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† Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet
Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems.
A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cas-
cading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple path-
ways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural
systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this
reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agri-
cultural systems.
† Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage
and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitri-
fication by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’
(BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification
pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory
activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly
regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses.
Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses,
wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural
systems. A fundamental shift towards ammonium (NH4

+)-dominated agricultural systems could be achieved by
using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspec-
tive, the BNI function in plants could potentially have a large influence on biogeochemical cycling and closure of
the N loop in crop–livestock systems.

Key words: AMO, ammonia mono-oxygenase, biological nitrification inhibition, BNI, BNI capacity,
brachialactone, fatty acids, HAO, hydroxylamine oxidoreductase, high-nitrifying production systems, low-
nitrifying production systems, nitrification, Nitrosomonas, nitrate leaching, synthetic nitrification inhibitors,
nitrous oxide emissions, sustainability.

INTRODUCTION

The biological oxidation of ammonium (NH4
+) to nitrate

(NO3
2), a critical aerobic process, termed ‘nitrification’,

evolved about 2.5 billion years ago (Berner, 2006). It is
carried out by two groups of chemo-lithotrophic bacteria –
ammonia-oxidizing bacteria (AOB; mainly Nitrosomonas
spp. and Nitrobacter spp.) and ammonia-oxidizing archaea
(AOA), that are ubiquitous components of the soil microbial
population (Leninger et al., 2006; Taylor et al., 2010). In
most agricultural soils, AOB and AOA are largely responsible
for nitrification. Other soil bacterial spp. such as Nitrosocystus
and Nitrosospira, and some heterotrophic fungi such as

Aspergillus flavus, can play a significant role in the nitrification
of selected forest ecosystems (Sommer et al., 1976). Inorganic
N forms, i.e. NH4

+ or NO3
2, are predominantly the major

source of nitrogen (N) uptake in agricultural systems. In some
N-limited natural ecosystems of the Arctic, however, organic
N forms, particularly free amino acids, can be absorbed directly
by plant roots (Kielland, 2001). Nitrification and subsequent de-
nitrification that reduce nitrate are critical parts of the processes
used for removing excess N from organic wastes and aquatic
ecosystems. Conversely, in agricultural systems, rapid and un-
regulated nitrification results in inefficient N use by crops,
leading to increased N leakage and environmental pollution
(Clark, 1962; Likens et al., 1969; Schlesinger, 2009). Most
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plants have the ability to use either NH4
+ or NO3

2 as their N
source, and thus are not dependent solely on NO3

2 (Haynes
and Goh, 1978; Salsac et al., 1987; Boudsocq et al., 2012).
Consequently, reducing nitrification rates in agricultural
systems does not alter the intrinsic ability of plants to absorb
N, but increases N retention time in the root zone as NH4

+ is
much less mobile than NO3

2, providing additional time for
the plants to absorb N. This in turn reduces the amount of N
lost through leaching and denitrification (Hodge et al., 2000;
Subbarao et al., 2012a).

Nitrogen cycle in intensified agricultural systems

Nitrogen fixation, organic matter (OM) mineralization,
ammonification, nitrification and denitrification are all import-
ant components of the soil N cycle in terrestrial ecosystems;
however, their relative importance may vary. To limit N
leakage, natural ecosystems exploit these multiple pathways
to regulate N flows through the suppression of nitrification
and by utilizing various N forms (both organic and inorganic
forms) as N sources, restricting N flow through the nitrification
path (Hari and Kulmala, 2008; Smolander et al., 2012). In con-
trast, nitrification is the process that dominates the N cycle in
typical agricultural systems (i.e. neutral upland aerobic soils;
Fig. 1), and NO3

2 accounts for .95 % of the total N uptake
by crop plants, making N cycling in these systems inefficient
and extremely leaky to the environment (Fig. 1; Sahrawat,
1982; Galloway et al., 2008; Schlesinger, 2009).

High-nitrifying agricultural systems impact the global
environment

The Green Revolution, largely based on the use of massive
amounts of industrially fixed N for semi-dwarf rice and wheat
cultivars, quadrupled global food grain production during
1960–2009, but at a large environmental cost (Broadbent
and Rauschkolb, 1977; Matson et al., 1999; Tilman et al.,
2001, 2002; Hungate et al., 2003; Sutton et al., 2011).
Worldwide, chemical fertilizer consumption has increased
4-fold during the last 50 years (FAO, 2011). The high-
nitrifying nature of these intensive production systems results
in loss of nearly 70 % of the overall N-fertilizer inputs
(Peterjohn and Schlesinger, 1990; Raun and Johnson, 1999;
Vitousek and Howarath, 1991). With the worldwide
N-fertilizer applications reaching 150 Tg year21 (Galloway
et al., 2008) and the cost of urea N ranging recently from
US$0.80 to 0.54 kg21 N, the direct annual economic loss is
estimated at nearly US$81 billion (Subbarao et al., 2012a).
Fertilizer N use is expected to double by 2050 to reach close
to 300 Tg year21 (Galloway et al., 2008; Schlesinger, 2009).
This will further increase N leakage from agricultural
systems, placing an even greater pollution load on the environ-
ment (Ju et al., 2009; Schlesinger, 2009; Tilman et al., 2001).
The loss of NO3

2 from the root zone and NO3
2 contamination

of ground and surface waters are major environmental con-
cerns associated with nitrification (Tilman et al., 2001;
Galloway et al., 2008; Schlesinger, 2009). Current estimates
indicate that N lost by NO3

2 leaching from agricultural
systems could reach 61.5 Tg N year21 by 2050 (Schlesinger,
2009). Globally, agricultural systems contribute almost 30 %

of nitric oxide (NO) and 70 % of N2O atmospheric emissions
(Bremner and Blackmer, 1978; Smith et al., 1997, 2007;
Hofstra and Bouwman, 2005). N2O is a powerful greenhouse
gas having a GWP (global warming potential) 300 times
greater than that of CO2 (Kroeze, 1994; IPCC, 2007), while
the Earth’s protective ozone layer is damaged by NOs that
reach the stratosphere (Crutzen and Ehhalt, 1977). Current esti-
mates indicate that nearly 17 Tg N year21 is emitted into the
atmosphere as N2O (Galloway et al., 2008; Schlesinger,
2009). By 2100, the global N2O emissions are projected to
be four times greater than the current estimations, due
largely to an increase in the use of N-fertilizers (Hofstra and
Bouwman, 2005; Galloway et al., 2008; Burney et al., 2010;
Kahrl et al., 2010).

Greenhouse gas (GHG) emissions (CO2, N2O and CH4)
associated with N-fertilizer production

Nitrogen-fertilizers are largely responsible for N2O emis-
sions in agricultural systems when they undergo nitrification/
denitrification, as described earlier. In addition, substantial
amounts of GHGs (eg. CO2, N2O and CH4) are emitted
during the production of N-fertilizers, which can be expressed
as CO2 equivalents per unit mass of fertilizer (g CO2-e kg21

N-fertilizer) based on their GWP (IPCC, 1996). Synthesis of
ammonia is a very energy-intensive process, and requires
about 25–35 GJ t21 of ammonia (Patyk, 1996; Kongshaug,
1998; Davis and Haglund, 1999). In addition, the production
of nitric acid from ammonia, the feedstock for synthesis of
complex N-fertilizers (such as NPK formulations), results in
large-scale N2O emissions (IPCC, 2012). This emission
factor is about 4 kg CO2-e kg21 urea N and about 10 kg
CO2-e kg21 N in complex fertilizers (i.e. NPK; Kuesters and
Jenssen, 1998; Davis and Haglund, 1999; Kramer et al.,
1999). With the current levels of annual N-fertilizer applica-
tion in agriculture (i.e. 150 Tg-N), this amounts to GHG emis-
sions of 600–1500 Tg CO2-e associated with global
N-fertilizer production (excluding GHG emissions during
transportation of N-fertilizers from factory to farm). These
GHG emissions are similar in magnitude to annual CO2-e
emissions from motor vehicles, which are at 900 Tg CO2-e
(Schafer and Victor, 1999; DeCicco and Fung, 2006). By the
year 2050, GHG emissions from global N-fertilizer production
will reach 1200–3000 Tg CO2-e (based on current estimates
that N-fertilizer usage will reach 300 Tg by 2050; Galloway
et al., 2008; Schlesinger, 2009). Currently, global CO2 emis-
sions are at 34 000 Tg CO2-e (IPCC, 2012) and GHG emis-
sions from N-fertilizer production currently accounts for
about 2–4 % of global CO2 emissions.

