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ABSTRACT
We performed culture-based and PCR-based tests for pneumococcal identifica-
tion and serotyping from carriage specimens collected in rural and urban Kenya.
Nasopharyngeal specimens from 237 healthy children <5 years old (C-NPs) and
combined nasopharyngeal/oropharyngeal specimens from 158 adults (A-NP/OPs,
118 HIV-positive) were assessed using pneumococcal isolation (following broth
culture enrichment) with Quellung-based serotyping, real-time lytA-PCR, and con-
ventional multiplexed PCR-serotyping (cmPCR). Culture-based testing from C-NPs,
HIV-positive A-NP/OPs, and HIV-negative A-NP/OPs revealed 85.2%, 40.7%,
and 12.5% pneumococcal carriage, respectively. In contrast, cmPCR serotypes
were found in 93.2%, 98.3%, and 95.0% of these sets, respectively. Two of 16
lytA-negative C-NPs and 26 of 28 lytA-negative A-NP/OPs were cmPCR-positive
for 1–10 serotypes (sts) or serogroups (sgs). A-NP/OPs averaged 5.5 cmPCR
serotypes/serogroups (5.2 in HIV-positive, 7.1 in HIV-negative) and C-NPs aver-
aged 1.5 cmPCR serotypes/serogroups. cmPCR serotypes/serogroups from lytA-
negative A-NP/OPs included st2, st4, sg7F/7A, sg9N/9L, st10A, sg10F/10C/33C,
st13, st17F, sg18C/18A/18B/18F, sg22F/22A, and st39. Nine strains of three non-
pneumococcal species (S. oralis, S. mitis, and S. parasanguinis) (7 from A-OP, 1
from both A-NP and A-OP, and 1 from C-NP) were each cmPCR-positive for one
of 7 serotypes/serogroups (st5, st13, sg15A/15F, sg10F/10C/33C, sg33F/33A/37,
sg18C/18A/18B/18F, sg12F/12A/12B/44/46) with amplicons revealing 83.6–99.7%
sequence identity to pneumococcal references. In total, 150 cmPCR amplicons from
carriage specimens were sequenced, including 25 from lytA-negative specimens.
Amplicon sequences derived from specimens yielding a pneumococcal isolate with
the corresponding serotype were identical or highly conserved (>98.7%) with the
reference cmPCR amplicon for the st, while cmPCR amplicons from lytA-negative
specimens were generally more divergent. Separate testing of 56 A-OPs and 56 A-NPs
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revealed that ∼94% of the positive cmPCR results from A-NP/OPs were from OP
microbiota. In contrast, A-NPs yielded >2-fold more pneumococcal isolates than
A-OPs. Verified and suspected non-pneumococcal cmPCR serotypes/serogroups
appeared to be relatively rare in C-NPs and A-NPs compared to A-OPs. Our find-
ings indicate that non-pneumococcal species can confound serotype-specific PCR
and other sequence-based assays due to evolutionarily conserved genes most likely
involved in biosynthesis of surface polysaccharide structures.

Subjects Biodiversity, Microbiology, Infectious Diseases
Keywords Pneumococcal serotype-specific loci, Mitis group streptococci, Oropharyngeal and
nasopharyngeal flora, PCR for serotype deduction

INTRODUCTION
The primary reservoir for the opportunistic pathogen Streptococcus pneumoniae is the

upper respiratory tract, where it coexists in varying proportions with other microbial

species. Deep sequencing approaches have revealed that bacterial microbiota complexity

varies markedly between the oropharygeal and nasopharyngeal niches, with the more

densely colonized oropharynx revealing more bacterial diversity (Charlson et al., 2010;

Biesbroek et al., 2012). According to one study of adults, more than 50 different bacterial

genera significantly varied in abundance between nasopharyngeal and oropharyngeal sites

(Charlson et al., 2010). Pneumococcal disease generally occurs subsequent to carriage in

the upper respiratory tract (Gray, Converse & Dillon, 1980). Consistent with data indicating

that children constitute a major pneumococcal reservoir (Hendley et al., 1975) is the fact

that vaccinating young children with conjugate vaccines significantly decreases disease

caused by vaccine serotypes in adults (Whitney et al., 2003). Studies of pneumococcal

carriage serotype distributions, especially in young children, have revealed a great deal

regarding the potential usefulness and impact of current multivalent conjugate vaccines

that target small subsets of the >92 known pneumococcal capsular serotypes (Weinberger,

Malley & Lipsitch, 2011), however, the complex biology of pneumococcal carriage is still

poorly understood, especially as it pertains to culture-based detection rates that differ

markedly between different disease-causing serotypes. Most available respiratory tract

pneumococcal serotype distribution data have been obtained from studies of young

children. Moreover, few studies of carriage have employed pneumococcal isolation

independent, PCR-based detection of pneumococcal serotypes, especially in adults.

Recently, we observed that culture in enriched broth media before plating enhanced

both isolation-independent conventional multiplexed PCR (cmPCR)-based and pneumo-

coccal isolation-based detection of pneumococcal nasopharyngeal (NP) carriage serotypes

from young children (Carvalho et al., 2010). More recently we applied this methodology to

combined NP/oropharyngeal (OP) specimens from adults (A-NP/OPs) and NP specimens

from children (C-NPs) living in an area of high HIV prevalence (Carvalho et al., 2012).

While the isolation-based and cmPCR data from C-NPs closely approximated results
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from our previous study (Carvalho et al., 2010), we found an unexpected number and

range of serotype detections from cmPCR testing of A-NP/OPs in this population.

Based on a combination of putative pneumococcal serotype-specific amplicon and

real-time PCR pneumococcal detection data, we hypothesized that non-pneumococcal

strains carrying homologs of pneumococcal serotype-specific loci were yielding false

cmPCR-determined serotypes (Carvalho et al., 2012). Recent access to the original, stored

NP and OP specimens has allowed us to demonstrate here that the abundance and diversity

of A-NP/OP –derived cmPCR amplicons within this particular area is primarily due to the

presence of diverse strains of oropharyngeal non-pneumococcal mitis group species.

