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The realization that cancer progression required the participation of cellular genes provided one of several key rationales,
in 1986, for embarking on the human genome project. Only with a reference genome sequence could the full spectrum of
somatic changes leading to cancer be understood. Since its completion in 2003, the human reference genome sequence
has fulfilled its promise as a foundational tool to illuminate the pathogenesis of cancer. Herein, we review the key his-
torical milestones in cancer genomics since the completion of the genome, and some of the novel discoveries that are
shaping our current understanding of cancer.

The 40 years’ ‘‘war on cancer’’
The U.S. declaration of war on cancer, in 1971, was the product of

heady optimism following the remarkable technological feat of

landing on the moon. Recombinant DNA cloning was still in its

infancy and not yet a match for the task of unraveling the full

complexity of the human cell. Nevertheless, the proof that muta-

tion of normal genes could cause cancer, a fact we take for granted

today, led Dulbecco to realize as early as 1985 the value of ob-

taining the sequence of all the human chromosomes as the

foundation for understanding cancer (Dulbecco 1986). The con-

temporaneous discussion about generating the complete human

sequence represented an astonishing leap since, at the time, se-

quencing a single gene of about 1 kilobase was worthy of a PhD

dissertation, and the human genome was 3 million times larger.

The repeat structure of the human genome was well characterized

and also viewed by some to be an insurmountable obstacle to such

an endeavor and grounds for early resistance (Robertson 1986) to

the project. Despite these obstacles, an international effort led to

the completion of the human reference genome in 2003 (In-

ternational Human Genome Sequencing Consortium 2004), and

with a finished human genome reference in hand, it became

possible to test in earnest the value of genomic approaches to

decipher the genetic changes that lead to cancer. The data that

have emerged since 2003 overwhelmingly support the value of

this vision and have changed the way cancer is researched and

understood.

During the period of the sequencing of the human genome

(1990–2003) (http://www.ornl.gov/sci/techresources/Human_

Genome/project/about.shtml), cancer researchers continued to

accumulate knowledge of the basic mechanisms of cancer, and

using a variety of clever cloning strategies, with steadily improving

sequencing capabilities, identified the majority of the most potent

oncogenes and tumor suppressors. An inventory of the genes as-

sociated with cancer yielded 291 cancer genes based on mutation

data available in the literature: ;1% of the coding sequence

(Futreal et al. 2004). It was noted that 90% of these genes were

somatically mutated, 20% germline mutated, and 10% could be

found in both categories. The division between germline and

somatic genes is a mysterious dichotomy that remains unex-

plained in the most current inventory (http://www.sanger.ac.

uk/genetics/CGP/Census/). The most common form of varia-

tion in the 2004 inventory was translocation leading to the

production of oncogenic fusion proteins. Until 2004, no one

had studied more than a handful of genes at any one time in

a single patient.

That was the state of cancer genomic research at the threshold

of the ‘‘genomic era’’ of cancer research: an era heralded by the

availability of the high-quality reference genome, and the dra-

matic explosion of DNA sequence data fueled by the introduction

of inexpensive massively parallel sequencing instruments. This

year is the 10th anniversary of the completion of that remarkable

milestone in science—the completion of the reference human

genome. At this juncture, we recapitulate some of the key findings

and challenges that have emerged from the sequence analysis of

the cancer genome.

The armamentarium
With base-level resolution of the human reference genome in

hand, cancer researchers turned to the large-scale study of muta-

tion, with the promise of generating the entire catalog of muta-

tions peculiar to a given disease as well as to a single patient. Figure 1

tracks the development of some of the key technologies, resources,

and milestones in the development of the present-day armamen-

tarium of cancer mutation discovery. Massively parallel sequenc-

ing was introduced by Roche 454 and Illumina in 2004–2006 and

soon demonstrated the feasibility of sequencing complete normal

and tumor genomes of exemplar human subjects on both plat-

forms (Ley et al. 2008; Wheeler et al. 2008). At the time, it appeared

that the application of whole-genome sequencing to routine re-

search and clinical diagnosis might be on the horizon. Although

the use of whole-genome sequence (WGS) is far from routine to-

day, the results generated so far are lending insight into the po-

tential of WGS for diagnostic, prognostic, and therapeutic im-

provement in the treatment of cancer patients.