Switching to low-nitrifying agricultural systems?

Nitrification plays a relatively minor role in many natural
climax plant communities where only a small portion of the
total N goes through the nitrification pathway (Rice and
Pancholy, 1972, 1973, 1974; White, 1991; Nasholm et al.,
1998; Paavolainen et al., 1998). In contrast, .90 % of the
total N flow is through the nitrification pathway in most agri-
cultural systems (Fig. 1; Sahrawat, 1982; Vitousek et al.,
1997; Smolander et al., 1998; Subbarao et al., 2006a). Most
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modern agricultural systems have become high-nitrifying
environments where nitrification is so rapid that most of the
NH4

+ that enters either from OM mineralization or from exter-
nal N inputs (i.e. chemical N-fertilizer such as urea) is nitrified
within a few weeks (often ,2 weeks), making it vulnerable to
loss through either leaching or denitrification (Sahrawat, 2008;
Subbarao et al., 2012a).

Several changes in agricultural management practices
during the 20th century have led to high-nitrifying agronomic
environments. Current production systems depend heavily on
industrially fixed N (i.e. N-fertilizer), and they have replaced
the earlier production systems that relied primarily on
N2-fixing legumes and/or animal wastes as their N sources
(Dinnes et al., 2002; Foley et al., 2005). The separation of
crop production from animal production has led to an even
greater dependence on mineral N-fertilizers, bypassing classic-
al agricultural systems for OM recycling. This has also resulted
in the reduction of soil OM (SOM) levels in agricultural
systems worldwide (Elliott, 1986; Ross, 1993; Tiessen et al.,
1994; Celik, 2005; Foley et al., 2005; van Wesemael et al.,
2010). The heavy dependence of modern agriculture on
mineral N-fertilizers has contributed to the stimulation of nitri-
fier activity and the development of high-nitrifying soil envir-
onments (Poudel et al., 2002; Bellamy et al., 2005). In
addition, installation of sub-surface drainage systems has
further accelerated N losses from NO3

2 leaching and denitrifi-
cation, leading to further declines in N-use efficiency (NUE;
Clark, 1962; Pratt and Adriano, 1973; Dinnes et al., 2002).

As a cation, NH4
+ is held electrostatically by negatively

charged clay surfaces and functional groups of the SOM
(Sahrawat, 1989). This bonding is sufficiently strong to

reduce the leaching loss of NH4
+ N. In contrast, NO3

2, with
its negative charge, does not readily bond to the soil, and is
much more liable to be leached out of the root zone. Several
heterotrophic soil bacteria denitrify NO3

2 under anaerobic or
partially anaerobic conditions. This often coincides with tem-
porary water logging of a soil after a heavy rainfall or irriga-
tion in fields that have improper drainage (Bremner and
Blackmer, 1978; Mosier et al., 1996). The N loss during and
following nitrification reduces the effectiveness of N fertiliza-
tion and at the same time causes serious N pollution (Clark,
1962; Jarvis, 1996).

Rapid conversion of NH4
+ to NO3

2 in the soil results in inef-
ficient use of both soil N and applied N, and, as soil organic N
is also subject to nitrification, this makes it liable to N loss by
the same pathways as fertilizer N (Clark, 1962; Barker and
Mills, 1980; Dinnes et al., 2002). In addition, the assimilation
of NH4

+ is energetically more efficient than that of NO3
2

(20 mol of ATP per mol of NO3
2 vs. 5 mol of ATP per mol

of NH4
+; Salsac et al., 1987). Moreover, assimilation of

NO3
2, but not of NH4

+, results in the direct emission of N2O
from crop canopies, further reducing NUE (Smart and
Bloom, 2001). Maintaining soil N in the NH4

+ form thus is
advantageous even after taking into consideration the potential
negative effects of rhizosphere acidification from its uptake
and assimilation (caused by H+ excretion; Britto et al.,
2001). Also, by slowing the soil nitrification rates, NH4

+ can
move into the microbial pool where it becomes a slow-release
N source (Vitousek and Matson, 1984; Hodge et al., 2000).
Better utilization of NH4

+ also depends on the N preference
of plant species or cultivars. Many of these advantages asso-
ciated with inhibiting nitrification in improving crop yield,
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grain quality and environmental quality have been demon-
strated using chemical inhibitors (Huber et al., 1977;
Slangen and Kerkhoff, 1984; Sahrawat, 1989; Subbarao
et al., 2012a).

Options for nitrification control

Various N management strategies have been developed both
to synchronize fertilizer N application with crop requirements
to facilitate rapid uptake and to reduce N residence time in
soil, thereby limiting losses associated with leaching and de-
nitrification of NO3

2 (Newbould, 1989; Dinnes et al., 2002).
There are a number of agronomic strategies involving rates
and/or timing of fertilizer application (such as autumn vs.
spring, basal vs. broadcast, deep vs. surface applications,
point injection placement of solutions, foliar applications of
urea) that have been used to minimize N losses from agricul-
tural systems, with varying degrees of success in production
agriculture. Often these agronomic strategies have intrinsic
limitations such as additional labour requirements/costs that
make them less desirable to adopt (Dinnes et al., 2002). In
addition, specialty fertilizers with controlled N release in the
soil such as polythene-coated urea (PCU) have been demon-
strated to reduce nitrification (Shaviv and Mikkelsen, 1993;
Zvomuya et al., 2003). Such specialty fertilizers can be used
more effectively, and the rate of N application can be
reduced up to 40 % without yield loss (Shoji and Kanno,
1994); however, these fertilizers are nearly 8-fold more expen-
sive than normal urea, and thus have not been widely adopted
in production agriculture.

Use of synthetic chemical inhibitors. Nitrification inhibitors
(NIs) are compounds that delay the bacterial oxidation of
NH4

+ by suppressing nitrifying soil bacteria, which should
improve NUE (Hendrickson et al., 1978; Bremner et al.,
1981; Rodgers, 1986). Reducing nitrification rates during the
initial crop establishment phase and increasing it during the
rapid growing phase will reduce the risk of NO3

2 leaching
from the rooting zone (Dinnes et al., 2002; Liao et al.,
2004). Though several NIs have been proposed for use in pro-
duction agriculture, only a few compounds, including nitra-
pyrin, DCD (dicyandiamide) and DMPP (3, 4-dimethyl
pyrazole phosphate), have reached the agronomic evaluation
stage (Guthrie and Bomke, 1980; Weiske et al., 2001;
Zerulla et al., 2001; Subbarao et al., 2006a, 2012a).
Nitrapyrin has been adopted for certain niche production
systems such as winter wheat in North America. However,
NIs are not widely used in production agriculture due to
their limited biological stability, the non-availability of tech-
nology to deliver them to the sites of nitrification (due to dif-
ferences in mobility of NIs and fertilizer N) and, equally
important, their lack of cost-effectiveness (Sahrawat and
Keeney, 1985; Subbarao et al., 2012a).

In the field, the effects of NIs are most likely to be greater on
soils which are N rich and where the N losses due to leaching
and denitrification are large. However, the expression of these
effects through plant growth will depend on the soil N status,
as limiting N losses on N-rich soils may have little effect on
plant production. To determine the effectiveness of NIs, it is
therefore important also to take into account other soil

(texture, temperature, moisture content, OM content and pH)
and climatic (temperature, rainfall intensity and frequency)
parameters impacting the size of N losses. In particular, OM
also releases NH4

+ through mineralization, which goes
through nitrification in the same way as does fertilizer N; tar-
geting such OM-derived NH4

+ for NIs could be even more
challenging as this OM-derived NH4

+ could be evenly distrib-
uted in the soil profile unlike fertilizer N (which is normally
banded close to plant roots).

