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ABSTRACT Assessing genome-wide statistical significance is an important issue in genetic studies. We describe a new resampling
approach for determining the appropriate thresholds for statistical significance. Our simulation results demonstrate that the proposed
approach accurately controls the genome-wide type I error rate even under the large p small n situations.

QUANTITATIVE trait loci (QTL) mapping plays an impor-
tant role in understanding the genetic variations in

experimental crosses. A critical issue concerns assessing
the genome-wide significance (GWS), since statistical tests
are performed at many putative loci. Analytic methods to
determine GWS have been investigated by several authors
including Lander and Kruglyak (1995) and Zou et al. (2004)
and these involve specific assumptions on the experimental
design and genetic map density. Churchill and Doerge
(1994) proposed a permutation test to address these issues.
However, their method is computationally intensive due to
repeated analyses of the permuted data sets, and its validity
relies on the assumption of complete exchangeability under
the null hypothesis, which can frequently be violated (see,
for instance, Manichaikul et al. 2007).

To overcome the limitations of the permutation methods,
Zou et al. (2004) proposed a resampling procedure requir-
ing one analysis of the data set only, thereby reducing the
computational complexity. In this note, we propose a further
modification of the resampling approach of Zou et al. (2004)
to improve the power of the tests while retaining the same
computational complexity.

We begin by considering n independent subjects from an
experimental cross and statistical testing at p putative loci.
Let bj be a vector of the genetic effects at the jth location
and H0: b1 = . . . = bp = 0 denote the null hypothesis of no
genetic effects at all loci. It is well known that given a sta-

tistical model, the likelihood-ratio test for testing the hy-
pothesis H0j: bj = 0 can be approximated by the score
statistic

Wj ¼ UT
j V

21
j Uj;

where Uj ¼
Pn

i¼1Uij, Vj ¼
Pn

i¼1UijUT
ij , and Uij is the efficient

score from the ith subject, defined to be the projection of the
score function for bj on the orthocomplement space of the
score functions for nuisance parameters (Bickel et al. 1993,
p. 30). The test statistic for testing H0 is max1#j#p Wj, whose
null distribution can be approximated by the resampling
algorithm of Zou et al. (2004) given below. Theoretical jus-
tification for this approximation can be provided along the
line of Kuelbs and Vidyashankar (2010). The resampling
algorithm for determining the threshold at GWS level a

(Zou et al. 2004) follows:

We modify the above algorithm by generating
GiðkÞ �i:i:d:2 ·Bernoullið0:5Þ2 1; i.e., Gi(k)’s are i.i.d. from
the Rademacher distribution, since the error in approximat-
ing the distribution of the score statistic is of the order n23/2

when using Rademacher weights (RW) while it is 3n23/2 for
N(0, 1) weights. This distribution is commonly used in the

k = 0
repeat
k ) k + 1
GiðkÞ �i:i:d:Nð0;1Þ;  i ¼ 1;⋯; n
U*
j ðkÞ ¼

Pn
i¼1UijGiðkÞ; W*

j ðkÞ ¼ U*T
j ðkÞV21

j U*
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W⋆ðkÞ ¼ max1# j#pW⋆
j ðkÞ

untilk $ B
Calculate the 100(1 2 a)th percentile of {W⋆(1), . . .,

W⋆(B)}
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multiplier bootstrap literature (Praestgaard 1990), econo-
metrics, and learning theory (Bartlett and Mendelson
2003; Koltchinskii and Panchenko 2000) and measures
how well correlated the most-correlated hypothesis is to
a random labeling of the efficient scores.

We conducted simulation studies to study the effect of
using RW with sample of sizes 50 and 100 and genetic maps
of 1, 10, and 20 chromosomes. Each chromosome has
a length of 100 cM and 100 equally spaced markers. We
use the function sim.cross in R/qtl (Broman et al. 2003) to
generate the genotype data. Under H0, we generate the
quantitative traits from N(0, 1) while under H1, we generate
from N(m, 1), m 2 [0.2, 1.0], representing an additive effect
at 35 cM on chromosome one.

Figure 1 presents the thresholds for the single-marker
analysis at the GWS level of 0.05 and 0.01 and compares
them to both the empirical thresholds and that of Zou et al.
(2004) based on 10,000 replicates and B = 10, 000 in the
algorithm. When n = p, the thresholds based on both meth-
ods match the empirical thresholds, under both H0 and H1

(data not presented under H1). When n is small and ,p, the
thresholds using RW still match the empirical thresholds,
whereas the thresholds from Zou et al. (2004) are overesti-

mated. The standard errors of the thresholds were also cal-
culated using the function quantileSE in the R package
broman (detailed results are presented in supporting infor-
mation, File S1). Figure 2 presents the sizes and powers of
the two resampling approaches. The proposed approach has
type I error rates close to the nominal level under all situa-
tions and is substantially more powerful than Zou et al.
(2004) under the large p small n scenarios.