Using PCR and dye-terminator sequencing, Vogelstein and

colleagues amplified and sequenced each coding exon of 18,000

genes, defined by the human genome sequence, in 11 each of

breast and colorectal tumors (Wood et al. 2007). This brute force

whole-exome sequencing (WES) approach afforded for the first

time a comprehensive view of the mutation profile of each patient,

which, when summed across patients, revealed the ‘‘cancer genes’’

for the patients in the given cohort. In one stroke, the mutation

profile, composed of recurrently mutated genes, plus a collection

of one-off mutations belonging to pathways and processes known
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to be involved in tumorigenesis, were revealed for a cancer. The

fact that the most frequently mutated genes they observed, APC,

TP53, and KRAS for colon cancer and TP53 for breast cancer, re-

capitulated what was already known, validated the approach

and paved the way for expanded application of genome-scale

sequencing.

The introduction of DNA sequence enrichment technologies

from NimbleGen and Agilent (Albert et al. 2007; Gnirke et al. 2009)

enabled WES on large scales. WES has additional advantages over

WGS in that the average depth of coverage is about fivefold greater,

and the cost of sequencing, data processing and storage are all

much less. Given the relative tractability of interpreting variation

in the coding sequence compared to intergenic or intronic muta-

tions, the period between 2004 and 2013 has seen a profusion of

tumor types analyzed in large cohorts (100–500 patients), mainly

by WES (see http://www.sanger.ac.uk/genetics/CGP/cosmic/papers/

for a comprehensive listing). WGS for a variety of tumors has also

been reported and, in spite of the smaller numbers of patients, has

led to surprising insights into cancer biology, based largely on

analysis of structural variation in tumor genomes. Using WGS,

genetic alterations observed in the DNA of the cancer cell span

six orders of magnitude, from single-base point mutations to

chromosome-scale amplification, using different modes of se-

quence analysis (see Chin et al. 2011) available today.

With these tools in hand, The Cancer Genome Atlas (TCGA)

(http://cancergenome.nih.gov/), the Cancer Genome Project

(http://www.sanger.ac.uk/genetics/CGP/), the International Cancer

Genome Consortium (ICGC) (Hudson et al. 2010), Therapeutically

Applicable Research to Generate Effective Treatments (http://

target.cancer.gov/), and other privately funded large-scale pro-

jects (Downing et al. 2012) began in earnest to systematically

catalog all the mutations in a wide variety of adult and pediatric

cancers (see Garraway and Lander 2013 for a recent tally of large-

scale projects).

WGS and WES sequencing have been augmented by cDNA

sequencing (referred to as RNA-seq) to explore alterations to

the transcriptome. RNA-seq provides not only gene expression

levels, but also aberrant splicing, chimeric gene fusion transcripts

characteristic of cancer cells and expressed somatic mutations

(Bainbridge et al. 2006; Dong et al. 2009; Maher et al. 2009; Shah

et al. 2009; Berger et al. 2010; Tuch et al. 2010; Wang et al. 2012).

Analysis of chromatin modification is in its infancy as applied to

the cancer cell, but the recent reporting of the ENCODE Project

Consortium’s genome-wide results (The ENCODE Project Con-

sortium 2012) may provide the tools and technologies to enable

new approaches. The technology behind DNA sequencing is im-

proving rapidly in accuracy, cost reduction, and speed, making

advances in cancer biology and clinical testing, all based on anal-

ysis of the primary sequence of the tumor genome, an essential

strategy in the war on cancer. However, the coordinated acquisi-

tion and integrated interpretation of all this data has been possible

because of a reference genome for comparison. What have we

learned so far?

