitly rely on the accuracy of estimating
minor allele frequency and are thus vulnerable to its
misestimation. To correct for this, in general terms, the
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proposed VST method considers a weighted sum of appro-
priate transformations of the counts instead of a weighted
sum of the minor allele frequency counts.

Improved approximation of minor allele count
normal distribution

Let X be a random variable corresponding to the number
of minor alleles at a particular genomic position in a popu-
lation of n/2 diploid individuals. X follows a binomial dis-
tribution: X ~ B(n, p), where p is the minor allele frequency.
For sufficiently large n and p, the distribution is approxi-
mately normal. However, when p is small, this is no longer
a good approximation, and an approximation to a Poisson
distribution with parameter np is more accurate. Statistics
such as Rare variant Weighted Aggregate Statistic (RWAS)
(Sul et al. 2011b) that directly compare the counts of
the minor alleles in the cases and the controls typically ig-
nore the different distribution of rarer variants (particularly
RWAS uses a z-score for each SNV). We correct for this by
dividing the variants into approximately normally distrib-
uted and approximately Poisson distributed, according to
a threshold determined by n and p (we use the threshold
suggested by Decker and Fitzgibbon 1991: when n%31P >
0.47, the normal approximation is used; otherwise the Pois-
son approximation is used). We denote the two sets of SNVs
as rare SNVs and common SNVs. Furthermore, for both types
of variants, it is desirable to approximate their minor allele
count distributions so that the effect of misestimating minor
allele frequency on the accuracy of approximation is mini-
mal. We achieve this using variance-stabilizing transforma-
tions, as shown below.
For rare SNVs, we use the f, transformation of X,

X+2a0_BO
VX + ag ’

where ay =32 +ﬁ and B, =3+ @. Bar-Lev and Enis
(1988) showed that this function is a variance-stabilizing
transformation of the Poisson-distributed X to a normal dis-
tribution, so that fo(X) ~ N (fo(np) ) For common SNVs,
we use the f; transformation:

f1(X)4 arcsin <\/§) .

Bromiley and Thacker (2001) showed that f; is a variance-
stabilizing transformation of the binomially distributed X to
a normal distribution, so that f;(X) ~ N (arcsin(\/ﬁ), ). We
show below how to adapt the standard z-score test statistic
to make use of the fy and f; approximations for rare and

common variants.

1>

fo(X) )

1
4

(10)

Definition of VST statistic

In GWAS, an association statistic of a variant or z-score is
computed from an allele frequency difference between case
and control individuals to determine whether the variant is

associated with a disease (Eskin 2008). Specifically, the z-
score for a variant is calculated as

s (" —p7)
V2/N\/b(1-p)

which utilizes the (approximately) normal distribution un-
der the null hypothesis of the difference p* —p~, scaled so
that the variance under both hypotheses is 1 (p* and p~
denote the estimated MAFs in cases and controls, respec-
tively, and p denotes their average). We apply the same
motivation and use f; and f; to define a new statistic p; for
each variant I,

V2(fo(ri) —folh)) if (2N)** (@) <0.47

Pi

VAN(fi(Af) = fi (i)

otherwise,

(11

where A" and n; are the estimated minor allele counts of
variant i in cases and controls, respectively, and p;” and p;
are the estimated MAFs of variant i in cases and controls,
respectively. The method used to estimate minor allele
counts is described in File S1. From the properties of fy
and f; the p;-statistic is normally distributed, around a mean
of 0 and with variance 1 under the null. Under the alterna-
tive, the variance is also 1, and the mean is equal to the
value of p; when A =2Np* and f; =2Np~, where p*
and p~ are the population MAFs in cases and controls, re-
spectively. For example, this expectation is equal to
V2 - (fo(2Np*) — fo(2Np~)) when both p;" and p; are small.

We now consider a set of SNVs, s, ..., sy, and compute
a weighted sum of p; across all SNVs. Thus, the VST statistic
is defined as

(12)

where w; is the weight assigned to variant i, as described
below. As each p; is normally distributed with variance 1, then
assuming they are independent, p is also normally distributed
with variance 1 and also has an expectation of O under the null
hypothesis. We use this property in the selection of weights.