MATERIALS AND METHODS
Specimen collection
This study was approved by both KEMRI and CDC ethical committees. Written informed

consent in the local dialect was obtained for specimen collection. Specimens were collected

as part of a study to provide baseline data for assessing the direct and indirect impact

of introduction of pneumococcal conjugate vaccine on carriage of pneumococci. After

obtaining informed consent, nasopharyngeal specimens (NPs) were collected using

calcium alginate swab (Fisher Scientific, Pittsburg, PA) at Lwak Mission Hospital in

Rarieda District in western Kenya or Tabitha Clinic in Kibera within Nairobi, Kenya during

October–December 2009 from 237 healthy children less than 5 years of age (C-NPs). NP

swab and oropharyngeal swab specimens (OPs) were collected from 158 consenting adults

(A-NPs and A-OPs) at Lwak; of these, 118 (75%) were tested as human immunodeficiency

virus (HIV) positive and 40 tested negative for HIV (The design of the carriage survey

purposefully oversampled HIV-positive adults). For permanent storage, the individual

NP and OP swabs were placed in separate storage/transport vials containing 1.0 ml

milk-tryptone-glucose-glycerol (STGG) medium (O’Brien et al., 2001), maintained on wet

ice for up to 4 h, and frozen at−70C. Before freezing, NP-STGG and OP-STGG specimens

were vortexed for 10 s to disperse organisms from the swab. All NP-STGG and OP-STGG

specimens were sent on dry ice to the Kenya Medical Research Institute (KEMRI-CDC) in

Kisumu for pneumococcal isolation and for storage.

Phase 1. Pneumococcal Isolation, serotyping, conventional multi-
plexed PCR-serotyping (cmPCR), and real time lytA PCR
Pneumococcal isolation from all NP-STGG and OP-STGG specimens was performed at

KEMRI as previously described (Carvalho et al., 2010). Briefly, supplemented Todd-Hewitt

broth (STHB) consisted of 5 ml of Todd-Hewitt broth containing 0.5% yeast extract

combined with 1 ml of rabbit serum. After a brief complete thawing and vigorous 10 s

vortexing of the NP-STGG and OP-STGG specimens, 200-µl aliquots from children

NP-STGG specimens were added to 6 ml STHB. These specimens from children will be

referred to as C-NPs. For adults, NP-STGG (200 µl) and OP-STGG (200 µl) aliquots from

the same individual were inoculated simultaneously into 6 ml STHB; these combined

specimens from adults will be referred to as A-NP/OPs. The C-NPs and A-NP/OPs were
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incubated for 6 h at 37◦C in a CO2 incubator prior to streaking onto blood agar plates. One

milliliter aliquots of the incubated A-NP/OPs and C-NPs were frozen for subsequent DNA

extraction, cmPCR for 40 serotypes or serogroups, and real time lytA PCR at Atlanta-CDC

as previously described (Carvalho et al., 2010, see http://www.cdc.gov/ncidod/biotech/

strep/pcr.htm for latest updates).

Immediately after the 6 h incubation, 10 µl from the A-NP/OPs and C-NPs were

streaked onto a blood agar plate at KEMRI-CDC. After incubation at 37◦C in a CO2

incubator for 18–24 h, alpha-hemolytic colonies (one picked from each colony mor-

phology (Carvalho et al., 2010)) were subcultured and subsequently tested for optochin

susceptibility and bile solubility under CO2 atmosphere as described (Arbique et al., 2004).

Only one colony that represented each colony morphology was picked for pneumococcal

identification and serotyping, since we have found no improvement in detecting mixed

pneumococcal carriage through picking colonies that share identical appearance (Carvalho

et al., 2010). Pneumococcal–positive (optochin-sensitive or bile soluble) isolates recovered

at KEMRI-CDC were sent to Atlanta-CDC for serotyping with CDC antisera, which is used

to resolve 92 different serotypes, including serotypes 6C and 6D (Melnick, Thompson &

Beall, 2010; Mercado et al., 2011).

Phase 2
Subsequent to the work described above, the original STGG-NPs and STGG-OPs from

children and adults were shipped to Atlanta-CDC for isolation/characterization of

cmPCR-positive non-pneumococcal species, and for comparison of pneumococcal isola-

tion and cmPCR analysis from a subset of the 158 matched adult specimens (56 STGG-NPs

and 56 STGG-OPs) after performing broth-enrichment in STHB as described above in

phase 1. Isolated non-pneumococcal strains were also subjected to cmPCR and the real

time lytA PCR assays as previously described (Carvalho et al., 2010; Carvalho et al., 2007).

cmPCR amplicon sequencing
cmPCR amplicons from either bacterial isolates or preculture broth extracts were

sequenced employing cmPCR primers and the Big Dye V1.1 dideoxy sequencing

kit (ABI) on an ABI-3100 sequencer. Reference amplicon sequence coordinates

from GenBank accessions are provided at http://www.cdc.gov/ncidod/biotech/files/

pcr-oligonucleotide-primers.pdf. The 47 amplicon sequences from this study that do

not exactly match the relevant reference sequences are provided in Table S1. cmPCR

sequence subtypes encountered in this study that were not previously documented in

the public GenBank were designated as subject number targeted serotype or serogroup.

For example, cmPCR sequence subtype 300.2 corresponds to adult subject 300 and a

positive cmPCR amplicon for serotype 2 exactly matching in length with the reference

cmPCR amplicon referred to in the CDC cmPCR primer list (http://www.cdc.gov/ncidod/

biotech/files/pcr-oligonucleotide-primers.pdf, primer sequences, GenBank accessions and

base coordinates are included in this list). Similarly, 300.10 refers to a cmPCR amplicon

sequence corresponding to serogroup 10F/10C/33C. Designations that share complete

sequence identity to the indicated GenBank accession over the described base coordinates
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of the pneumococcal reference sequence are preceded by “st” and the pneumococcal

serotype without any reference to the specimen number. For example, st14.14, st10F.10,

st3.3 all represent sequence identity within amplicon overlaps with sequences previously

documented in GenBank that were derived from pneumococci of the indicated serotypes.