Mutation frequencies

By patient

The median frequency of point mutation varies over more than

three orders of magnitude across human tumors; within a given

tumor type, the variation in frequency is about one order of

magnitude (Fig. 2A). The variation in mutation frequency is

Figure 1. Major events in a decade of cancer genomics. (Dark blue) Major advances in massively parallel sequencing platforms and targeted en-
richment technologies; (black) major large-scale projects designed to catalog genomic variations of normal human individuals; (red) cancer genomics.
(dbSNP) Database of single nucleotide polymorphism; (HapMap) haplotype map of the human genome; (ENCODE) Encyclopedia of DNA Elements;
(COSMIC) Catalog of Somatic Mutations in Cancer; (TCGA) The Cancer Genome Atlas; (GA) genome analyzer; (CRC) colorectal carcinoma; (WES) whole-
exome sequencing; (ICGC) International Cancer Genome Consortium; (TSP) tumor sequencing project; (AML) acute myeloid leukemia; (WGS) whole-
genome sequencing; (OSCC) ovarian small cell carcinoma.
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a function of the number of somatic cell divisions prior to ini-

tiation of the tumor, the exposure to environmental muta-

gens—notably UV radiation and tobacco leaf by-products—and

in some cancers, altered fidelity of the tumor DNA replication

system. At the low end of the range are pediatric cancers, fol-

lowed by adult leukemia and adult solid tumors. Tumors that

exceed 10 coding mutations per megabase pair (Mbp) are often

found deficient in mismatch repair, either through mutation

or epigenetic silencing of MLH1 or one of the other mismatch

repair enzymes. Tumors with coding mutation frequencies of

100 per Mbp or greater are mutated in the exonuclease domain

of POLE, one of two DNA replicative enzymes of the cells (The

Cancer Genome Atlas Research Network 2013). These patterns

may have important implications for clinical testing in that

colorectal patients with high rates of mutation due to mismatch

repair (Walther et al. 2009) or replicative dysfunction tend to

have improved survival compared to their lower mutation rate

counterparts for the same tumor type. At the other end of the

scale, many pediatric patients have so few coding mutations

that DNA sequencing sheds less light on the etiology or prog-

nosis of their disease. For the broad range of adult cancers with

intermediate rates, mutation discovery is becoming increasingly

important in subclassifying disease for prognosis and treatment

(e.g., Patel et al. 2012).

Figure 2. Frequencies of somatic mutations in cancer patients. All data represents primary tumors. Only nonsilent mutations (missense, nonsense,
frameshift, and splice site) were counted. (A) Overall frequencies of somatic mutations. Each black dot represents a tumor. The light blue shaded group
indicates pediatric tumors, and the deeper blue shaded group indicates adult tumors. Red horizontal lines within each cluster of points indicate median
value of the mutation frequency of each tumor type. (ALL) Acute lymphoblastic leukemia; (AML) acute myeloid leukemia; (C) carcinoma; (GCT) germ cell
tumor; (CRC) colorectal carcinoma; (MSI) microsatellite instability; (MSS) microsatellite stable; (POLE) patients with somatic mutation in the nuclease
(proofreading) domain of the POLE gene. The outlier in the low-grade glioma patient with >100 mutations per Mb is also POLE-mutated. (B) Frequency
classification of tumors. The pie charts divide the patients into three groups based on frequency of nonsilent mutation: 0 detectable somatic mutations, less
than 30, and greater than or equal to 30 for selected representative tumor types (30 mutations represent a frequency of 1 per Mbp in A). The nested
histograms below the pie charts show the percentage of patients with no significantly mutated genes (SMG, calculated by MutSig, q # 0.1), no cancer
census genes (CGC), or no mutations at all. The sequencing data for all the pediatric tumors, CRC, and hepatocellular carcinoma were generated at the
Human Genome Sequencing Center at Baylor College of Medicine. The sequencing data for all other adult tumors were from the TCGA Genome Data
Analysis Center (https://confluence.broadinstitute.org/display/GDAC/Home). Pediatric AML, ALL, and Wilm’s Tumor data were obtained from the
TARGET project (http://www.targetproject.net/).
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By gene

The aforementioned cancer gene census (Futreal et al. 2004) has

given way to COSMIC, the Catalogue of Somatic Mutations in

Cancer (Forbes et al. 2011). The most recent inventory of cancer

mutations in COSMIC (http://www.sanger.ac.uk/genetics/CGP/

Census/) chronicles nearly 800,000 somatic events. Essentially,

every gene is mutated at least once, reflecting the explosion of data

available to researchers.