Lessons from natural systems for managing nitrification
in agricultural systems

Unlike most agricultural systems, the climax ecosystems
retain large amounts of N through its incorporation into
SOM (immobilization), but the underlying mechanisms
remain poorly understood (Jordan et al., 1979; Magill et al.,
2000). Natural ecosystems have evolved a range of mechan-
isms allowing multiple pathways for N uptake and conserva-
tion (by closing the cycle; Vitousek and Matson, 1984; Hari
and Kulmala, 2008; Smolander et al., 2012). They include
direct uptake of organic N by plants (essentially short-
circuiting mineralization) and suppressing nitrification to fa-
cilitate NH4

+ uptake (Cooper, 1986; White, 1991; Steltzer
and Bowman, 1998; Kielland, 2001; Weigelt et al., 2005;
Barot et al., 2007; Harrison et al., 2007; Houlton et al.,
2007; Aanderud and Bledsoe, 2009; Hewins and Hyatt,
2009; Ashton et al., 2010; Smolander et al., 2012). For
example, in certain pine forest systems, polyphenols released
from leaf litter form complexes with dissolved organic N
(DON; Baldwin et al., 1983), and DON–polyphenol com-
plexes resist mineralization, but can be taken up by certain
ecto-mycorrhizae (that colonize pine root systems), where it
is mineralized and supplied to the pine host, thereby tightly
regulating the N flow within these ecosystems without much
N loss (Northup et al., 1995; Smolander et al., 2012).

Researchers have observed substantial differences in soil
nitrification potential among several ecosystems that are not
associated with soil physical and chemical characteristics
(Clark et al., 1960; Robertson et al., 1982a, b; Montagnini
et al., 1989; Steltzer and Bowman, 1998; Lata et al., 2004).
Often the levels of NH4

+ exceed NO3
2 levels by a factor of

ten, indicating that the availability of NH4
+ is not the limiting

factor for nitrification (Schimel and Bennett, 2004). The influ-
ence of vegetation in inhibiting nitrification has long been sus-
pected, but not directly proven (Basaraba, 1964; Bate, 1981;
Donaldson and Henderson, 1990a, b; Erickson et al., 2000;
Smits et al., 2010a, b; Smolander et al., 2012). Certain
forest trees, such as Arbutus unedo, have been reported to sup-
press soil nitrification and N2O emissions by releasing galloca-
techin and catechin during the decomposition of leaf litter
(Castaldi et al., 2009).

Since NH4
+ assimilation in plants requires a quarter as much

metabolic energy as that of NO3
2, it is hypothesized that inhib-

ition of nitrification could be an ecological driving force for
the development of low-nitrifying climax ecosystems (Rice
and Pancholy, 1972; Salsac et al., 1987; Lata et al., 2004).
Slow rates of nitrification have been observed in several trop-
ical grassland and forest ecosystems, and are often considered
to be an indicator of ecosystem maturity (Vitousek and
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Matson, 1984; Cooper, 1986; Sylvester-Bradley et al., 1988;
Lata et al., 1999; Ishikawa et al., 2003; Castaldi et al., 2009;
Smits et al., 2010a, b; Smolander et al., 2012). This led to
the hypothesis that plants may influence nitrification by releas-
ing certain phytochemicals that interfere with the activity of
soil nitrifiers (Subbarao et al., 2006a, 2012a; Fillery, 2007).

The hypothesis that plants can suppress or stimulate nitrifi-
cation has been debated since the 1960s, and experimental evi-
dence has proved elusive due to the lack of a suitable
methodology to detect and assess any inhibitory activity of
roots unequivocally (Munro, 1966a, b; Meiklejohn, 1968;
Moore and Waid, 1971; Purchase, 1974; Rice and Pancholy,
1974; Lodhi, 1979, 1982; Sylvester-Bradley et al., 1988;
Stienstra et al., 1994; Lata et al., 1999, 2004; Fillery, 2007;
Smits et al., 2010a, b). By controlling nitrification, plants
could increase N availability for their own survival in
N-limiting environments (Hodge et al., 2000; Weigelt et al.,
2005; Hewins and Hyatt, 2009). From an evolutionary view-
point, the question remains of whether such nitrification inhib-
ition ability [i.e. biological nitrification inhibition (BNI)]
would provide a sufficient competitive advantage to outcompete
other plants (Mouquet et al., 2002; Lata et al., 2004; Hawkes
et al., 2005; Hewins and Hyatt, 2009; Rossiter-Rachor et al.,

2009). Modelling studies on BNI function and in situ obser-
vations provide additional support to the hypothesis that BNI
capacity may offer a sufficient competitive advantage to the
observed invading/introduced tropical grasses from Africa into
South America and Australia (Lata et al., 2004; Hawkes et al.,
2005; Barot et al., 2007; Boudsocq et al., 2009, 2011, 2012;
Hewins and Hyatt, 2009; Maire et al., 2009; Rossiter-Rachor
et al., 2009).

BIOLOGICAL NITRIFICATION INHIBITION

The concept

The ability to suppress soil nitrification through the release of
nitrification inhibitors from plant roots is termed ‘biological
nitrification inhibition’ (Subbarao et al., 2006a, b, 2009a, b,
2012a; Fig. 2). Nitrification is one of the most important pro-
cesses determining N cycling efficiency (i.e. the proportion of
N that stays in the ecosystem during a complete recycling
loop); controlling nitrification thus will help in minimizing
N leakage and facilitating N flow through NH4

+ assimilation
pathways.
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Nitrogen-use efficiency (NUEagronomic ¼ grain yield per unit
of applied N) is a function of both intrinsic NUE
(NUEintrinsic ¼ dry matter produced per unit N absorbed),
harvest index (HI) and N uptake. The NUEintrinsic of a plant
is a physiologically conserved function (Glass, 2003), and
thus would not necessarily be easy to manipulate genetically.
Improvements in NUEagronomic can therefore only come from
improvements in crop N uptake (Finzi et al., 2007), which is
largely related to recovery of applied N-fertilizer. Consequently,
BNI function can positively influence NUEagronomic by improving
N recovery by reducing N losses associated with nitrification
and denitrification (Subbarao et al., 2012a). Recent modelling
studies support this hypothesis, and are linked to previous in
situ measurements in savanna systems indicating that grasses
that inhibit nitrification exhibit a 2-fold greater productivity
in above-ground biomass than those that lack such ability
(Lata, 1999; Boudsocq et al., 2009, 2012).

Methodology to detect and determine nitrification inhibitory
activity (i.e. BNI activity) in plant–soil systems

Lack of a suitable methodology to detect and quantify BNI
activity in plant–soil systems has been a major hurdle for char-
acterizing BNI function in plants (Subbarao et al., 2006a).
With the development of a bioluminescence assay using a
recombinant strain of Nitrosomonas europaea, it is now pos-
sible to detect and quantify BNI activity released from
roots, a plant function termed ‘BNI capacity’ (Iizumi et al.,
1998; Subbarao et al., 2006b). The recombinant strain of
N. europaea carries an expression vector for the Vibrio
harveyi lux AB genes (Fig. 3), and produces a distinct
two-peak luminescence pattern during a 30 s analysis period
(Subbarao et al., 2006b). The functional relationship between
bioluminescence emission and nitrite production in the assay
has been shown to be linear using a synthetic nitrification in-
hibitor, allylthiourea (AT; Subbarao et al., 2006b). The inhib-
ition caused by 0.22 mM AT in the assay (about 80 %

inhibition in bioluminescence and NO2
2 production) is

defined as one allylthiourea unit (ATU; Subbarao et al.,
2006b). Using the response to a concentration gradient of
AT (i.e. a dose–response standard curve), the inhibitory
effects of test samples (e.g. root exudates or plant or soil
extracts) can be expressed and compared in ATUs. These
recently developed research tools facilitated the characteriza-
tion of BNI function in plants (Subbarao et al., 2006b).
Soil-based assays to determine the changes in nitrification po-
tential of rhizosphere soil complement this characterization of
BNI capacity (based on BNI activity release from roots). The
changes in potential soil nitrification (due to BNI function) can
be determined by monitoring ammonia-oxidizing activity
(Hart et al., 1994), and this methodology has been successfully
deployed to assess the BNI capacity of Brachiaria grasses and
in matgrass swards in the field (Subbarao et al., 2009a; Smits
et al., 2010a). In addition, analysis of nitrifier populations
[(AOB) and AOA)] in rhizosphere soil would provide further
evidence for the changes in potential soil nitrification
(Subbarao et al., 2009a).