Species approximation of non-pneumococcal strains
Multilocus amplification/sequencing and nearest species matches were determined at

http://viridans.emlsa.net/ for each cmPCR-positive non-pneumococcal isolate by

multilocus sequence analysis as described (Bishop et al., 2009). This site automatically

concatenates 7 entered housekeeping locus sequences (map, 426 bp; pfl, 351 bp; ppaC,

552 bp; pyk, 492 bp; rpoB, 516 bp; sodA, 378 bp; tuf, 426 bp) in order to compare a 3063

bp sequence with the online species database (Bishop et al., 2009). A dendrogram of the

9 concatenated 3063 bp sequences, together with corresponding concatenates from two

pneumococcal strains, was constructed using the Wisconsin Package (Wisconsin Package,

version 10.3 Accelrys Inc., San Diego, CA) Distances program with the neighbor-joining

approach and the un-corrected distance model.

Specimen information
Specific information pertaining to individual specimens (of the 237 C-NPs and 158

A-NP/OPs described) is available upon request. This also includes the 56 NP-STGG and

56 OP-STGG adult specimens that were cross-compared to original combined co-cultured

results. Sequence subtypes of cmPCR amplicons shorter than 200 bp are included within

Table S1 (due to current GenBank policy barring their inclusion). GenBank accessions

KC771356–KC771416 represent all additional cmPCR amplicon sequences >200 bp

in length from this study except for those noted as being already documented within

GenBank. All housekeeping locus sequences were deposited in GenBank with accessions

KC808157–KC808165 and KC779228–KC779254.

RESULTS
Culture based pneumococcal carriage and cmPCR serotyping
results
In children, we found an 85.2% (202/237) NP carriage frequency, with isolation of

pneumococci of 40 different sts and 9 isolates that were non-serotypeable (Tables 1

and 2). In 118 HIV-positive adults, pneumococcal isolation results revealed an NP/OP

carriage frequency of 40.7% with 20 sts (Tables 1 and 3). Among A-NP/OPs from 40

HIV-negative individuals, 5 were culture-positive for one of 5 sts (4, 11A, 18C, 19F,

23F) for a carriage frequency of 12.5% (Tables 1 and 4). Sts 19F and 23F were the most

frequently culture-derived sts in C-NPs, while 19F and 11A were the most common among

HIV-positive adult NP/OP specimens (A-NP/OPs) (Tables 1 and 3). Nineteen of the 20

serotypes recovered from A-NP/OPs were also found in children, with the exception of 7A,

recovered from a single HIV-positive A-NP/OP.

In C-NPs the ratios of total cmPCR-positive/Quellung results ranged from 1.0 to

13.0 (Table 2, column 4). The three highest ratios (13.0, 8.0, and 7.0) were restricted to
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Table 1 Summary of pneumococcal culture, lytA testing, and cmPCR-testing of carriage specimens
from children and adults.

Children NPs
(n= 237)

HIV+ adult NP/OPs
(n= 118)

HIV− adult NP/OPs
(n= 40)

No. pneumococcal culture+ (%) 202 (85.2) 48 (40.7) 5 (12.5)

No. lytA+ (%) 221 (93.2) 105 (89.0) 24 (60.0)

No. cmPCR+ (%) 219 (92.4) 116 (98.3) 38 (95.0)

No. lytA− and cmPCR− (%) 14 (5.9) 1 (0.8) 2 (5.0)

cmPCR+, lytA− (%) 2 (0.8) 12 (10.2) 14 (35.0)

pneumococcal culture+, lytA− (%) 0 0 0

Quellung serotypes found only from single isolates (10F, 19A, and 24B). For serotypes

representing multiple pneumococcal isolates this ratio ranged from 1.0–3.7. The cmPCR

serotype/Quellung serotype ratios were generally greater from A-NP/OPs than from

C-NPs (Tables 2–4). The greatest ratio was shown for sts 18A and 18C, identified by

Quellung in 2 HIV-positive adults, which corresponded to cmPCR-positive A-NP/OPs

for sg18 from 70 individuals in this population (Table 3). Among A-NP/OPs there

were 39 instances involving 21 different cmPCR types where we found a lack of any

corresponding pneumococcal isolation (Quellung) -based results (Tables 3 and 4); among

children, there was only 1 such instance. This trend was apparent in both HIV-positive and

HIV-negative adults, with the 2 most prevalent examples in both groups being cmPCR

types 10F/10C/33C (78.0–87.5% frequency) and 33F/33A/37 (48.3%–75% frequency)

(Tables 3 and 4).

Real time PCR (lytA) and cmPCR results
Overall, more carriage specimens were positive for the presence of pneumococci using

real-time lytA PCR than by culture. While among children the number of lytA-positive

C-NPs was close to the number positive by culture (93.2% compared to 85.2%, respec-

tively) (Table 1), results differed when comparing the 2 parameters from the A-NP/OPs

(89.0% lytA-positive vs 40.7% culture-positive in HIV+ and 60% lytA-positive vs.12.5%

culture-positive in HIV−).

Testing A-NP/OPs with cmPCR produced many more positive results compared to

culture. While, again, there was a modest increase in the number of cmPCR-positive C-NPs

compared to culture positive C-NPs (92.4% vs 85.2%), there was approximately 2.4-fold

more cmPCR-positive A-NP/OPs in the HIV-positive set (98.3% vs 40.7%) and 7.6-fold

more cmPCR-positive A-NP/OPs in the HIV-negative set (95.0% vs 12.5%).

We found close agreement in the number of positive C-NPs when tested by cmPCR and

by lytA, however, in A-NP/OPs there was a notable increase of cmPCR-positive specimens

compared to lytA-positive specimens. Another observation that markedly differed between

C-NPs and A-NP/OPs was the relatively large numbers of cmPCR-positive A-NP/OPs

samples that were also lytA-negative (two C-NPs (0.8%) vs 12 (10.2%) of HIV+A-NP/OPs

vs 14 (35.0%) of HIV-negative A-NP/OPs; Table 1).There were very large numbers of

Carvalho et al. (2013), PeerJ, DOI 10.7717/peerj.97 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.97


Table 2 Pneumococcal isolation-based serotyping results in children (n= 237) with corresponding cmPCR results.