Every tumor type has a characteristic collection of fre-

quently mutated genes—as exemplified by colorectal cancer,

shown in Figure 3—which are mutated significantly more often

than expected, given the tumor’s background mutation rate (see

Fig. 2A). Higher-than-expected mutation frequency is prima facie

evidence of the important role the mutated genes play in the

given cancer. The pattern established in the first completed exome

screening in colorectal and breast cancers (Wood et al. 2007) and

repeated in every cancer since, is that one to three genes are mu-

tated in >20% of the tumors. A shoulder on the distribution may

display several more genes mutated in 10%–20% of the tumors,

and then infrequently mutated genes form a long tail to ever-de-

creasing mutation frequency. Adding new low-frequency genes to

the significantly mutated gene list requires sequencing patients in

greater numbers. Large-scale projects such as TCGA and the ICGC

projects aim to sequence 500 patients in each tumor type surveyed,

with the expectation of collecting a sizeable fraction of the genes

mutated in the 3%–5% range. Whereas the most potent cancer

genes, often referred to as cancer ‘‘drivers,’’ are small in number,

the tail of genes mutated at <20% is long and is characteristic of

a given tumor or tumor subtype (see Fig. 3A,B).

The genes on the tail of the frequency distribution have great

importance for the understanding of tumor biology. First, they

may exhibit redundancy of mutation in a given signaling pathway

in a single patient, which contributes to our understanding of how

Figure 3. Significantly mutated genes and principal cancer pathways deregulated by somatic mutations in human colorectal carcinoma. Patients are
divided into two groups based on mutation rate. All genes shown are significantly mutated with a false discovery rate of less than 0.1. (A) Profile
determined from 193 patients with chromosome instable, low mutation rate, disease (see Fig. 2A, CRC MSS). (B) Profile determined from 29 microsatellite
instable CRC plus 7 POLE-mutated patients (see Fig. 2A, CRC MSI and CRC MSS POLE ). (C ) Principal cancer pathways deregulated by somatic mutation in
CRC. Alterations are defined by somatic mutations, homozygous deletions, high-level focal amplifications, and, in some cases, by significant up- or down-
regulation of gene expression (black up-triangle). All genes from Figure 3 except MLK4, GPC6, and EDNRB can be placed in one of the four pathways shown
here. WNT signaling is disrupted by one or more mutations in 93% of patients; TGFbeta signaling is disrupted in 26% of all patients with a low mutation
rate and in 94% of patients, and RTK/RAS/PI3K signaling is disrupted in over 80% of patients. (Red) Activated genes; (blue) inactivated genes. Deep red or
blue are genes on the significantly mutated list from panels A and B. Lighter shaded genes are not mutated significantly in this cohort but contribute to
pathway disruption in some patients. Panels A and B adapted from Figure 1, and panel C from Figure 4, of The Cancer Genome Atlas Research Network
(2012a).
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the pathway is utilized by the cancer cell. These features are again

illustrated by colorectal cancer (Fig. 3C). APC is the primary driver

of WNT signaling in this cancer; however, 10 other genes, altered

in 1%–15% of the patients, also appear to participate in activation

of this pathway, sometimes even in the context of APC mutations.

That one of the key outputs of the WNT pathway is up-regulation

of MYC, this mutation pattern suggests ever increasing selection

for activity of the MYC transcription program within the tumor

cell, a prediction borne out by transcriptome analysis of these

patients’ tumors (The Cancer Genome Atlas Research Network

2012a). Second, weaker drivers have often revealed entirely new

pathways or processes, as discussed below.