Optimal weights for VST under a disease model

The p-statistic can be used without making any further
assumptions by setting w; = 1 for every i. However, it is
desirable to set the weights according to a disease model
(for example, placing more weight on rarer variants or on
variants that are more common in cases than in controls). To
maximize power, the weights have to be chosen so that they
maximize the expectation of the statistic under the alterna-
tive; that is, maximize (Y w;-E[p;])/1/>w?. According
to the Cauchy-Schwarz inequality, this is maximized when
w; = E[p;].
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Using the disease model described in Materials and Meth-
ods, we can use the estimated p; and p; to calculate the
expected value E[p;] and set w; accordingly. For rare SNVs
(with small p,), the optimal weight would be

wi = V2(fo2N(w + pi(1 = @))) — fo(2Np;)), (13)
and for common SNVs, the optimal weight would be
wi = V2-2N(fi(2N(o +pi(1 ~ 0))) = fi(2Np;)).  (14)

Recall that w is the marginal PAR. Additionally, by assum-
ing that o is small and using a first-order Taylor series ex-
pansion of f, and f;, we obtain the following weights for rare
SNVs,

w; = V2(f,(2Np;) - 2Nw(1 - py))

=w- 2Npi+3032'2\/§N(1_ﬁi)7
(2Np; + o)

(15)

and for common SNVs,

Wi~ VT 2N(f1’ (2Np;) - 2N (1 —pi))
(1—pN (16
P

As the w-factor is constant in all weights, we remove it and
obtain weights independent of the PAR value. We artificially
set w; = 0 for variants whose minor allele is not observed.
Finally, we use a permutation test to derive a P-value for the
VST statistic.

Adjustment for covariates

Since the statistical frameworks of LRT and VST do not
directly allow for covariate adjustment, we perform a para-
metric bootstrap (Davison and Hinkley 1997) discussed in
Lin and Tang (2011) to correct for covariates. In this ap-
proach, the logistic regression model is fitted to estimate
regression coefficients for covariates. Let 7 be coefficients
for covariates and Q; and Y; be covariates and disease status
(0 for controls and 1 for cases) for the jth individual, re-
spectively. Then, we compute Pr(Yj"" = 1), the probability
that the jth individual is a case while taking into account
covariates as follows:

. e‘f'TQi
Pr(v; =1) =
146 Q

The parametric bootstrap is similar to the permutation test
except that an individual becomes a case or a control
depending on the probability (Pr(Y; = 1)) rather than by
a random assignment in the permutation test. We imple-
ment this bootstrap method in our software.
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Sequencing data from a study
of non-Hodgkin lymphoma

We sequenced individuals from a case-control study of
non-Hodgkin lymphoma (L. Conde, 1. Eskin, F. Hormozdiari,
P. M. Bracci, E. Halperin, and C. Skibola, unpublished data).
The samples were genotyped in a GWAS in which a total of
312,563 markers were genotyped in 1431 individuals that
included 213 cases of follicular lymphoma (FL) and 750
controls after a set of quality-control criteria was applied
(see Conde et al. 2010 for details). Among the 213 FL cases
for which GWAS data were available, a subset of 5 FL males
and 5 FL females, all HIV-negative white non-Hispanics, was
selected for pooling in this pilot study.

DNA pool construction for whole-genome sequencing

Genomic DNA for FL cases was extracted from whole blood
(DNeasy Blood and Tissue Kit; QIAGEN, Valencia, CA). DNA
integrity was checked for absence of fragmentation by gel
electrophoresis on 2% agarose (MetaPhor; BioWhitaker,
Rockland, ME) in TAE buffer, stained with ethidium bromide.
Concentration was measured by PicoGreen (Quant-iT PicoGreen
dsDNA reagent; Invitrogen, Carlsbad, CA) in triplicate
and adjusted to 60 ng/pl in TE. To ascertain purity, a UV
absorption spectrum was obtained using an ND-1000 Nano-
Drop spectrophotometer; all samples had 260/280 ratios be-
tween 1.84 and 1.92. To construct each pool, equal amounts
of DNA (1320 ng) were combined from five individuals in
a total volume of 110 pl.

Sequencing and primary analysis

Sequencing was outsourced to Illumina FastTrack Services
(San Diego). gDNA samples were used to generate short-
insert (target 300 bp) paired-end libraries and a HiSeq2000
instrument was used to generate paired 100-base reads
according to the manufacturer’s instructions. The software
ELAND was used for sequence alignment, and the coverage
was 44 per base.