Serotypes detected by culture (corre-
sponding sts co-detected by cmPCR)

No. Isolation/Quellung-positive
(percentage of specimens)

No. cmPCR-positive (percentage of speci-
mens)/number corresponding to positive
Quellung (percentage of Quellung-positive
specimens)

Ratio of cmPCR-
positives/culture
Quellung-positive

19F (19F) 30a (12.2) 37 (15.7)/30 (100) 1.2

23F (23F) 19 (8.0) 31 (13.1)/17 (89.5) 1.6

6A (6A/6B) 15a (6.4)

6B (6A/6B) 13 (5.5)
42 (17.7)/27 (96.4) 1.5

14 (14) 11 (4.6) 28 (11.8)/11 (100) 2.5

11A (11A/11D) 9a (3.8) 13 (5.5)/9 (100)a 1.4

19B (not in cmPCR assay) 7 (3.0) 0 0

1 (1) 6a (2.5) 9 (3.8)/6 (100) 1.5

13 (13) 6 (2.5) 8 (3.4)/4 (66.7) 1.3

20 (20) 5 (2.1) 7 (3.0)/5 (100)a 1.4

15B (15B/15C) 5 (2.1)

15C (15B/15C) 5a (2.1)
12 (5.1)/10 (100)b 1.2

34 (34) 5a (2.1) 9 (3.8)/5 (100) 1.8

10A (10A) 4 (1.7) 6 (2.5)/4 (100)b 1.5

23B (23B) 4 (1.7) 7 (3.0)/4 (100) 1.8

35B (35B) 4 (1.7) 8 (3.4)/4 (100) 2.0

3 (3) 3a (1.3) 6 (2.5)/2 (66.7) 2.0

18A (18A/18B/18C/18D) 3 (1.3)

18C (18A/18B/18C/18D) 1 (0.4)
8 (3.4)/4 (100) 1.8

17F (17F) 3 (1.3) 4 (1.7)/3 (100)b 1.3

23A (23A) 3a (1.3) 3 (1.3)/3 (100)a 1.0

16F (16F) 3 (1.3) 8 (3.4)/3 (100) 2.7

15A (15A/15F) 3 (1.3) 11 (4.6)/3 (100)a 3.7

4 (4) 3 (1.3) 8 (3.4)/3 (100) 2.7

5 (5) 2 (0.8) 2 (0.8)/ 2 (100) 1.0

7F (7F/7A) 2 (0.8) 5 (2.1)/2 (100) 2.5

9V (9V/9A) 2 (0.8) 2 (0.8)/2 (100) 1.0

12F (12F/12A/44/46) 2 (0.8)

46 (12F/12A/44/46) 2 (0.8)
13 (5.5)/4 (100) 3.2

38 (38/25F/25A) 2 (0.8)

25A (38/25F/25A) 1 (0.4)
9 (3.8)/2 (66.7)a 3.0

21 (21) 2a (0.8) 6 (2.5)/ 2 (100) 3.0

6C (6C/6D) 1 (0.4) 1 (0.4)/1 (100) 1.0

9L (9N/9L) 1 (0.4) 1 (0.4)/1 (100) 1.0

10F (10F/10C/33C) 1 (0.4) 13 (5.5)/1 (100) 13.0

19A (19A) 1 (0.4) 8 (3.4)/1 (100) 8.0
(continued on next page)

co-carried cmPCR types in A-NP/OPs (up to 11–12 with average of 5.3–6.5) compared to

C-NPs (maximum of 5 with average of 1.5) (Table 5).

Identifying cmPCR types within lytA-negative specimens was an unexpected finding

(Table 5). To verify these findings, we sequenced 28 amplicons from 13 different
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Table 2 (continued)
Serotypes detected by culture (corre-
sponding sts co-detected by cmPCR)

No. Isolation/Quellung-positive
(percentage of specimens)

No. cmPCR-positive (percentage of speci-
mens)/number corresponding to positive
Quellung (percentage of Quellung-positive
specimens)

Ratio of cmPCR-
positives/culture
Quellung-positive

24B (24A/24B/24F) 1 (0.4) 7 (3.0)/1 (100) 7.0

28F (not in mPCR assay) 1 (0.4) 0 0

35A (35A/35C/42) 1 (0.4) 2 (0.8)/1 (100) 2.0

35F (35F/47F) 1 (0.4) 5 (2.1)/1 (100) 5.0

(2) 0 0/1 (0) 0

nontypeable (PCR-NT) 9a (3.8) 16c (6.8) 1.8

Notes.
a Found in combination with 1 other serotype in 1–3 specimens.
b 1–3 culture-positive specimen(s) initially found cmPCR-negative for the corresponding serotype were retested using monoplex PCR reaction and were subsequently

found positive.
c Specimens positive for cpsA positive control and negative for serotype or serogroup.

lytA-negative A-NP/OPs representing 13 different cmPCR types and 26 sequence subtypes

(Table 6). Each of the 28 amplicons shared the exact same length as the pneumococcal

reference amplicon for the serotype (38–628 bp), and each subtype displayed 86–100%

sequence identity to the targeted pneumococcal serotype.We verified the most extreme

example of cmPCR type diversity within a single lytA-negative A-NP/OP; this specimen

(No. 300) contained 10 different cmPCR types. We obtained all 10 amplicon sequences

corresponding to all 10 observed cmPCR types, including subtypes 300.2, 300.5, 254.7,

300.10A, 300.10, 269.18, st39.39, 300.17F, 300.9, and 329.33. These subtypes exhibited a

range of 91.4–100% sequence identity to published pneumococcal reference amplicons of

corresponding serotypes (Table 6).

Two putatively non-pneumococcal cmPCR amplicon sequence subtypes, 32.10 and

257.18, were identified from the only two lytA-negative, cmPCR-positive C-NP specimens.

Although causal subtype 32.10 bacterial strains were not recovered from specimens in

this study, this subtype was previously found within two different lab reference strains

of S. oralis (Carvalho et al., 2012). Sequence subtype 257.18 was recovered from both an

A-NP/OP and a C-NP, from which the causal non-pneumococcal strain was isolated and

identified as S. mitis on the basis of multilocus sequence analysis (Table 6, Fig. 1).

cmPCR amplicon features
We found all 40 cmPCR assay types (Carvalho et al., 2010) within these 395 study

specimens (Tables 2–4). Table 6 depicts sequence data from 153 amplicons that represent

23 cmPCR types chosen for sequence analysis. Within these 23 cmPCR types, a total

of 61 sequence subtypes were found. For 19 of the 61 subtypes, each representing 1–11

specimens, matching Quellung-based and cmPCR-based findings were obtained (for

sts 1, 3, 4, 5, 6A, 6B, 7F, 9L, 9V, 10A, 10F, 13, 14, 17F, 18A, 18C, 19A, 19F, and 23F).