Evidence of BNI function in selected field crops and pasture
grasses

Evaluation of selected tropical forage grasses, cereals and
legume crops indicated a wide range in the BNI capacity of
their root systems (Subbarao et al., 2007b). Forage grasses of
Brachiaria humidicola and B. decumbens, which are highly
adapted to the low-N production environments of South
American savannas (Miles et al., 2004), showed the greatest
BNI capacity among the tropical grasses evaluated (Subbarao
et al., 2007b). In contrast, Panicum maximum, which is
adapted to high-N availability environments, showed the
least BNI capacity (Rao et al., 1996; Subbarao et al.,
2007b). Among the cereal crops evaluated, only sorghum
(Sorghum bicolor) showed significant BNI capacity
(Subbarao et al., 2007b; 2012b). Other crops including rice
(Oryza sativa), maize (Zea mays), wheat and barley
(Hordeum vulgare) were found to lack BNI capacity in their
root systems during initial screening studies (Subbarao et al.,
2007b, 2012a; Zakir et al., 2008). Most legumes evaluated
showed negative BNI activity in root exudates, indicating
that they are likely to stimulate nitrification (Subbarao et al.,
2007b). Inhibition of nitrification is likely to be part of an
adaptation mechanism to conserve and use N efficiently in
natural systems that are N limiting (Lata et al., 2004;
Subbarao et al., 2007a). N-limiting environments thus could
be one of the dominant forces driving the evolution of BNI
function (Rice and Pancholy, 1972; Lata et al., 2004). It is
not surprising then that legumes did not show much BNI cap-
acity in their roots as it is likely that the BNI attribute may
have no adaptive value due to their ability to fix N symbiotic-
ally; in addition, conserving N may not offer much of an ad-
vantage for legumes as it may attract non-legumes as
competitors (Subbarao et al., 2009b, 2012a).

Field validation of BNI function in suppressing soil nitrification
and N2O emissions

Based on conservative estimates that the live root biomass
from a long-term grass pasture is 1.5 Mg ha21 (Fisher et al.,

(Bg/II/
Bam HI)
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FI G. 3. Map of recombinant luminous Nitrosomonas europaea (pHLUX20)
developed to detect and quantify nitrification inhibitors in the plant–soil

system (redrawn from Iizumi et al., 1998).
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1994) with a BNI capacity of 17–70 ATU g21 root d. wt d21

(Subbarao et al., 2007a), it was estimated that BNI activity of
2.6 × 106–7.5 × 106 ATU ha21 d21 can potentially be
released from B. humidicola roots (Subbarao et al., 2007a,
2009a). This estimate amounts to nitrification inhibitory poten-
tial equivalent to the application of about 6.2–18 kg of nitra-
pyrin ha21 year21 (based on 1 ATU being equal to 0.6 mg of
nitrapyrin), which is large enough to have a significant influ-
ence on the function of soil nitrifier populations and nitrifica-
tion rates (Subbarao et al., 2009a). Subsequently, field studies
(Mollisol) at the International Center for Tropical Agriculture
(CIAT) indicated a 90 % decline in soil ammonium oxidation
rates (Fig. 4A) due to extremely small populations of nitrifiers
[(AOB and AOA); determined as amoA genes] in
B. humidicola plots within 3 years of establishment. Nitrous
oxide emissions were also suppressed by .90 % in field
plots of B. humidicola (CIAT 16888) compared with plots of

soybean, which lacks BNI capacity in its roots, or control
plots (plant-free field plots; Fig. 4B). Two other pasture
grasses, P. maximum and Brachiaria spp. hybrid ‘Mulato’
that have a low to moderate level of BNI capacity (3–10
ATU g21 root d. wt d21), showed only an intermediate level
of inhibitory effect on soil ammonium oxidation rates
(Fig. 4A). A negative relationship was observed between the
BNI capacity of roots of a species and N2O emissions, based
on field monitoring of N2O emissions over a 3-year period
in tropical pasture grasses having a wide range of BNI capacity
in roots (Fig. 5).

Regulation of BNI function

Synthesis and release of BNIs is a highly regulated attribute
(Subbarao et al., 2007a; Zhu et al., 2012). The form of N
applied (i.e. NH4

+ or NO3
2) has a major influence on the syn-

thesis and release of BNIs in B. humidicola, sorghum and
Leymus racemosus, wild wheat (Subbarao et al., 2007a, c,
2009c, 2012a, b; Zakir et al., 2008). Plants grown with NO3

2

as N source did not release BNIs from roots, whereas BNIs
were released from plants grown with NH4

+ as their N source
(Subbarao et al., 2007a, 2009a; Zakir et al., 2008; Zhu
et al., 2012). Despite high levels of BNIs detected in the
root tissues of NH4

+-grown plants, the release of BNIs was
observed only when plant roots were directly exposed to
NH4

+ (Subbarao et al., 2007a, c, 2009a, b; Fig. 6A, B). In add-
ition to the presence of NH4

+ in the root zone, the rhizosphere
pH may also influence the release of BNIs from roots. Recent
results suggest that sorghum plants do not release BNIs from
their roots in the presence of NH4

+ when the rhizosphere pH
is 7 or higher; maximum release of BNI activity was observed
only at a rhizosphere pH ranging from 5.0 to 6.0 (Subbarao
et al., 2012b). Such a tight control of rhizosphere pH on
BNI release has implications regarding in which soils the
BNI function is likely to be effective (Subbarao et al.,
2012b). For example, the heavy black soils (Vertisols),
which generally exhibit a soil pH of .7.0, have a large buffer-
ing capacity and thus resist changes in rhizosphere pH
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(Burford and Sahrawat, 1989). Sorghum grown on soils with
pH in the alkaline range might thus not release BNIs, and
hence such soil types might not be suitable for the expression
of BNI function in sorghum. Perhaps light-textured soils with
low buffering capacity and with moderate acidity (pH ,6.0)
might be better suited for the expression and exploitation of
BNI function in sorghum (Subbarao et al., 2012a, b).

Further, the release of BNIs from plant roots appears to be a
highly regulated physiological function. The physiological
consequences associated with the uptake of NH4

+, such as
activation of H+ pumps in the plasmalemma and acidification
of the rhizosphere, facilitate BNI release from sorghum roots
(Zhu et al., 2012). In addition, the release of BNIs from
roots is a localized phenomenon (Subbarao et al., 2009a).
The release of BNIs was confined to parts of the root system
exposed to NH4

+, and was not extended to the remaining
parts of the root system. Such localized release of BNIs by
roots ensures a relatively high concentration of BNIs in soil
microsites where nitrifiers are active, which is often associated
with the presence of NH4

+ (Subbarao et al., 2009a). The
availability of NH4

+ in the soil either from soil organic N

mineralization or through the application of N-fertilizers can
thus enhance nitrifier activity (Robinson, 1963; Woldendorp
and Laanbroek, 1989). The regulatory role of NH4

+ in the syn-
thesis and release of BNIs suggests a possible adaptive role in
protecting NH4

+ from nitrifiers, a key factor for the successful
evolution of the BNI capacity as an adaptive trait (Subbarao
et al., 2007a, 2009a, 2012a).

Stability of the BNIs in soil systems

The inhibitory activity of the BNIs was initially determined
in an assay lasting only for a 30 min incubation exposure
period to pure cultures of Nitrosomonas sp. (Subbarao et al.,
2006b). For the BNIs to function effectively in the soil-based
systems, the persistence of these compounds in the soil is a
pre-requisite for the effectiveness of BNI function under
field environments. This hypothesis was tested by adding
extracted BNI activity (from root exudates of B. humidicola)
to soil at different levels (0–20 ATU g21 soil) along with an
NH4

+ source (200 mg N kg21) and then incubating for 55 d
at 20 8C. Results from these studies indicated that for the in-
hibitory activity to be effective, a threshold level of 5 ATU
g21 soil was needed; nearly 50 % inhibition was observed
when the BNI activity level was 10 ATU g21 soil and a
nearly complete suppression of soil nitrification was achieved
at 20 ATU g21 soil (Subbarao et al., 2006a; Gopalakrishnan
et al., 2009). Further, it was shown that certain BNIs [such
as linoleic acid (LA) and a-linolenic acid (LN)] partially
lost their effectiveness in the soil after 80 d, and their inhibi-
tory effect was completely lost after 100 d (Subbarao et al.,
2008). Preliminary measurements on mixed tropical savanna
soils showed that the inhibitory effect in the soil can persist
for a long period during natural air drying and storage of the
soil in the dark (Lata, 1999). There is, however, still a
paucity of information on the fate and efficacy of BNIs in
the soil–plant systems. Thus, intensification of research is jus-
tified to generate information on emerging BNIs in different
soil types under varying agro-climatic conditions relative to
their persistence and effectiveness in soil–plant systems.
Such knowledge will be helpful in targeting the use of BNIs
to the most appropriate agro-ecosystems (Sahrawat, 1996;
Wolt, 2004; Subbarao et al., 2006a).