Results
VST and LRT outperform existing methods

We compared the power of the proposed VST and LRT
methods with that of existing methods to detect a disease-
associated set of SNVs via simulation of low- and high-
coverage sequencing-based disease association studies, with
and without considering sequencing error. To evaluate the
power of the methods, we generate for each combination of
parameters 1000 data panels fitting the alternative hypoth-
esis, according to the disease model discussed in Materials
and Methods. In this disease model, rarer variants have
higher effect sizes. Each panel simulates sequencing data
from N = 1000 cases and 1000 controls (unless otherwise
specified), with expected coverage g, given as a parameter.
To clarify, g equals the expected number of times each var-
iant position is read during sequencing. For example, if



g = 10, then each of a diploid individual’s two alleles at
a particular genomic position will be read 10/2 = 5 times
on average. The generated simulated data consist of a pair
of integers for each individual and each SNV, indicating how
many times we observe the major and minor alleles of that
SNV in that individual. For each individual, we first generate
haplotypes and then generate observations for each position
on those haplotypes (i.e., how many times we see the major
and minor alleles of each SNV). First, haplotypes are gener-
ated as in Madsen and Browning (2009). There are 100
SNVs; MAFs are sampled from Wright's formula with the
same parameters; each SNV has a 0.1 chance of being
causal; i.e., ¢c; = 0.1; and PAR = 0.02. Then, the number
of observations for each position is sampled from a binomial
distribution with p = 1/(2 - 100,000) and g - 100,000 trials,
since each individual has two haplotypes. We add errors by
randomly changing the observation at each read with prob-
ability e (where e differs across experiments).

The power of existing methods was assessed using
PLINK/SEQ software (v0.07, http://atgu.mgh.harvard.
edu/plinkseq/). While the proposed VST and LRT meth-
ods take allele counts directly from the read data as
input, other methods require genotype data for each indi-
vidual. Hence, we used a simple maximum-likelihood ap-
proach to determine the genotype of a variant from the
allele counts and provided the most likely genotype call as
an input for the other methods. To ensure that the estima-
tion of genotypes did not adversely affect the performance
of competing methods, a comparison was also performed
given the true genotypes and produced similar power to that
obtained with 20x coverage, for all methods. Tested meth-
ods from the PLINK/SEQ package included the C-alpha test
(Neale et al. 2011), a frequency-weighted test similar to the
Madsen-Browning test, and the variable threshold (VT) test
of Price et al. (2010). In addition, we compared our methods
with RWAS (Sul et al. 2011b), which is based on a weighted
sum of Z-scores, and with the previous LRT method (Sul
et al. 2011a), denoted as “LRT_G” in the tables, which
requires genotypes of individuals. Table 1 summarizes the
power of each method and shows that VST and LRT have
greater sensitivity than existing methods both with and
without sequencing error and with different budgets, partic-
ularly in scenarios with low coverage and a realistic rate of
sequencing error (1%). Furthermore, LRT outperforms VST
in all scenarios. However, we note that the difference be-
tween the two is negligible compared to the improvement
over previous methods. This makes the VST method partic-
ularly appealing due to its simplicity and yet high power.

Low-coverage sequencing for rare variant association
incurs only moderate power loss

Interestingly, the results of Table 1 show that the power loss
comparing high-coverage (20) sequencing to low-coverage
(4) sequencing is moderate for VST and LRT. Thus, we can
reduce the cost of the study by a factor of 5, using pooling,
with only a minor power reduction. Because of sample prep-

aration costs, an equivalent-cost, low-coverage study can
increase the number of individuals sequenced by a factor
of <5. Nonetheless, even by increasing the number by a fac-
tor of 2 or 3, the power gain of the low-coverage sequencing
study is greater than the power loss due to the low coverage.

VST and LRT are robust under different disease models

We evaluated the power of VST, LRT, and existing methods
under two additional disease models. In the first disease
model, causal variants must have MAF = 1%, and have the
same relative risk of 5 regardless of their MAF (¢; = 0.2).
This framework simulates a disease model where only rare
variants are causal with the fixed effect size. The second
disease model is similar to the PAR disease model discussed
in Materials and Methods (PAR = 2%, ¢; = 0.1), but it
includes additional protective variants. After choosing d del-
eterious variants, we selected an additional 25% of d variants
as protective to produce a ratio of 8:2 deleterious to pro-
tective variants. Table 2 shows the power of methods in the
first disease model, and the VT method generally has the
greatest power in this model. It is because VT assumes there
exists an unknown MAF threshold such that variants whose
MAF is less than the threshold are more likely to be involved
in a disease, which is consistent with the first disease model.
Note that the power of LRT is very close to that of VT in this
disease model. In the disease model with protective var-
iants, Table 3 shows that LRT is the most powerful method.