Fifteen of these 19 cmPCR subtypes (st1.1, st4.4, st5.5, st6A.6, st7F.6, st9V.9, st10F.10,

st13.13, st14.14, st17F.17F, st18A.18, st18C.18, st19A.19A, st19F.19F, and st23F.23F) shared

sequence identity over their 130–759 bp overlap with the corresponding pneumococcal

reference amplicons. For serogroup 18, the slight sequence differences between the 18A
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Table 3 Isolation and Quellung reaction based serotyping results in HIV-positive adults (n= 118) with corresponding cmPCR results.

Serotypes detected by culture (corre-
sponding sts co-detected by cmPCR)

No. Isolation/Quellung-positive
(percentage of specimens)

No. cmPCR-positive (percentage of speci-
mens)/number corresponding to positive
Quellung (percentage of Quellung-positive
specimens)

Ratio of cmPCR-
positives/culture
Quellung-positive

19F (19F) 7 (5.9) 13 (11.0)/7 (100) 1.9

11A (11A/11D) 5 (4.2) 11 (9.3)/5 (100) 2.2

3 (3) 5 (4.2) 9 (7.6)/4 (80) 1.8

6A (6A/6B) 4 (3.4)

6B (6A/6B) 1 (0.8)
7 (5.9)/5 (100) 1.4

16F (16F) 4 (3.4) 5 (4.2)/4 (100) 1.2

13 (13) 3 (2.5) 9 (7.6)/3 (100) 3.0

4 (4) 2 (1.7) 6 (5.1)/2 (100) 3.0

23F (23F) 2 (1.7) 5 (4.2)/2 (100) 2.5

21 (21) 2 (1.7) 17 (14.4)/1 (50) 8.5

15B (15B/15C) 2 (1.7) 5 (4.2)/2 (100) 2.5

1 (1) 2 (1.7) 3 (2.5)/2 (100) 1.5

34 (34) 2 (1.7) 6 (5.1)/2 (100) 3.0

18C (18C/18A/18B/18F) 1 (0.8)

18A (18C/18A/18B/18F) 1 (0.8)
70 (59.3)/2 (100) 35.0

7F (7F/7A) 1 (0.8)

7A (7F/7A) 1 (0.8)
7 (5.9)/2 (100) 3.5

14 (14) 1 (0.8) 4 (3.4)/1 (100) 4.0

35B (35B) 1 (0.8) 6 (5.1)/1 (100) 6.0

15A (15A/15F) 1 (0.8) 6 (5.1)/1 (100) 6.0

(10F/10C/33C)a 0 92 (78.0)

(33F/33A/37)a 0 57 (48.3)

(2) 0 38 (32.2)

(39) 0 38 (32.2)

(20) 0 37 (31.3)

(5) 0 35 (29.7)

(35A/35C/42)a 0 22 (18.6)

(10A) 0 21 (17.8)

(22F/22A)a 0 20 (16.9)

(17F) 0 20 (16.9)

(9N/9L)a 0 13 (11.0)

(24A/24B/24F)a 0 11 (9.3)

(12F/12A)a 0 9 (7.6)

(7C/7B/40)a 0 5 (4.2)

(8) 0 4 (3.4)

(31) 0 1 (0.8)

Nontypeable (PCR-NT) 0 3 (2.5)b

Notes.
a All individual component serotypes are identifiable by Quellung reaction.
b PCR-NT defined as detection of only the cpsA control amplicon without detection of any serotype/serogroup-specific amplicons.
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Table 4 Isolation and Quellung reaction based serotyping results in HIV-negative adults (n= 40) with corresponding cmPCR results.

Serotypes detected by culture (corre-
sponding sts co-detected by cmPCR)

No. Isolation/Quellung-positive
(percentage of specimens)

No. cmPCR-positive (percentage of speci-
mens)/number corresponding to positive
Quellung (percentage of Quellung-positive
specimens)

Ratio of cmPCR-
positives/culture
Quellung-positive

4 (4) 1 (2.5) 4 (10.0)/1 (100) 4.0

11A (11A/11D) 1 (2.5) 3 (7.5)/1 (100) 3.0

18C (18C/18A/18B/18F) 1 (2.5) 24 (60.0)/1 (100) 24.0

19F (19F) 1 (2.5) 1 (2.5)/1 (100) 1.0

23F (23F) 1 (2.5) 2 (5.0)/1 (100) 2.0

(10F/10C/33C)a 0 35 (87.5)

(33F/33A/37)a 0 30 (75.0)

(20) 0 23 (57.5)

(5) 0 16 (40.0)

(10A) 0 15 (37.5)

(39) 0 15 (37.5)

(7F/7A)a 0 13 (32.5)

(2) 0 12 (30.0)

(22F/22A)a 0 12 (30.0)

(9N/9L)a 0 12 (30.0)

(35A/35C/42)a 0 10 (25.0)

17F 0 10 (25.0)

21 0 10 (25.0)

(12F/12A)a 0 8 (20.0)

(13) 0 5 (12.5)

(35B) 0 4 (10.0)

(34) 0 3 (7.5)

(24A/24B/24F)a 0 3 (7.5)

(6A/6B)a 0 1 (2.5)

(3) 0 1 (2.5)

(15A/15F)a 0 1 (2.5)

(9V/9A)a 0 1 (2.5)

Notes.
a All individual component serotypes are identifiable by Quellung reaction.

and 18C amplicons (share 97.6% identity over 511 bp) were in each of 7 instances

predictive of serotype 18A (4 instances) or of serotype 18C (3 instances). Four sequence

subtypes– 41.3, 359.6, 119.9, and 47.10A– displayed minor sequence differences compared

to the reference subtypes even though they were found within pneumococcal isolates

of corresponding Quellung-derived serotypes (Table 6) and also were found within the

corresponding specimen DNA extracts in an isolation-independent manner. Only one

subtype with sequence identity to its respective pneumococcal serotype reference sequence

(st39.39) was associated with a non-pneumococcal source, however, this cmPCR amplicon

was only 38 bp after subtraction of PCR primer sequences (Table 6). We were unable to

associate the cmPCR subtype st3.3 with a corresponding pneumococcal isolate, although it

shared sequence identity to the pneumococcal reference sequence for the serotype.
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Figure 1 Phylogenetic analysis of 3063 bp concatenated housekeeping gene fragments from 9 non-
pneumococcal. cmPCR+ strains isolated during this study (indicated as S. mitis-1, etc.). Numbers
to left indicate % sequence identity of concatenated 3063 bp from strain compared to represented S.
pneumoniae strain at top of dendrogram. Numbers to right of strain (parenthesis) indicates percent iden-
tity of the 3063 bp sequence to the closest matching MLSA database strain (http://viridans.emlsa.net/).
Also included are strain cmPCR sequence subtype designations (from Table 6) and specimen source.
Dendrogram was created by subjecting aligned 3063 sequences to the neighbor-joining approach using
the uncorrected distance method.