Biological nitrification inhibitors and their modes of action

Several BNIs that belong to different chemical groups have
been successfully isolated and identified from plant tissues or
root exudates using bioassay-guided purification approaches
(Fig. 7; Bremner and McCarty, 1988; Subbarao et al.,
2006b, 2008, 2009a; Gopalakrishnan et al., 2007; Zakir
et al., 2008). The compounds with BNI activity in the aerial
parts of B. humidicola are unsaturated free fatty acids, LA
and LN (Fig. 8; Subbarao et al., 2008). They are relatively
weak inhibitors of nitrification, with IC50 values of 3 × 1025

M; while the IC50 value of the synthetic nitrification inhibitor
AT is 1 × 1027

M. However, other free fatty acids differing
in chain lengths or numbers of double bonds, e.g. stearic,
oleic, arachidonic and cis-vaccenic acids, did not show much
inhibitory activity (Subbarao et al., 2008). The inhibitory
effect of LA was increased by its conversion to its methyl
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ester (LA-ME), but the activity was lost when converted into
its ethyl ester (LA-EE; Table 1). In contrast, the inhibitory
effect of LN was lost when converted to the methyl ester
(LN-ME), indicating that there may be a high degree of speci-
ficity in the chemical structure needed to inhibit Nitrosomonas
function (Subbarao et al., 2008). Both LA and LN inhibit
Nitrosomonas through blocking of both AMO (ammonia
mono-oxygenase) and HAO (hydroxylamine oxidoreductase)
enzymatic pathways, which catalyse the essential reactions of
ammonia oxidation (Subbarao et al., 2008). In addition,
BNIs could also disrupt the electron transfer pathway from
HAO to ubiquinone and cytochrome (which needs to be main-
tained to generate reducing power, i.e. NADPH), which is
crucial to the metabolic functions of Nitrosomonas (Subbarao
et al., 2009b). Most synthetic nitrification inhibitors (e.g. nitra-
pyrin, dicyandiamide, and DMPP) suppress Nitrosomonas
activity by suppressing the AMO enzymatic pathway (McCarty,
1999; Subbarao et al., 2006a; Table 1). Also, our knowledge of
the mechanisms of inhibition by BNIs is entirely based on
AOBs (i.e. Nitrosomonas sp.). It is increasingly evident that

AOA play a significant role in nitrification of most ecosystems
and a dominant role in nitrification of certain ecosystems
(Leninger et al., 2006). The AMO enzymatic pathway operates
in both AOB and AOA; it is assumed that most BNIs that sup-
press nitrifier activity by blocking the AMO pathway (as men-
tioned above) are likely to be effective in inhibiting AOB and
AOA. However, the second enzymatic pathway in nitrification
(i.e. the HAO pathway) is only established for AOB; the existence
of this second enzymatic pathway remains to be proven and estab-
lished for AOA.

A phenyl propanoid from root exudates of hydroponically
grown sorghum, methyl 3-(4-hydroxyphenyl) propionate
(MHPP), has been identified as the BNI component of the

TABLE 1. Relative effectiveness of free fatty acids, fatty acid
esters and standard chemical nitrification inhibitors on
Nitrosomonas in an in vitro bioassay (based on Subbarao et al.,

2008)

Compound ED80
*

Synthetic nitrification inhibitors
Nitrapyrin# 4.0
Dicyandiamide# 185.0
Free fatty acids
Linoleic acid (LA) 16.0
Linolenic acid (LN) 16.0
Fatty acid esters
Methyl linoleate (LA-ME) 8.0
Ethyl linoleate (LA-EE) 400.0
Methyl linolenate (LN-ME) .2000.0

*Effective dose (mg mL21) for 80 % inhibition of Nitrosomonas function
(i.e. bioluminescence) in an in vitro bioassay system.
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inhibitory activity released from roots (Fig. 7; Zakir et al.,
2008). The IC50 value for MHPP is 9 × 1026

M (Zakir
et al., 2008). The mode of inhibitory action for MHPP is
solely through the AMO enzymatic pathway, and it has no in-
hibitory effect on the HAO enzymatic pathway in
Nitrosomonas (Zakir et al., 2008). It was discovered more re-
cently that sorgoleone, a p-benzoquinone (Fig. 7) exuded from
sorghum roots, has a strong inhibitory effect on Nitrosomonas
sp. activity and that this compound contributes significantly to
the BNI capacity in sorghum (Subbarao et al., 2009c). Two
phenyl propanoids, methyl-p-coumarate and methyl ferulate,
were identified as responsible for the BNI activity in root
tissues of B. humidicola (Fig. 7; Gopalakrishnan et al.,
2007). The IC50 values for methyl-p-coumarate and methyl
ferulate are 2 × 1025 and 4 × 1026

M, respectively
(Gopalakrishnan et al., 2007). The corresponding free phenolic
acids, namely p-coumaric acid and ferulic acid, which are
involved in lignin biosynthesis, showed no inhibitory activity
at concentrations ,1 × 1022

M (Gopalakrishnan et al.,
2007). It was suggested that nitrification inhibitors released
through exudation and from the root tissues during decompos-
ition/turnover can potentially play a major role in modifying
the soil nitrification potential in B. humidicola pasture ecosys-
tems (Subbarao et al., 2006b; Gopalakrishnan et al., 2007).

Karanjin (3-methoxy furano-2,3,7,8-flavone or 3-methoxy-
2-phenyl furo-[2,3-h]chromen-4-one; Fig. 7), isolated from
seeds of Pongamia glabra Vent., shows a strong inhibitory
effect on soil nitrifier activity, and karanjin was found to be ef-
fective in suppressing soil nitrification (Sahrawat and Mukerjee,
1977; Sahrawat, 1981). The furan ring present in the molecule
appears to be critical for the biological activity (i.e. nitrification
inhibition; Sahrawat et al., 1977). Several isothiocyanates
(2-propenyl-glucosinolate, methyl-isothiocyanate, 2-propenyl-
isothiocyanate, butyl-isothiocyanate, phenyl-isothiocyanate, benzyl-
isothiocyanate and phenethyl-isothiocyanate; Fig. 9) are formed
during the degradation of cruciferous tissues reported to have
inhibitory effects on soil nitrification (Fenwick et al., 1983;
Bending and Lincoln, 2000). Preliminary evaluation of these
compounds shows inhibitory activity in the bioassay
(G. V. Subbarao, unpubl. res.), indicating the possibility of in-
corporating cruciferous crop residues as a means to control
nitrification.

Discovery of brachialactone as a BNI compound. The major ni-
trification inhibitor released from roots of B. humidicola, a
cyclic diterpene (Fig. 10), has been discovered and named
‘brachialactone’. This compound has a dicyclopenta[a,d]cy-
clooctane skeleton (5-8-5 ring system) with a g-lactone ring
bridging one of the five-membered rings and the eight-
membered ring (Subbarao et al., 2009a). Similarly, 5-8-5 tri-
cyclic terpenoids (ophiobolanes and fusicoccanes) are found
in both fungi and plants (Muromtsev et al., 1994; Toyomasu
et al., 2007). However, to the best of our knowledge, a com-
pound or a derivative having a lactone ring appears to be a
novel addition to the nitrification inhibitory groups. Fusicoccin-
type cyclic diterpenes are biologically synthesized from gera-
nylgeranyl diphosphate by a two-step cyclization catalysed by
terpene cyclases (Toyomasu et al., 2007). The inhibition of ni-
trification in an in vitro assay with pure cultures of N. europaea
was linearly related to the brachialactone concentrations in the
range of 1.3–13.3 mM (Fig. 11A). Brachialactone with an
ED80 (effective dose for 80 % inhibition) of 10.6 mM should
be considered as one of the most potent nitrification inhibitors
comparable with nitrapyrin or dicyandiamide, two of the syn-
thetic nitrification inhibitors most commonly used in agriculture
(ED80 of 5.8 mM for nitrapyrin and 2200 mM for dicyandiamide).
Brachialactone inhibits Nitrosomonas sp. by blocking both
AMO and HAO enzymatic functions, but appears to have a
relatively stronger effect on the AMO than on the HAO
pathway (Subbarao et al. 2009a). About 60–90 % of the in-
hibitory activity released from roots of B. humidicola is due
to brachialactone (Fig. 11B); its release from roots is trig-
gered by NH4

+ in the rhizosphere. Also, brachialactone
release is confined to root regions where NH4

+ is present,
and is mostly localized in nature (Subbarao et al., 2009a;
Fig. 12A–C). Currently efforts are underway to understand
the brachialactone biosynthetic pathway (K. Nakahara, JIRCAS,
pers. comm.).