Applying VST and LRT to pooling of samples

We consider study designs in which a large number of pools
are sequenced, where each pool includes the DNA of h/2
individuals and thus h haplotypes. Typically, h is relatively
small (e.g., h < 20). This study design avoids the need for
barcoding, and thus it further reduces the cost of the study.
We compared the sensitivity of the proposed methods in
scenarios with and without pooling of individuals’ DNA sam-
ples and also with and without considering sequencing
error.

We generated simulation data using the scheme described
above but in addition, simulated sequencing in pools. We first
generated haplotypes as described above, but then pooled
case and control individuals separately into pools, with each
pool containing the haplotypes of h/2 individuals. Thus, each
pool contains h haplotypes. Coverage is spread among these
haplotypes. For example, in a pool containing DNA from five
diploid individuals (i.e., 10 haplotypes), coverage of g = 50
will yield ~50/10 = 5 reads of each base on each haplotype.
In other words, in these data, the number of observations
of a particular base on a particular haplotype is sampled
from a binomial distribution with p = 1/(h - 100,000) and
g - 100,000 trials.

Table 4 shows the effects of pooling and errors on sensi-
tivity on both methods. Both LRT and VST show high sen-
sitivity, even when pooling and sequencing errors are
present. Again, LRT outperformed VST in all tested scenar-
ios, but the difference is not substantial.
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Table 1 Power of different methods, on 1000 data sets and a region with 100 rare SNVs

Error rate Coverage per person C-alpha Freg-weight VT RWAS LRT_G VST LRT

0 4 0.062 0.659 0.872 0.668 0.817 0.973 0.975
10 0.062 0.713 0.903 0.688 0.854 0.98 0.99
20 0.067 0.722 0.903 0.692 0.858 0.987 0.988

0.01 4 0.051 0.174 0.208 0.269 0.286 0.634 0.745
10 0.066 0.479 0.674 0.610 0.71 0.965 0.972
20 0.067 0.686 0.887 0.690 0.848 0.988 0.993

Two error rates (0% and 1%) were considered with three different coverages (4, 10, and 20). Population attributable risk of the region was 0.02, with ¢; = 0.1 and
a significance threshold of 0.05. Tested methods were C-alpha (Neale et al. 2011), Freg-weight similar to the Madsen-Browning method (Madsen and Browning 2009),
variable threshold (VT) (Price et al. 2010), RWAS (Sul et al. 2011b), LRT_G (Sul et al. 2011a), and our proposed methods (VST and LRT).

To obtain a realistic characterization of the parameters
used in our simulations (i.e., error rate and pooling accu-
racy), and to assess the implications on study design under
budget constraints, we evaluated the characteristics of a real
data set taken from a case-control study of non-Hodgkin
lymphoma (L. Conde, I. Eskin, F. Hormozdiari, P. M. Bracci,
E. Halperin, and C. Skibola, unpublished data). We se-
quenced two pools, each containing a mixture of DNA from
fvie case individuals for whom GWAS data were available
(see Materials and Methods for details). We then measured
the coverage, pooling accuracy and error rate (see File S1).
Particularly, we found that the pooling was highly accurate
in terms of the number of reads coming from each sample,
that the average coverage was 44 per base, and that the
sequencing error rate was ~0.235%. This is consistent with
error rate reported in other sequencing studies (Minoche
et al. 2011; Hufford et al. 2012). We used these parameters
to simulate a full study, as described below.

Pooling-based studies offer a trade-off between the
introduction of uncertainty due to pooling and increased
sample size. It is unclear what would be an optimal study
design under a budget constraint. To explore this issue, we
simulated a rare variants disease association study with
realistic parameters, estimated from the study data. We
assumed the budget allowed for 80 runs of the sequencing
platform that produces reads at an average coverage of 44
per base per pool, with an error rate of 0.235%. We
considered study designs involving an equal number of case
and control pools. Figure 1 shows the expected power of
LRT with various pool sizes for different values of PAR on
two different data sets, where one data set has 20 SNVs in
a region with ¢; = 50% while the other data set has 100
SNVs with ¢; = 10%. The results show that the power

increases dramatically as we increase the pool size from pool
size 2 (80 cases and 80 controls) to pool size 20 (800 cases
and 800 controls). This suggests that for a given budget, it is
generally better to increase the number of individuals per
pool as a means of increasing the sample size and that this
outweighs the detrimental effects of pooling.