Twenty-six cmPCR subtypes, corresponding to 15 cmPCR types, were associated with

lytA-negative specimens, suggestive of non-pneumococcal species (Table 6). As shown

in Fig. 1, each of the 8 subtypes associated with one of 9 distinct non-pneumococcal

strains represented a distinct strain within one of 3 different mitis group species, with

the exception of 378.10 which was found in two genetically distinct S. oralis strains.

Within this limited sampling of individual cmPCR types, an unexpected degree of
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sequence diversity was observed. While all 10 cmPCR-18C/A/B/F positive specimens

that corresponded to st18A or st18C pneumococci displayed sequence identity to st18A

and st18C reference amplicons, respectively, the remaining 7 cmPCR-18C/A/B/F positive

specimens represented 3 quite divergent sequence subtypes described earlier (Carvalho

et al., 2012), including 257.18 that was 90.5% identical to the reference sequence. Even

more subtype diversity was observed within cmPCR type 10F/10C/33C. The one amplicon

sequence examined from a specimen that yielded a serotype 10F pneumococcal isolate

was identical to the pneumococcal 10F amplicon reference (Table 6). Nine other cmPCR

type 10F/10C/33C amplicons, including 7 from lytA-negative specimens, yielded 7

additional diverse cmPCR subtypes that displayed only 92–94% identity to the published

pneumococcal reference amplicon (Table 6). In contrast, two of the 6 cmPCR type 5

subtypes that were associated with non-pneumococcal sources (one identified from

S. mitis and one associated with a lytA-negative specimen) and displayed amplicon

sequences very similar to the st5 reference sequence (96.6–99% identity) (Table 6, Fig. 1).

Seventeen cmPCR types were found in this study from which representative amplicons

were not subjected to sequence analysis (cmPCR types 7C/7B/40, 6C/6D, 8, 11A/11D,

15B/15C, 16F, 20, 21, 23A, 23B, 24A/24B/24F, 31, 34, 35A/35C/42, 35B, 35F/47F,

and 38/25F/25A). Of these, cmPCR types 20, 21, 24A/24B/24F, 35A/35C/42, and 35B

were found within multiple lytA-negative specimens, which suggests their presence in

non-pneumococcal carriage strains. Also consistent with this notion was the high numbers

of positive specimens for these 5 cmPCR types in A-NP/OPs relative to the isolation of

pneumococci expressing these serotypes (Tables 3 and 4; note high cmPCR/Quellung

ratios and/or absence of Quellung-based data). For 14 cmPCR subtypes depicted in Table 6

(see last column, “unknown” association), representing 9 cmPCR types, associations with

either pneumococcal or non-pneumococcal sources could not be determined due to lack of

representation in pneumococcal isolates or in lytA-negative specimens.

The cmPCR sequence subtypes st1.1, st19A.19A, st19F.19F, and st23F.23F were

encountered multiple (3–11) times in both adult and child specimens that were either

positive or negative for pneumococcal isolates of the corresponding serotype (Table 6)

and were the only representative sequence subtype of their corresponding serotype.

In addition, none of the lytA-negative specimens in this study were positive for these 5

cmPCR types.

The majority of cmPCR-type diversity from adults is derived from
oropharyngeal microbiota
We compared the numbers of cmPCR types from corresponding separate OP and NP

specimens from 39 adults (24 HIV− and 15 HIV+) (Table 7). We found that A-OP

specimens accounted for 91.3–95.6% of the cmPCR types found within corresponding

A-NP/OP specimens (94/103 within HIV− adults and 94/103 within HIV+ adults).

In contrast, within an expanded sampling of 56 subject specimen sets (including the

39 sets tested for cmPCR types), we recovered 2.2–3.5 fold more pneumococcal isolates

from A-NP specimens than from corresponding A-OP or combined A-NP/OP specimens
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Table 7 Cross-comparison of cmPCR findings from 39 A-NP/OPs specimens with separate NP and OP specimens.

Study group (No.
specimens)

Cumulative No. of positive cmPCR serotype results (range within specimens)

Combined NP/OP OP alone Shared between NP/OP
and OP

NP alone Shared between NP/OP and
NP

HIV− adults
(n= 24)

161 (3–11)
average= 6.7

175 (3–12)
average= 7.3

154 (2–11)
average= 6.4

5 (1–2)
average= 0.2

4 (1–2)
average= 0.17

HIV+ adults
(n= 15)

103 (4–12)
average= 6.9

118 (5–12)
average= 7.9

94 (4–11)
average= 6.3

15 (0–8)a

average= 1.0
11 (0–7)
average= 1.4

Notes.
a One specimen among the 15 yielded 8 cmPCR serotypes; all others had 0–1 cmPCR serotypes.

(Tables 8A and 8B). Four of 28 (14.3%) NPs and one of 28 OPs (3.6%) from HIV-negative

individuals were found to be culture-positive that corresponded to A-NP/OPs originally

tested as culture-negative (Table 8A). Similarly, in HIV+ individuals, 6 of 25 NPs

(24%) that corresponded to originally culture-negative combined NP-OP results were

pneumococcal isolation-positive.

Non-pneumococcal Mitis group streptococci recovered from A-OP,
A-NP, and C-NP specimens
From 56 adults, a total of 448 different non-pneumococcal (optochin-resistant and

bile-insoluble; 115 from A-NPs and 333 from A-OPs) isolates were recovered that

represented a broad variety of colony types. In addition, we recovered 4 colonies from

two lytA-negative C-NP specimens in the same manner.