There are also important clinical implications for the low-

frequency recurrent cancer genes. The tail of the mutation profile

is often found to be populated with genes that are strong drivers

in other cancers and for which therapies have already been

designed or are in the pipeline (Taylor et al. 2012). This has given

rise to the notion that it might be better to classify cancers based

on mutation profile for developing treatment strategies rather

than histopathology—a radical departure from well-established

clinical standards. On the other hand, some patient’s cancers

have no obvious mutations in any known cancer genes, so muta-

tional screening alone appears to have limited utility in such tu-

mors (see Fig. 2B). Every tumor population studied so far appears to

have a few percent of patients with no obvious cancer genes mu-

tated, necessitating alternative diagnostic approaches. The proba-

bility of finding no mutated cancer genes increases with decreasing

mutation frequency in the tumor.

The low-frequency genes reveal added complexity for the ap-

plication of therapies targeted to a specific gene in a pathway in that

they might have one or more downstream genes already mutated.

The well-known EGFR inhibitors erlotinib (Tarceva) and gefitinib

(Iressa) fail in the context of mutation in KRAS in nonsmall cell lung

cancers (Pao et al. 2005). Redundant mutation in key pathways is an

increasingly common feature of cancer genomes (Fig. 3C), revealed

by comprehensive exome or genome sequencing.

When DNA sequencing is augmented by genomic approaches

such as copy number analysis, RNA expression, or epigenetic

profiling, evidence for aberrant silencing or activation of cancer

genes adds to the list of genes relevant to each cancer. From the

perspective of translating the rapidly accumulating knowledge of

mutations to the bedside, the question arises as to how many genes

clinicians will have to pay attention to for each cancer type and for

any given patient. A fundamental question is whether the set of

cancer loci that can participate in the maintenance and survival

of the cancer cell is bounded, or will we one day have to monitor

the entire genome to effect a cure? Studies with patient populations

in the range of 100 to 500 patients (see Garraway and Lander 2013)

integrating results of several different platforms suggest that the

number of genes involved in any given tumor is small. Mutation

profiles like that shown in Figure 3 identify 15–20 genes mutated.

Data from copy number analysis add another roughly 20 genes from

recurrent focal amplifications or deletions. Aberrant epigenetic and

expression profiles reinforce the somatic mutation data and may add

a few more genes. Based on results so far, it seems likely that the cast

of genes involved in any single cancer type will be in the neighbor-

hood of 50–100, as opposed to 500–1000.

Novel high-frequency cancer genes
Many important new cancer genes, mutated in 20% or more of the

patients with common cancers, were absent from the 2004 cancer

gene census (Futreal et al. 2004). Among the genes emerging from

large-scale studies, the most impressive advances have provided

insights into the role of chromatin remodeling in tumorigenesis.

Isocitrate dehydrogenase 1 and 2, IDH1 and IDH2, were surprising

additions to the list of cancer drivers emerging from glioblastoma

multiforme (GBM) among the first whole-exome screens reported

(Parsons et al. 2008). Both enzymes normally convert isocitrate

to a-ketoglutarate (a-KG), a cofactor for a-KG dioxygenases, in-

cluding TET family DNA demethylases, KDM-family histone

demethylases, and many other proteins (Yang et al. 2012). Mutated

IDH1/2 both produce 2-oxyglutarate, a structural analog of a-KG

but potent inhibitor of a-KG-dependent enzymes, the methyl-

transferases involved in DNA and chromatin methylation.

These inhibitors, therefore, result in aberrant epigenetic mod-

ification as well as the potential for deregulation of many other

cellular pathways. The DNA demethylase, DNMT3A, is mutated

in 22% of AML patients, suggesting a significant role for tran-

scriptional regulation through epigenetic modification of DNA

in the pathogenesis of this cancer (Ley et al. 2010). Mutations

in this gene are clinically important in AML patients since they

are associated with poor survival. Since its initial discovery,

DNMT3A is now recognized as a less frequent, although impor-

tant, contributor to transformation in nearly all myeloid neoplasms

(Ley et al. 2010).