We note that the power of low-coverage sequencing
studies is always at least as high as the power of a pooling
study with the same number of samples and the same
coverage per sample. The results demonstrated in Figure 1
also suggest that for a given budget, it is generally better
to increase the number of individuals in the study and that
this outweighs the detrimental effects of low-coverage
sequencing.

LRT is robust to misspecified prior information

One of the drawbacks of the LRT statistic is that it uses prior
probabilities c; for a variant to be causal. Although one may
use bioinformatics tools such as PolyPhen (Adzhubei et al.
2010) or SIFT (Ng and Henikoff 2003) to estimate these
priors, prior information may not always be accurate; there-
fore it is important to assess the sensitivity of LRT to incor-
rect prior information. To do so, we tested the LRT method
with different prior information on the data that was gener-
ated using ¢; = 0.1, as described in Materials and Methods.
Specifically, we provided the LRT method with priors ¢; =
0.02, ¢; = 0.5, ¢; = 0.5, and ¢; sampled from the uniform
distribution U(0, 1). We used error rate e = 0.01, pool size
of 5, and coverage of 20. The power of LRT with the correct
prior information (c; = 0.1) is 0.987 (Table 4), while for the
three tested scenarios, the power was 0.965, 0.968, and
0.943, respectively. The results demonstrate that even if
prior information is incorrect, LRT still achieves high power,

Table 2 Power of different methods in a disease model in which only rare variants (MAF < 1%) are causal with relative risk of 5 (¢; = 0.2)

Error rate Coverage per person C-alpha Freg-weight VT RWAS LRT_G VST LRT
0 4 0.731 0.786 0.879 0.425 0.6 0.473 0.867
10 0.778 0.801 0.898 0.43 0.623 0.481 0.872
20 0.782 0.806 0.896 0.433 0.631 0.489 0.866
0.01 4 0.5 0.68 0.802 0.376 0.524 0.257 0.838
10 0.759 0.809 0.898 0.446 0.628 0.479 0.896
20 0.784 0.815 0.908 0.438 0.621 0.475 0.887

Tested methods were C-alpha (Neale et al. 2011), Freg-weight similar to the Madsen-Browning method (Madsen and Browning 2009), variable threshold (VT) (Price et al.
2010), RWAS (Sul et al. 2011b), LRT_G (Sul et al. 2011a), and our proposed methods (VST and LRT).
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Table 3 Power of different methods in a disease model in which 20% of causal variants are protective

Error rate Coverage per person C-alpha Freg-weight VT RWAS LRT_G VST LRT

0 4 0.054 0.417 0.653 0.471 0.646 0.456 0.956
10 0.069 0.46 0.712 0.472 0.689 0.506 0.987
20 0.07 0.473 0.713 0.478 0.699 0.515 0.99

0.01 4 0.053 0.14 0.164 0.17 0.191 0.222 0.685
10 0.066 0.304 0.468 0.376 0.495 0.425 0.955
20 0.06 0.458 0.673 0.465 0.67 0.491 0.976

PAR was 0.02 with ¢; = 0.1 Tested methods were C-alpha (Neale et al. 2011), Freg-weight similar to the Madsen-Browning method (Madsen and Browning 2009), variable
threshold (VT) (Price et al. 2010), RWAS (Sul et al. 2011b), LRT_G (Sul et al. 2011a), and our proposed methods (VST and LRT).

albeit lower than the power achieved by VST (0.981 in this
case).

VST and LRT control type I error rates

To measure type I error rates, we generated 10,000 random
data sets fitting the null hypothesis with a fixed read error
rate of 1% and coverage of 4 per person. We measured
the rate of spurious association detection at a confidence
threshold of 0.05 with VST and LRT. The detection rate was
in the range 0.0480-0.0513 for the two methods, showing
that type I error is well controlled. Similar results were ob-
served in the cases where pools of five samples each were
analyzed. We also measured the error rates at a more strin-
gent threshold of 0.001, using 100,000 random data sets
with an error rate of 1% and coverage of 4. The type I error
rates for LRT and VST were 0.00097 and 0.00088, respec-
tively, and this indicates that VST and LRT control the type I
error rates correctly at the stringent threshold.