In summary, we proposed a new resampling approach for
assessing GWS in QTL mapping. This new approach retains
all the attractive features of the resampling approach of Zou
et al. (2004) and outperforms it under the large p small n
situation. Additional simulation studies with n = 500 and
P = 2000 showed that the two methods yielded similar
results (detailed results are presented in File S1).
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Figure 1 Thresholds at the targeted GWS levels of a. The solid, dashed, and dotted curves correspond to the average thresholds based on the proposed
method and the method of Zou et al. (2004) from 10,000 simulated data sets and the empirical thresholds based on 10,000 simulated data sets under
the null hypothesis, respectively.
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Figure 2 Sizes/powers(%) at nominal GWS level of a. The black and blue curves correspond to sizes/powers from the proposed method and the
method of Zou et al. (2004), respectively. The solid, dashed, and dotted curves correspond to the sizes/powers under the scenarios when p = 100, 1000,
and 2000, respectively.
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Additional Simulation Studies

GWAS study with SNP data

We conducted additional simulation studies to evaluate the performance of the proposed method

for genome-wide association studies with single nucleotide polymorphisms (SNPs) data. We con-

sidered a study that scans 10 independent genome regions with 200 biallelic SNPs in each region.

For each SNP, we assume Hardy-Weinberg equilibrium and set the minor allele frequency to be 0.4.

Within each genome region, the linkage disequilibrium (LD) between successive two loci varied

from 0 to 0.18. Under the null hypothesis, we generated the quantitative traits from a standard nor-

mal distribution; under the alternative hypothesis, we assume that the 35th SNP in genome region

1 has an additive effect. The effect sizes were set to be 1.2 and 0.8 for sample sizes of 50 and 100,

respectively. The number of resamples B was set to be 2,000.

Figure 1 presents the sizes and powers of the two resampling approaches at genome-wide sig-

nificance (GWS) level of 0.05 and 0.01 based on 10,000 replicates. Under all scenarios, the method

of our paper has type I error rate close to the nominal level while the approach of ZOU et al. (2004)

tends to be conservative especially for n = 50 and significance level of 0.01. The proposed method

substantially improves the power of the test over that of ZOU et al. (2004). For example, with
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Figure 1: Sizes/powers(%) at nominal genome-wide significance level of 0.05 and 0.01. The black
solid and black dashed curves correspond to the sizes/powers of the proposed method at significance
levels of 0.05 and 0.01, respectively. The blue solid and blue dashed curves correspond to the
sizes/powers of the method of ZOU et al. (2004) at significance levels of 0.05 and 0.01, respectively.
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n = 50 and a LD of 0.18, the powers were 77.73% and 52.49% at significance levels of 0.05 and

0.01, respectively, compared to 36.37% and 3.04% of ZOU et al. (2004).

Simulation studies forn = 500

We have conducted additional simulation studies for the case of n = 500 andp = 100, 1000,

and 2000. Table 1 in the Supplementary Materials presents the sizes and powers of the proposed

method and the resampling approach of ZOU et al. (2004). These two methods yielded similar

results. The reason for this is that whenn is large andp is not much larger thann, the asymptotic

theory takes effect. It would be desirable to conduct simulation studies to compare the two methods

under the scenario ofp ≫ n for largen. While it is feasible to analyze a real data set with both

largen and largep, it is computationally prohibitive to conduct simulation studies given the current

computing technology.

TABLE 1

Sizes/powers(%) at nominal genome-wide significance levelof α with n = 500

Setup Proposedc ZOU et al. (2004)d

pa µb α = 0.05 α = 0.01 α = 0.05 α = 0.01

100 0.0 4.80 0.96 4.78 0.90

0.2 73.99 50.88 73.66 50.04

1000 0.0 4.74 1.08 4.43 0.95

0.2 44.95 25.73 43.88 24.13

2000 0.0 5.06 1.08 4.59 0.88

0.2 37.21 20.32 35.76 18.64

a Total number of markers.

b Additive effect.

c Sizes/powers based on the proposed resampling method.

d Sizes/powers based on the resampling method of ZOU et al. (2004).
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Computation of the standard error estimates

For the simulations described in the main manuscript, we also computed the standard error

estimates on the thresholds by using the functionquantileSE in the R packagebroman, which

implements the method described in COX and HINKLEY (1974). The average of the standard

error estimates based on the proposed method agree well withthe standard error estimates of the

empirical thresholds, obtained from 10,000 replicates under the null hypothesis. For example, for

n = 50, p = 100, andα = 0.05, the empirical threshold was 7.33 (SE=0.071) and the average of

the proposed threshold was 7.25 and the average of the standard error estimates was 0.071.
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