We cmPCR typed all colonies representing different morphologies from the 56 A-OPs

(total of 333 colonies) and 56 A-NPs (total of 115 colonies), corresponding to 56 original

A-NP/OPs. In addition, we cmPCR typed 4 colonies from the only two lytA-negative C-NP

specimens that were cmPCR-positive. Cumulatively, we found 9 cmPCR-positive non-

pneumococcal strains (1 from C-NP, 7 from A-OP, 1 from A-OP and A-NP of same indi-

vidual). On the basis of multi-locus sequence analysis of concatenated housekeeping gene

fragments, these were identified as S. oralis (6 strains, cmPCR subtypes 376.12, 375.13,

291.33, 276.15, and 378.10). S. mitis (2 strains, cmPCR types 257.18 and 294.5), and

S. parasanguinis (1 strain, cmPCR subtype 387.10) (Fig. 1). These 3063 bp sequences

shared 91.8–96.1% sequence identity to corresponding sequences from representative

pneumococcal strains. All 9 strains were found to be lytA-negative, were Quellung-

nontypeable, and non-encapsulated when visualized with capsule stain. cmPCR subtypes

from two of these non-pneumococcal strains were found in multiple study specimens.

cmPCR subtype 257.18, recovered from a C-NP, was also observed from a lytA-negative

HIV+ A-NP/OP (Table 8). cmPCR subtype 378.10 was recovered from 2 genetically

distinct S. oralis strains (Fig. 1) that were isolated from different A-OP specimens (Table 6).
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Table 8 Pneumococcal isolation-based serotyping data from cross-compared A-NP/OPs, NPs alone,
and OPs from 31 HIV-negative (A) and 25 HIV-positive (B) adults.

Specimen NP NP/OP OP

A

1 23F 23F 23F

2 18C 18C 18C

3 4 4 neg

4 35C neg neg

5 35A neg neg

6 34 neg neg

7 23A neg neg

8 neg neg 35B

9–31 neg neg neg

Total positive specimens 7 3 3

B

32 6B 6B 6B

33 23F 11A 23F

34 13 13 13

35 19F 19F neg

36 7C neg 7C

37 neg 11A 11A

38 35A neg neg

39 34 neg neg

40 34 neg neg

41 3 neg neg

42 13 neg neg

43 16F neg neg

44–56 neg neg neg

Total positive specimens 11 5 5

DISCUSSION
We have shown a small portion of what is an as yet unquantified upper respiratory

reservoir of non-pneumococcal mitis group streptococcal strains that carry homologs

of a large percentage of the known pneumococcal serotype or serogroup-specific genes

that encode enzymes for specific polymerization and export functions (wzy and wzx genes;

Aanensen et al., 2007). These genes serve as targets for the majority of the 40 individual

primer sets that we employ. For example, we suspect that the majority of the cmPCR

type 2-positive specimens reflects non-pneumococcal strains, given overall positivity

in >30% of A-NP/OPs, while no serotype 2 pneumococcal strains were recovered. It

is quite likely that many individual cmPCR sequence subtypes even within the same

cmPCR type represent distinct non-pneumococcal strains of one or more species (as

judged by MLSA (Fig. 1)). Among only 5 cmPCR type 2 amplicons, we found 4 distinct

sequence subtypes (Table 6). The remaining 51 cmPCR-positive specimens are predicted

to represent numerous additional type 2 subtypes. Strain and even species diversity within
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such cmPCR types remains to be investigated. For example, with relatively little sampling

we have now found 4 different cmPCR-positive mitis group species for the cmPCR type

10F/10C/33C amplicon (S. oralis, S. parasanguinis, S. infantis, and S. gordonii) (this study

and Carvalho et al., 2012). In a previous study, we reported associating a Streptococcus

salivarius (salivarius group) reference strain with this cmPCR type (Carvalho et al., 2012).

Subsequently, we have found that our records were in error and that this strain (SS1061) is

a strain of the mitis group species Streptococcus gordonii.

While culture-independent cmPCR-serotyping of A-OP or combined A-OP/NP speci-

mens added a very large number of false-positive results into our study, this technique also

added valuable pneumococcal serotype detection data to the C-NP portion of this study.

We believe that culture-independent cmPCR of these enriched specimens added valuable

missed data for each of the vaccine-targeted serotypes 19F, 23F, 6A, 6B, 14, 1, 3, 4, and

7F (Table 2). Even though the evidence is not quantitatively supported by pneumococcal

isolation data, it does suggest that few, if any, confounding non-pneumococcal amplicon

results were obtained for these serotypes. Within C-NPs none of these “cmPCR serotypes”

were observed that were not represented in the overall sampling by cultured pneumococci.

For each of these targets, amplicon sequences were identical whether they were derived

from specimens that were culture-positive for the corresponding pneumococcal serotype

or not.

Unfortunately, the false-positive information that this culture-independent method

introduced is difficult to quantitate. While real time PCR-serotyping is predicted to

add somewhat more specificity for pneumococcal targets than cmPCR, real time PCR

may similarly detect non-pneumooccal strains among carriage specimens. For example,

we applied our recently developed triplexed real time assay (Pimenta et al., 2012) on

the non-pneumococcal strains depicted in Fig. 1 that were cmPCR-positive. While we

found that the S. oralis strains with the cmPCR subtypes 376.12F and 291.33F were

each strongly positive for the corresponding real-time PCR assay in triplex or monoplex

format (for detecting 12F/12A/44/46 and 33F/33A/37 respectively), the other 7 strains

were uniformly negative for their respective real time PCR assay. It is possible that any

single PCR assay used for detection of pneumococci in the upper respiratory tract has

a risk of cross-reaction with related mitis group streptococci. We have this concern for

the CDC lytA assay, however, we presently have no data suggesting that it cross-reacts

with non-pneumococcal species. Currently we can only state from the data shown in

Table 1 that while we found lytA-positivity for numerous specimens from which we

did not recover pneumococci, especially from adult NP/OPS, we did not encounter any

lytA-negative specimens that yielded pneumococcal isolates. The nine cmPCR-positive

non-pneumococcal strains described in this study were found to be lytA-negative.