Discussion

We proposed two new methods (VST and LRT) that identify
associations of groups of rare variants. We show through
simulations that our methods outperform previous methods
under different disease models. Importantly, unlike previous
methods that allow no errors in sequencing and require
high-coverage sequencing of individual samples, our meth-
ods can be applied to low-coverage sequencing with errors.
We demonstrate through simulations that in the presence of
high error rates and low coverage, the power improvement
of both LRT and VST over previous methods is substantial.
These simulations are based on a disease risk model where
rarer variants have higher effect sizes, and we also explored
additional disease risk models, often used in previous
methods. When only rare variants are causal with the same
effect size, the VT method has the greatest power because
the assumptions of the VT statistic are consistent with the
assumption of the disease model. However, LRT has
comparable power to that of VT in this model. When the
disease risk model contains protective variants, we show
that LRT is the most powerful method. We note that VST can
be easily modified to incorporate protective variants by
taking the square of its statistic and that the modified VST
achieves similar power to LRT when protective variants are
present (data not shown).

In addition to the simulated data, we used a real data set
from a study of non-Hodgkin lymphoma to obtain param-
eters related to the sequencing technology and pooling
strategy. We estimated coverage and error rates of sequenc-
ing, and we verified that pooling can be performed ac-
curately on a small number of samples (five in this case).
Our proposed methods can also be applied to the scenario in
which a large set of small pools is sequenced, and we used
the estimates of the sequencing error rates to simulate the
power of a pooled association study, when the number of
samples per pool varies (from 1 to 20), but the number of
pools is fixed. Based on our experiments, we believe that
sequencing-based association studies should include as
many individuals as possible by applying low-coverage
sequencing and pooling when necessary.

Whereas LRT is generally more powerful than VST in
most simulations, VST has several advantages over LRT.
Importantly, VST makes fewer assumptions on the model;
particularly it does not require prior information on the
probability of a variant to be causal, and when incorrect
prior information is specified, VST achieves higher power
than LRT. VST is also a natural extension of several previous
methods such as RWAS (Sul et al. 2011b), VT (Price et al
2010), and the Madsen-Browning test (Madsen and Browning
2009), which consider a weighted sum of differences in
mutation counts; therefore, understanding the relation be-
tween VST and LRT provides an insight on the relation be-
tween LRT and previous methods. Additionally, VST is

Table 4 Power with pooling and errors, on 1000 data sets
and a region with 100 rare SNVs

Error rate Pool size Coverage per person VST LRT
0 1 4 0.973 0.975
10 0.98 0.99
20 0.987 0.988
5 4 0.977 0.981
10 0.98 0.989
20 0.982 0.988
0.01 1 4 0.634  0.745
10 0.965 0.972
20 0.988 0.993
5 4 0.376 0.557
10 0.85 0.924
20 0.981 0.987

PAR of the region was 0.02, with ¢; = 0.1 and a significance threshold of 0.05.

Rare Variant Testing with Low Coverage 777



A 1.0
0.9 -
0.8
0.7 -
0.6
=
g
3 0.5
o
0.4
0.3
pool size 20 (800 cases/contrals)
0.2 pool size 10 (400 cases/controls)
pool size 5 (200 cases/controls)
0.1 - pool size 4 (160 cases/controls)
pool size 3 (120 cases/controls)
00 —&— pool size 2 (80 cases/controls)
T T T T T
0.01 0.03 0.05 0.07 0.1

Population Attributable Risk(PAR)

1.0

0.8 4

0.7 4

0.6

0.5 4

Power

0.3

0.1 —

0.0 —

T T T T T
0.01 0.03 0.05 0.07 0.1
Population Attributable Risk(PAR)

Figure 1 (A and B) Expected power with 80 sequencing runs as a function of the population attributable risk, for regions with 20 (A) or 100 (B) rare
SNVs. The 20-SNVs region has ¢; = 50% while the 100-SNVs region has ¢; = 10%. Sequencing error rate is 0.235%, and significance threshold is 0.05.

a simpler method than LRT, and it can be easily imple-
mented and modified, allowing a more flexible framework.