Potential for genetic manipulation of BNI capacity in cereals
and pasture grasses

Several biologically active molecules with diverse chemical
structures that belong to phenolic acids, hydroxamic acids,
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alkaloids, quinines, mono-terpenoids, di-terpenoids, fatty acids
and isothiocyanates are released from root systems of cereal
crops, crucifer members and tropical pasture grasses through
exudation (Bertin et al., 2003; Frank and Groffman, 2009;
Raaijmakers et al., 2009). These biologically active compounds
exuded from roots have a wide range of functions that de-
fine the rhizosphere chemical and biological environment,

and their biological roles range from nutrient acquisition, fa-
cilitating symbiotic associations with bacteria and fungi, to
defending roots from pests and pathogens (Walker et al.,

O
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H
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FI G. 10. Chemical structure of brachialactone, the major nitrification inhibi-
tor isolated from root exudates of B. humidicola (from Subbarao et al., 2009a).
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2003; Rengel and Marschner, 2005). Some of these com-
pounds (such as the recently discovered di-terpenoid, brachia-
lactone, released from Brachiaria roots, sorgoleone released
from sorghum roots, and isothiocyanates released from
degraded cruciferous tissues) have BNI function and thus
could become important targets for genetic improvement
through conventional and molecular breeding approaches.
Such efforts in the future should become an important part
of breeding programmes developing genetic and management
strategies to exploit biologically active molecules with BNI
function to regulate nitrification in production agriculture,
where most of the fertilizer N is applied worldwide
(Philippot and Hallin, 2011). Some examples of deployable
genetic tools for improvement of the BNI capacity follow
below

Tropical pasture grasses. Availability of genetic variability is a
prerequisite for the genetic improvement of any plant trait
using a conventional and/or molecular breeding programme.
Significant genetic variability exists for the BNI capacity in
B. humidicola (Subbarao et al., 2007b). Specific BNI activity
(ATU g21 root d. wt d21) ranged from 7.1 to 46.3, indicating
a significant potential for genetic improvement of BNI cap-
acity by selection and recombination (Subbarao et al.,
2007b). Using two ecotypes of a tropical grass Hyparrhenia
diplandra (high- and low-nitrification ecotype), it was shown
that nitrification can be stimulated or suppressed depending
on the ecotype, suggesting that the suppression of soil nitrifi-
cation in these grasses could be a genetic attribute (Lata
et al., 2000, 2004). The ongoing Brachiaria breeding pro-
gramme at CIAT in collaboration with JIRCAS plans to iden-
tify genetic regions associated with BNI function through
quantitative trait locus (QTL) analysis, using a mapping popu-
lation derived from crosses between apomictic and sexual
germplasm accessions of B. humidicola, that have contrasting
BNI capacity. Also, recent findings indicate substantial genetic
variability for brachialactone release among germplasm ac-
cessions of B. humidicola, and several genetic stocks with
contrasting ability (nearly 10-fold differences) for brachialac-
tone release have been identified (G. V. Subbarao and
K. Nakahara, JIRCAS, unpubl. res.), suggesting the possibility
of breeding for high brachialactone release in B. humidicola
(i.e. high BNI capacity).

Sorghum. Preliminary investigations indicate a substantial vari-
ability in the release of sorgoleone (a major component of
hydrophobic root exudate determining the BNI capacity in
sorghum) among sorghum genotypes (G. V. Subbarao and
C. T. Hash, unpubl. res.). This is in agreement with earlier
reports of nearly 30-fold variation in sorgoleone among 25
sorghum varieties (Nimbal et al., 1996). Sorgoleone is the
stable product of auto-oxidation of dihydrosorgoleone, an un-
stable Striga seed germination stimulant present in the
sorghum rhizosphere. Sorgoleone is highly phytotoxic as it
disrupts photosystem II electron transfer, is thought to be
responsible for the well-known allelopathy of sorghum, and
has been the subject of considerable studies due to its potential
as a bio-herbicide. Several genes controlling the biosynthetic
pathway of sorgoleone are known (Baerson et al., 2007; Pan
et al., 2007) as well as their positions on the aligned
genomic sequences of sorghum chromosomes SBI-04,

SBI-05, SBI-06 and SBI-08 (Ramu et al., 2010; Satish et al.,
2011). Genomic regions associated with production of sorgo-
lactone may also be involved in regulating sorgoleone produc-
tion (Haussmann et al., 2004; Ejeta, 2007). The immediate
precursor of sorgoleone, dihydrosorgoleone, is now thought
to be a minor component of the germination stimulant for
seeds of parasitic weeds (Striga sp.) that is exuded by
sorghum root hairs (Rich and Ejeta, 2007). Sorgoleone itself
has no Striga germination stimulant activity (Rich and Ejeta,
2007), but was once thought to be a key factor in the mechan-
istic basis for resistance to Striga infection (Chang et al., 1986;
Netzly et al., 1988). However, Hess et al. (1992) found very
little variation in levels of sorgoleone between many high
and low Striga germination stimulant sorghum accessions.

Genomic regions associated with production of strigalac-
tones might also be involved in regulating sorgoleone produc-
tion (Haussmann, et al., 2004; Ejeta, 2007). Sorghum produces
at least five different strigalactones, 5-deoxystrigol, sorgolac-
tone, strigol, strigyl acetate and sorgomol (Cook et al., 1972;
Hauck et al., 1992; Siame et al., 1993; Awad et al., 2006;
Xie et al., 2008), and these are chemically distinct from sorgo-
leone. Subsequently it was discovered that the strigolactone 5-
deoxystrigol, that is released from sorghum roots in response
to N and phosphorus deficiency stress, apparently attracts vas-
cular arbuscular mycorrhizae symbionts – largely responsible
for sorghum stimulation of Striga seed germination
(Bouwmeester et al., 2007; Yoneyama et al., 2007). More
recent studies support this important role for strigalactones
as germination stimulants for Striga, e.g. the discovery of a
major recessive gene for low Striga germination capacity lgs
that causes a 35-fold reduction in the level of 5-deoxystrigol
in the Striga-resistant sorghum line SRN39 compared with
the Striga-susceptible sorghum line Tabat (Yoneyama et al.,
2010), and is associated with Striga resistance in sorghum.
This gene maps to a distal region of the long arm of
sorghum chromosome SBI-05 that may be associated with
one or more genes controlling strigalactone biosynthesis
(Satish et al., 2011), and not with those previously identified
as controlling the final steps of sorgoleone biosynthesis
(Baerson et al., 2007; Pan et al., 2007; Cook et al., 2010).
Future research will hopefully unravel the interconnectivity
in the biosynthetic pathways and regulation of sorgoleone
and strigalactone exudation (Akiyama and Hayashi, 2006;
Gomez-Roldan et al., 2008) and their functional relationships
to both Striga germination stimulation and BNI capacity in
sorghum. The discovery of sorgoleone’s BNI function adds a
new dimension to the functional significance of its release
from sorghum roots (Subbarao et al., 2012b). The
International Crop Research Institute for the Semi-Arid
Tropics (ICRISAT) has recently developed several mapping
populations of random inbred lines based on crosses of
sorghum parental lines that differ in sorgoleone exudation
(G. V. Subbarao and C. T. Hash, unpubl. data), and these are
being used to map additional sorghum genomic regions con-
tributing to genetic variation in sorgoleone exudation. As
these populations are generally based on elite germplasm,
this approach has the advantage of facilitating deployment of
BNI traits in relevant high-yielding cultivars of sorghum.
Association mapping approaches for sorgoleone could be
explored by evaluating the mini-core sub-set (10 % of the
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core collection and 1 % of the entire collection, which
amounts to 242 accessions) of ICRISAT’S global sorghum
germplasm collection, a large portion of which were included
in the recently developed Generation Challenge Programme’s
sorghum reference germplasm set of 384 wild and cultivated
accessions. The association panel is being subjected to
genotyping-by-sequencing (Elshire et al., 2011) to provide
the very high density single nucleotide polymorphism
marker fingerprints necessary for whole-genome scan
approaches to association mapping (C. T. Hash, pers.
comm.). This in turn will facilitate allele mining of traits
linked to sorgoleone exudation (Brown et al., 2008; Casa
et al., 2008). The basic tools for the identification of alleles
that accelerate sorgoleone exudation as a strategy to improve
BNI capacity in sorghum are thus available. Once superior
alleles that control sorgoleone exudation are identified, they
can be rapidly transferred to genetic backgrounds of elite
sorghum hybrid parental lines and/or open-pollinated varieties
by marker-assisted backcrossing. With the introgression of fa-
vourable alleles of one or two major genes (to accelerate the
exudation of sorgoleone) into elite genetic backgrounds, it
should be possible to improve the BNI capacity in sorghum.