Although this finding is not conclusive, it is consistent with observations that indicate the

specificity of the CDC lytA assay for pneumococcal identification (Carvalho et al., 2007).

The majority of these non-pneumococcal homolog sequence subtypes have not

been documented or characterized at this time. Indeed, except for the cmPCR type

10F/10C/33C subtypes which are highly homologous to known mitis group counterparts
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(Yoshida et al., 2008; Yang et al., 2009), all of the subtype sequences depicted in Table 8

most closely matched their known pneumococcal counterparts. Similar known S. oralis

amplicon sequences lie within operons quite similar to their pneumococcal sg10 cps

operons and encode the apparatus responsible for synthesis of coaggregation receptor

polysaccharides (Yoshida et al., 2008; Yang et al., 2009). The limited sequence-based

associations made here in no way preclude identical amplicon subtypes from being shared

between pneumococci and other related species. On the contrary, such findings are entirely

expected, and a case in point is a suspected non-pneumococcal source for the single st39.39

subtype found within a lytA-negative specimen (Table 6). While all colony types were

screened for non-pneumococcal sources of cmPCR amplicons, only pneumococci and

other alpha-hemolytic mitis group species were implicated as cmPCR-positive.

One issue that concerned us was the possibility that the real time lytA PCR assay

might cross-react with non-pneumococcal species present in the upper respiratory tract.

This was especially concerning in view of the relatively high frequency of lytA-positive

A-NP/OPs relative to pneumococcal culture-positive A-NP/OPs (approximately 2-fold and

5-fold more lytA-positives relative to culture-positives in HIV-positive and HIV-negative,

respectively, as shown in Table 1). In part this discrepancy could be due to greater technical

difficulty in isolating pneumococci from oropharyngeal flora relative to nasopharyngeal

flora, as shown by our relatively poor isolation rates from retrospectively tested OP

specimens (Table 8). From the limited re-testing results within our laboratories, it appears

that we have under-estimated pneumococcal carriage within the A-NP/OPs described

here (Tables 8A and 8B). In the cross-comparison of adult NP and OP specimen testing

results, we could project a total of 17 more culture-positives among the 70 HIV-positive

culture-negative combined NP/OP specimens, which would have resulted in a 55.1%

carriage frequency (rather than 40.7% as shown in Table 1). Similarly, among the

HIV-negative specimens we missed 5 positive results (4 NPs and 1 OP) corresponding

to 28 A-NP/OP specimens that were originally found to be culture-negative. This

would translate to 6 additional positives among the original 35 culture-negative NP/OPs

(Table 1), more than doubling our original culture-based findings to 27.5%.

While the magnitude of putative non-pneumococcal cmPCR-positive results were

evident within the A-NP/OPs (Tables 3 and 4), we demonstrated that the majority of

this confounding data was conferred from A-OP specimens (Tables 6 and 7).While we

believe that the majority of the cmPCR data shown in Table 2 from C-NPs accurately

predicts pneumococci of corresponding sequence types, at least a small percentage

of non-pneumococcal cmPCR –positive results can be found within the pediatric

nasopharyngeal reservoir, since we isolated a S. mitis strain of cmPCR subtype 257.18

from one C-NP specimen.We quantitatively investigated the cmPCR-18C/A/B/F data

from C-NPs and found that of the 4 amplicons not corresponding to st18C or st18A

pneumococcal isolates, 2 amplicons shared an identical sequence with the published

st18A reference (http://www.cdc.gov/ncidod/biotech/files/pcr-oligonucleotide-primers.

pdf), one shared sequence identity with the published st18C reference, and one was

divergent (257.18) from lytA-negative specimen from which the causal S. mitis was
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recovered. Subtype 32.10 is also likely to be present within non-pneumococcal pediatric

nasopharyngeal flora, since it was originally identified from S. oralis reference strains

(Carvalho et al., 2012) and was also associated with a single lytA-negative C-NP (Table 8).

In contrast to cmPCR type 18C/A/B/F, several other cmPCR types corresponding to

important serotypes included in conjugate vaccines (cmPCR types 1, 19A, 19F, and 23F)

were reflected by single sequence subtypes among multiple sequenced amplicons, were

associated only with pneumococcal isolates, and were not found among lytA-negative

specimens in this study (Table 6). These results indicate that these particular cmPCR

reactions are potentially pneumococcal-specific.

Although the nasopharynx is believed to be the principal carriage reservoir of

S. pneumoniae in children, the organism also resides in the oropharynx. Although

NP sampling is believed to be more representative overall of carriage strains than OP

sampling, using both NP and OP sampling in adults modestly enhanced the detection of

pneumococcal carriage (Watts et al., 2004). In contrast, a large-scale study performed in

Burkina Faso indicated that adding OP swab data to NP swab data increased culture-based

carriage detection by 60% (Mueller et al., 2012). While our small cross-comparison of 56

NP, OP, and combined NP/OP specimens indicate that NP specimens were the preferred

specimen for pneumococcal isolation, it is important to note that our methods differ

in that we employ broth-preculture before plating for isolation. Additionally we do not

employ gentamycin selection in our isolation plates, however, we have found that using

this selection does not improve our results in recovering pneumococci from NP or OP

specimens (data not shown).

In conclusion, while usage of culture-independent cmPCR for more sensitive detection

of pneumococcal serotypes in broth-enriched NP specimens appears promising, more

analysis is necessary. Presently it is our opinion that pneumococcal strain isolation is a

necessary component of carriage studies, and that serotyping by conventional or molecular

methods should be done on colonies confirmed to be pneumococcal. When performing

cmPCR to assess pneumococcal serotype distribution on specimens directly, it is necessary

to correlate specific “cmPCR-serotype” amplicon sequence subtypes with their existence

in pneumococcal strains of the concordant serotype. We admit that even this precaution

is not completely satisfactory, due to the possible presence of specific amplicon sequence

subtypes in both pneumococcal and non-pneumococcal strains. Enrichment culture to

enhance pneumococcal recovery and detection that combines NP specimens together with

OP specimens should be avoided, since OP specimens are apparently a much richer source

of non-pneumococcal mitis group strains that confound cmPCR serotype assessment and

potentially mask the presence of pneumococcal strains.
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