Our methods directly utilize allele counts from sequenc-
ing data to perform rare variants association testing, and an
alternative approach is to call genotypes from allele counts
and perform the testing. One may use a linkage disequilib-
rium aware method for genotype calling (Duitama et al.
2011) or methods based on sophisticated models to improve
the accuracy of calling. However, this approach has several
drawbacks. First, it is considerably computationally inten-
sive because aforementioned genotype calling methods gen-
erally require extensive computation. Second, in low-pass
sequencing, it is very difficult to call rare variants correctly
because of an insufficient number of reads covering rare
variants. Third, rare variants are not usually in linkage dis-
equilibrium (LD) with other variants, and hence the LD
aware method for genotype calling may not be very accurate
for calling rare variants. Hence, power loss may be inevita-
ble if methods attempt to call genotypes from low-pass se-
quencing and perform rare variants association testing. In
addition, we showed in our simulation that even when gen-
otypes are called correctly in the high-coverage scenario, our
methods are more powerful than other methods. This means
that even if other methods are able to correctly infer geno-
types from low-pass sequencing, our methods would be still
more powerful.
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FILE S1
MATERIALS AND METHODS

RELATIVE ABUNDANCE OF INDIVIDUALS’ DNA IN POOLS

The estimation of minor-allele frequency assumes knowledge of the relative abundance of each
individual’s DNA in each pool (implicitly or explicitly). It is therefore important to have a means of
estimating these relative abundances. To do this, we took advantage of the genotype data available
from the GWAS. In each pool, we selected SNVs that had a genotyping success rate of 100%
in the GWAS, which were unambiguously mapped to the genome (using the Varietas portal by
(PAANANEN, C1SZEK and WONG 2010); the reference genome used was GRCh37) and that were
observed in at least 30 reads during sequencing. Furthermore, we required that no indels were
found at these sites during the alignment phase. 298,853 such SNVs were available for men, and
298,703 for women. At such SNVs, the proportion of major allele reads out of total reads is
expected to correspond to the number of major alleles carried by individuals in the pool, adjusted
for the individuals” DNA’s relative abundance in the pool. We found the least-squares estimators
of the relative abundances in the following manner: in a pool with 1* /2 individuals and data for m
SNVs, let A be the m x h* /2 matrix corresponding to the minor allele counts times 1/2, so that
A;; = 0,0.5 or 1 if individual j carries 0, 1 or 2 copies of the minor allele of SNV ¢, respectively.
Let z be an h* /2 x 1 column vector of relative abundances, so x; equals the relative abundance
of individual 7 in the pool. Lastly, let b be the m x 1 column vector of the observed minor allele
frequencies in the pool, so that b; equal the proportion of minor alleles read out of total reads of
SNV i. The least-squares estimator of the relative abundances vector x is found by solving the

following optimization problem:
: 1 2
arg min §\|Ax—b||2

hk /2 (D
subject to ngigl,izl,...,hk/Q inzl
=1
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Using the 1sglin function in MATLAB, we found the least-squares estimators of relative abun-
dances listed in table 1. In both the men and women pools, relative abundances were generally

similar, though not exactly equal.

Individual | Males Pool | Females Pool
1 0.1684 0.1664
2 0.2148 0.2055
3 0.2066 0.2012
4 0.2039 0.2220
5 0.2062 0.2049

Table 1: Relative abundances in pools of individuals’ DNA.

ESTIMATION OF SEQUENCING ERROR RATE

To estimate the read error rate of the sequencing platform, we leveraged the GWAS data. We
selected a set of 18,163 SN'Vs in the pool of men (and 16222 in the pool of women) for which the
genotype minor allele counts are O for all five individuals in the GWAS, and which had at least
50 sequencing reads. We interrogated the proportion of minor alleles out of total alleles read at
each such position. For a SNV which was correctly genotyped, this proportion is approximately 0,
occasionally with small deviations produced by sequencing error. We discarded 88 SNVs in men
(68 in women) which had a proportion > 0.05, as we suspect they might represent genotyping
errors. At the remaining SNVs, 2489 of the 1084400 reads in men were minor allele (2203 out of
912938 in women). We thus estimated the sequencing error rate to be 0.229% per base per read
in the men’s pool and 0.241% in the women’s pool, assuming a simplistic error model in which
the rate of error is fixed across pools and independent of the position along the read and of the
nucleotide being read. It should be noted that in a more realistic error model of high-throughput

sequencing platforms, error rates do potentially depend on these factors.
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ESTIMATION OF MINOR ALLELE FREQUENCY FROM SEQUENCING

DATA WITH ERRORS

The methods presented in this work rely on the estimated minor allele frequencies from sequenc-
ing data. To estimate these frequencies, we use a maximum likelihood approach with a sim-
ple error model. Note that more sophisticated models are possible, using error patterns spe-
cific to the sequencing platform, for example (e.g., (DEPRISTO, BANKS, POPLIN, GARIMELLA,
MAGUIRE et al. 2011; BANSAL 2010; MCKENNA, HANNA, BANKS, SIVACHENKO, CIBULSKIS
et al. 2010)). If necessary, such models can be readily substituted for the one presented in this
section.