Wheat and barley. Wild progenitors of crop species and trad-
itional varieties/landraces often possess traits that do not
exist in the elite germplasm (Manske et al., 2000). Wild pro-
genitors and wild relatives have been used extensively as the
source of traits for disease resistance and tolerance to abiotic
stresses in wheat breeding (Friebe et al., 1996; Munns et al.,
2000). The discrepancy between wild relatives and elite germ-
plasm is often attributed to the impact of decades of breeding
and selection under favourable agronomic conditions (Buso
and Bliss, 1988). Preliminary results suggested a lack of sig-
nificant BNI capacity in cultivated wheat (Subbarao et al.,
2006b). However, subsequent evaluation of wild wheats indi-
cated that roots of L. racemosus possess high BNI capacity
(Fig. 13; Subbarao et al., 2007c). The BNI activity released
from L. racemosus effectively suppressed soil nitrification

for .60 d (Subbarao et al., 2007c). Using chromosome add-
ition lines derived from the hybridization of L. racemosus
with cultivated wheat (Kishii et al., 2004), it was shown that
the genes conferring high BNI capacity were located on chro-
mosomes Lr#n, Lr#I and Lr#J, and could be successfully intro-
duced into and expressed in cultivated wheat (Fig. 14;
Subbarao et al., 2007c). These results indicate that there
exists a potential for developing future wheat cultivars with
sufficient BNI capacity to suppress soil nitrification in wheat
production systems (Subbarao et al., 2007c; Zahn, 2007).

Currently wheat production uses a third of the global
N-fertilizer production (Raun and Johnson, 1999). Introducing
a sufficient level of BNI capacity into cultivated wheat thus
would have a large impact on reducing N leakage. However,
the alien chromosome of this chromosome addition line may
also carry many undesirable traits that could reduce yield. For
example, preliminary field evaluations indicate that the intro-
duction of the Lr#n chromosome into Chinese Spring (i.e.
DAL#r) made them susceptible to rust (M. Kishii, unpubl.
res.). It will be necessary therefore, to transfer to wheat only
small segments of this L. racemosus chromosome containing fa-
vourable alleles of genes linked to the BNI trait to minimize the
negative linkage drag that is normally associated with introgres-
sions from wild relatives of wheat.

Various chromosomal manipulations can be deployed to
induce a translocation between wheat and alien chromosomes,
including the use of a gametocidal chromosome system (Endo,
2007), irradiation and mutants such as ph1b that reduce the
stringency of pairing control mechanisms to allow pairing of
homeologous chromosomes (Sears, 1977, 1993). Reciprocal
exchange of alien chromosome segments with the correspond-
ing wheat chromosomes without disrupting the genetic balance
would be desirable. Centromeric or Robertsonian transloca-
tions could provide reciprocal or near-reciprocal translocations
in which half of the target L. racemosus chromosome (short or
long arm) replaces the corresponding wheat chromosome
arms. Since the Lr#n chromosome of L. racemosus that con-
trols BNI function has homoeology to both of wheat homoeo-
logous groups 3 and 7 (Kishii et al., 2004) and the fact that we
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FI G. 13. BNI activity released from roots of two cultivars of cultivated wheat
and its wild relative L. racemosus. Plants were grown with either NH4

+ or NO3
2

as their N source. Root exudate was collected from intact roots in aerated dis-
tilled water with 200 mM Ca over a 24 h period. The vertical bar represents
Fisher’s l.s.d. (P , 0.001) for the interaction term (N source × species;

adapted from Subbarao et al., 2007c).
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FI G. 14. Karyotype analysis of DALr#n, a chromosome addition line derived
from L. racemosus × T. aestivum. (A) DAPI (4′,6-diamidino-2-phenylindole)
staining revealed 44 chromosomes. (B) The probe of L. racemosus genomic
DNA (green) and TaiI and Afa family repetitive sequences showed the pres-
ence of two Lr#n chromosomes. The arrows indicate Lr#n chromosomes

(adapted from Subbarao et al., 2007c).
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have obtained a naturally occurring substitution line with the
group 3 chromosome of wheat, it will be desirable to generate
translocations with wheat chromosomes of the corresponding
groups. The production of such translocations has been
achieved by crossing the Lr#n chromosome addition line
with the 3B and 7B chromosome monosomic lines of wheat,
in which one of the 3B or 7B chromosomes is missing, to
produce an F1 hybrid where chromosome breakage and
re-fusion at centromeric regions could be induced between
Lr#n and 3B or 7B chromosomes during meiosis (Kishii,
2011).

Crosses of Lr#n addition and translocation lines with the
Chinese Spring ph1b mutant have also been made by the
International Center for the Improvement of Maize and
Wheat (CIMMYT) in an effort to generate additional translo-
cations incorporating smaller segments of Lr#n that carry the
BNI trait but with a reduced risk of problems associated
with linkage drag. Homozygous translocation lines are current-
ly available in the Chinese Spring background but, due to the
poor agronomic background of this line, these translocations
are being transferred into elite CIMMYT bread wheat. This
should allow realistic evaluation of BNI potential to reduce
N leakage from wheat systems and increase grain yields at
lower N-fertilizer applications. While a range of translocations
including some with smaller segments of Lr#n are being pro-
duced, small segments are not always needed, as history has
shown that one good centromeric translocation can have a
large impact on wheat breeding (Lukaszewski, 2000; Singh
et al., 2006). The best example of this is the 1BL.IRS trans-
location involving the short arm of chromosome 1R from rye
(Secale cerale), which is present in most wheat cultivars in
the Middle East and West Asia (most of these are CIMMYT
derived), and in a significant proportion of cultivars in
China, the USA and East Europe (Stokstad, 2007). The wide
distribution of these wheats can be attributed to their high
yield in diverse environments, despite all of the known
disease resistance genes in the 1RS segment no longer being
completely effective. However, if the original translocation is
accompanied by many undesirable traits, it will be necessary
to perform further reduction of the introgressed L. racemosus
chromosome segment, a process currently underway through
use of the ph1b mutant that permits homoeologous recombin-
ation between wheat and alien chromosomes (Sears, 1977;
Lukaszewski, 2000). As N is an increasingly expensive input
in agricultural systems, both yield at low N and responsiveness
to added N are important in simultaneously reducing environ-
mental pollution, increasing food production and reducing
input costs. Field evaluations of the response of chromosome
addition lines of Lr#n, Lr#I and Lr#J lines to N fertilization
(250 kg N ha21) at two locations at CIMMYT indicate that
the Lr#I line did not respond to N fertilization, i.e. there was
no difference in grain yield between N-fertilizer and no-N
field plots. Also, TA7646, which is carrying a homologous
chromosome to Lr#I (Qi et al., 1997; Kishii et al., 2004),
did not respond to N fertilization during these yield evaluation
trials at two field locations at CIMMYT (M. Kishii and
I. Ortiz-Monasterio, CIMMYT, unpubl. res.). Currently, efforts
are underway at CIMMYT to introduce Lr#n, Lr#I and Lr#J
into various high-yielding backgrounds to assess the value of
the BNI trait for yield maintenance under sub-optimum N

fertilization levels. The material under development in elite
backgrounds could be utilized to develop new cultivars rapidly
if field trials indicate that translocations show high BNI capacity.

Introduction of the BNI trait from L. racemosus to barley
would be more challenging as diploid barley is sensitive to
chromosome manipulation [compared with tetraploid durum
wheat (Triticum turgidum) or hexaploid bread wheat]. Also,
a gene to induce homeologous recombination like that found in
wheat has not been reported for barley. One possible method to
introduce an L. racemosus chromosome into barley could be
through the use of a tetraploid barley line, which has its chromo-
some number doubled with colchicine, as this would allow a
better tolerance to the addition of alien chromosomes. The util-
ization of barley chromosome addition lines of wheat is an alter-
native. A set of these addition lines has been produced (Islam
et al., 1975), and it may be possible to manipulate the homoeo-
logous barley and L. racemosus chromosomes in wheat; first, by
crossing the corresponding barley and L. racemosus chromosome
addition lines to generate the required centromeric translocation,
and then transferring the translocation into barley by crossing the
tetraploid barley chromosome substitution line with cultivated
diploid barley.