Consider a set of P pools, each containing a mixture of DNA from several individuals (in
the case of low coverage sequencing without pooling, the size of each pool is 1). Let h* denote
the number of haplotypes in pool & (thus, pool k contains DNA from h* /2 individuals), and let
«; denote the relative abundance of individual 7’s haplotypes in the pool, so that Zif a; =1
(the relative abundances are assumed to be known, and a method to estimate them is described
above). The pools undergo sequencing, generating observations of the minor and major alleles at
each genomic position. Our goal is to estimate p, the minor allele frequency across all pools, for
each genomic position.

Let e be the known (or estimated) error rate of the sequencing platform, and for pool % let 2*
be the observed counts of the minor allele, y* the observed counts of the major allele, and 2k =
2* 4+ y*. For individual i in pool £, let tf be the number of 7’s chromosomes that carry the minor
allele, so that t¥ € {0, 1,2}. Finally, let #* denote the minor allele count vector (¢}, ..., ¥, 1) To
estimate p, we observe that ¥ ~ B(2, p), and that

hk /2 hk /2

Pr(t* | p) = H Pr(tf | p) =[]

i=1

2 k k
( )pti (1—p)* ™" (2)

ty

Furthermore, when reading a single base from a pool k with the minor allele vector ¥, the chance
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to observe a minor allele, denoted by f*(£*) is

Rk /2 i Rk /2

s t; (2—1F)
e (1—6)2%5—%62% 3)

, , 2
=1 i=1

(to see this, note that we observe a minor allele if we either sample and read a minor allele without
error or sample and read a major allele with error). Therefore x*, the observed minor allele count

in pool k, follows a Binomial distribution:
z* ~ B2, f* (%)) 4)
The likelihood of p for a particular pool £ is then:

L(p;z*,y*) = Pr(="y"|p)

— Z Pr(z* | 2%, &) - Pr(t* | p)

Fe{0,1,2}0%/2
Sk hk /2
S R (M8 e A (M i
oe{0,1,2}1/2 S
And the full likelihood function is simply the product of the above across all P pools. Note that
we can write af, = (;Z) (f*#)=" (1 — f*(i*))*" =", and then the likelihood function is

hk /2

L{p; ,7) H > ai%H(tk) (1 - p)> (©)

k= 1%6{07172}}1’9/2 =1
in which aif,c does not depend on p, and can therefore be pre-calculated to speed up calculations.

We also denote

hk /2 hF /2
Sp &Yt and In £ [th € {2,0} (7)
i=1 =1
(so that I is the count of t¥’s which equal 2 or 0), and note that
Rk /2 9
k _+k k_
IT ()01 o =gt = s ®
i=1 N\

To find the value of p which maximizes L, we calculate the natural logarithm of the likelihood

function, and take its first derivative:

L inL(p: 7, ) = i S p 2P (1~ p) I (S — ) ©)
P k=1 > aifk 21w pSiv (1 — p)hkfsgk
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It is easy to verify that the likelihood is a concave function of p, and therefore its maximal value

can be found using various optimization procedures.

LITERATURE CITED

BANSAL, V., 2010 A statistical method for the detection of variants from next-generation rese-
quencing of dna pools. Bioinformatics 26: i318-24.

DEPRISTO, M. A., E. BANKS, R. POPLIN, K. V. GARIMELLA, J. R. MAGUIRE, ef al., 2011 A
framework for variation discovery and genotyping using next-generation dna sequencing data.
Nat Genet 43: 491-8.

MCKENNA, A., M. HANNA, E. BANKS, A. SIVACHENKO, K. CIBULSKIS, ef al., 2010 The
genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing
data. Genome Res 20: 1297-303.

PAANANEN, J., R. CISZEK, and G. WONG, 2010 Varietas: a functional variation database portal.

Database (Oxford) 2010: baq016.

6 SI O. Navon et al.