Deploying BNI function in production agriculture

Soil physical, chemical and biological properties influence
the rhizosphere environment and thus the release of BNIs
from roots; in addition, these factors also may determine the
effectiveness and stability of the released BNIs in suppressing
soil nitrification. For example, alkaline pH may limit the ex-
pression and stability of BNI function, thus heavy clay soils
such as Vertisols that are generally alkaline in pH may not
be suitable for the expression of BNI function. Also high bac-
terial activity in soils with relatively high OM content (such as
organic soils) may enhance the degradation of BNIs, thus
making the BNI function less effective. There is little informa-
tion on how soil temperature and moisture status (linked to
inter- and intraseasonal variability or to stresses due to
excess or insufficient moisture) modulate the BNI function.
For instance, when modelling the rhizosphere and its asso-
ciated gradients with exudates from roots, it was shown that
adsorption properties, solute life time and soil water contents
are the key determinants of both the extent of the rhizosphere
and the time to reach a steady state, indicating their fundamen-
tal roles in the interactions between roots and soil organisms
(Raynaud, 2010). Also, the impact of H. diplandra ecotypes
(stimulation or suppression) on nitrification in tropical savan-
nas has been shown to be highly heterogeneous at both
inter- and intra-annual scales, but could be partially explained
by a climatic parameter such as average T8 or total precipita-
tions in the months prior the date of measurement (Lata,
1999).

For annual crops the crop duration, often ≤120 d, may not
be adequate (given the BNI activity release rates observed
for sorghum and other major food crops; Subbarao et al.,
2007b, c, 2009c, 2012b, Zakir et al., 2008; Zhu et al., 2012)
to reach the critical threshold levels needed to reduce the
bulk soil nitrification potential. It is likely that the impact of
BNI may be confined to the rhizosphere–soil environment.
Tropical pastures with high BNI capacity and extensive root
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systems coupled with their perennial habits (e.g. Brachiaria
spp.) can significantly reduce the soil nitrification potential
and nitrifier population (i.e. low-nitrifying production environ-
ments). This could be exploited for the benefit of annual crops,
such as maize, wheat and rice which receive most of the fertil-
ization, but at present have little inherent BNI capacity, by in-
tegrating pastures with crop production using agro-pastoral
systems or mixed crop–livestock systems. The pasture compo-
nent could provide the required BNI activity to suppress soil
nitrifier activity and thus the nitrification potential to
improve the N economy of the annual crops (a weak contribu-
tor of BNIs) that follow the pasture phase. The stability of the
residual BNI effects, determined as the soil NH4

+ oxidation
rate, where an annual crop such as maize or soybean is
grown after Brachiaria pasture is not yet known, but this
could determine the interval between pasture phases in such
agro-pastoral systems (Subbarao et al., 2012a).

For crops that produce BNIs in their plant tissue, but do not
release them from their root systems, e.g. crucifers (Bending
and Lincoln, 2000), the incorporation of plant residues into
the soil could be an alternative way to control soil nitrification.
In addition, Brachiaria pastures could also be used as cover
crops to use their biomass as a mulch after 3–4 months of
growth, followed by direct sowing of maize or soybean into
the mulch. This is an emerging agronomic practice that is
being developed by progressive farmers for controlling nitrifi-
cation in maize and soybean cultivation in Llanos, Colombia.
Such novel agronomic practices supplement the addition of
BNIs by Brachiaria’s shoot tissues (Subbarao et al., 2008),
in addition to that added by the root systems. Thus multidiscip-
linary efforts through crop genetic improvements of BNI cap-
acity, proper agronomic practices in appropriate cropping
systems could be combined to utilize the BNI function to
design and promote low-nitrifying production systems in agri-
culture. In addition, the boundaries of the agro-ecosystems
where BNI function can be effectively deployed will have to
be defined with the help of agro-ecologists and agronomists.
This will help breeders and molecular biologists targeting
the desired BNI traits in crops and pastures from a genetic im-
provement perspective for an entire agro-ecosystem.

PERSPECTIVES

As we race to satisfy the growing global demand for food
through massive injections of reactive N (i.e. N-fertilizer)
into agricultural systems, the unintended (eutrophication of
lakes and NO3

2 contamination of ground water) and
unknown (N2O and NO emissions and their impact on
global warming) consequences on the environment have
become of great concern (Canfield et al., 2010). Never in
the recent history of planet Earth (i.e. during the last 10 000
years) have such major perturbations in the N cycle occurred
similar to those that the Earth has experienced since the
1930s (Dansgaard et al., 1993; Petit et al., 1999; Rioual
et al., 2001; Rockstrom et al., 2009; Canfield et al., 2010).
Current annual N-fertilizer inputs into agricultural systems
have reached close to 150 Tg, a level one and a half times
greater than Earth’s N-fixing capacity (Vitousek et al., 1997;
Tilman et al., 2001). This suggests that humans have nearly
doubled the reactive N load of Earth in just over 50 years

(1960–2010); most of this additional reactive N is routed
through just 11 % of the Earth’s surface (Newbould, 1989).
This has created serious environmental problems, and there
is great concern as to how we can protect our environment,
while meeting the food demand of the growing world popula-
tion (Rockstrom et al., 2009). This is a major challenge and
requires a new paradigm of approaches on how to manage N
in agricultural systems.

The Green Revolution quadrupled the world food produc-
tion largely through the development of high-yielding,
fertilizer-responsive wheat, rice and maize cultivars along
with increased N-fertilizer inputs and major changes in agro-
nomic practices (Matson et al., 1999; Tilman et al., 2001;
Dinnes et al., 2002; Hungate et al., 2003). In our quest for en-
hancing food production, we rather failed to consider the flow
of industrially produced reactive N through the multiple path-
ways of soil N cycling. The consequence is the emergence of
nitrification as the major N flow pathway, acting as a powerful
drawing force, largely responsible for an inefficient use of N,
and for the resulting N pollution associated with agricultural
systems.

As discussed in this Viewpoint paper, it is not necessary and
prudent that most N be cycled through the nitrification
pathway to achieve higher productivity. Nature has shown us
that by routing the reactive N through multiple pathways and
restricting the flow through the nitrification path, N can be
cycled more effectively with limited leakage into the environ-
ment (Schimel and Bennett, 2004; Weigelt et al., 2005; Barot
et al., 2007; Harrison et al., 2007; Houlton et al., 2007;
Hewins and Hyatt, 2009; Ashton et al., 2010). As nitrification
and denitrification are the two major biological drivers for the
production of NO3

2, N2O and NO (i.e. reactive N forms largely
responsible for environmental pollution), suppressing nitrifica-
tion is critical for the development of low N2O-emitting and
low NO3

2-producing agricultural systems.
The BNI capacity in field crops and pastures can be genet-

ically enhanced using both conventional and molecular genet-
ics tools to develop the next-generation cultivars that have the
ability to suppress nitrification (Philippot and Hallin, 2011;
Subbarao et al., 2012a). Wild relatives of wheat seem a prom-
ising source of the BNI trait needed to improve the BNI cap-
acity of cultivated wheat (Subbarao et al., 2007c; Zahn,
2007). Efforts are under way to transfer the high BNI capacity
trait located on Lr#n, Lr#I and Lr#J to cultivated wheat.
Molecular breeding approaches such as marker-assisted breed-
ing and metabolic engineering can be deployed to introduce
the biosynthetic pathway for brachialactone (a powerful BNI)
synthesis and release from root systems of major food crops
– wheat, maize and rice. We have demonstrated the effective-
ness of BNI function in tropical Brachiaria grasses in suppres-
sing soil nitrification and N2O emissions. Also, potential exists
to select and breed for the high BNI trait in other tropical
pasture grasses such as P. maximum (that have high productiv-
ity and forage quality but lack BNI capacity in their root
systems) using both conventional and molecular breeding
tools.

For an effective deployment of BNI function as a strategy to
control nitrification, a multidisciplinary effort using a systems
approach is necessary to understand the interactions among
crops/pastures, the relative contributions of BNIs from root
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exudation, and residue incorporation on N cycling in produc-
tion systems. Exploiting the BNI function using both genetic
and crop/system management approaches is the first step
towards designing a low-nitrifying agronomic environment in
agricultural systems. A paradigm shift thus is needed to steer
N management from the current high-nitrifying environments
to low-nitrifying production systems, that are sustainable
from both an ecological and an economic perspective,
without jeopardizing the ability to meet the global food
demand.
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