PBRM1, discovered in 41% of clear-cell renal carcinomas, was

the first member of the large SWI/SNF chromatin remodeling

complex to be found mutated to high levels in any cancer (Varela

et al. 2011). Since then, mutations in many of the other SWI/SNF

components have been steadily accumulating. Disruption in the

normal function of SWI/SNF in over half the cancer patients is

inferred for renal, ovarian, hepatocellular, gastric, and other can-

cers (Shain and Pollack 2013).

BAP1 carries an enzymatic function that deubiquitinates

histone H2A as well as other proteins involved in chromatin

remodeling. It exhibits a high frequency (23%) of inactivating

mutations in mesothelioma (Bott et al. 2011) and in uveal mela-

nomas, where 84% of patients at high risk for metastasis (Harbour

et al. 2010) harbor mutations. It is also mutated in 15% of clear-cell

renal cell carcinomas, ccRCC, wherein it is anti-correlated with the

more frequent PBRM1 mutations, noted above (Peña-Llopis et al.

2012). Inactivating mutation in BAP1 defines a molecular subclass

of high-grade aggressive tumors, which led the authors to develop

a clinical immunohistochemical assay for the presence or absence

of BAP1. Anti-correlation in the mutations of two genes usually

indicates they are active in the same pathway. In this case, differing

RNA expression profiles associated with mutations in the two

genes suggested this was not the case. Instead, the authors con-

cluded that it is disadvantageous to the tumor to have both genes

mutated and that the two genes likely affect different epigenetic

programs.

This list of new high-frequency genes, added to the cancer

gene compendium as a direct result of the human reference ge-

nome and next-generation sequencing, reveals the importance of

epigenetic regulation for tumorigenesis.

Novel low-frequency cancer genes
At the other end of the mutation profile are cancer genes con-

tributing to 10% or fewer tumors of each cancer type. For most

adult solid tumors, they constitute a greater number of mutated

genes, filling in details of key pathways and adding interesting

insight into the mechanisms of cancer. Perhaps the most in-
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teresting ones among the novel genes are those involved in RNA

processing functions. Discovered first in myelodysplastic syn-

drome, U2AF1, U2AF2, SF3B1, and SRSF2 (Yoshida et al. 2011),

involved in splice acceptor recognition in the RNA splicing ma-

chinery, were mutated cumulatively in over 50% of patients.

Subsequently, mutations were found in these and other splicing

components in other myeloid neoplasms (Wang et al. 2011;

Makishima et al. 2012). Functional testing of the commonly re-

current mutation sites in U2AF1 demonstrated that they promote

exon skipping in in vitro assays (Graubert et al. 2012). U2AF1 was

recently reported in lung adenocarcinoma at the same frequency

as seen in AML (Imielinski et al. 2012). Additional RNA binding

proteins—RBM10 in lung (Imielinski et al. 2012) and DDX3X in

CML (Wang et al. 2011)—hint at additional contributions to

cancer in RNA processing pathways.

Whole-genome sequencing and structural variation
WGS sequencing is a generalized route to reliable discovery and

interpretation of mutation in noncoding regions of the genome.

This fact was driven home dramatically in the recent reports of

somatic base substitution at one of only two positions in the

promoter of TERT in over 70% of melanoma patients (Horn et al.

2013; Huang et al. 2013). Although recurrent mutations in non-

coding DNA had been reported previously (Chapman et al. 2011),

they were clustered within predefined conserved regions rather

than recurrent at the same site and, moreover, were without

functional follow-up. Both TERT promoter mutations created

novel ETS transcription factor binding sites, and the mutations

were demonstrated to up-regulate TERT transcription in in vitro

luciferase reporter assays (Huang et al. 2013). This astonishing rate

of mutation within and between tumors may turn out to be more

prevalent than mutation of TP53, the most frequently mutated

gene across all cancers to date.

Large-scale translocations, deletions, and inversions leading

to oncogenic fusion proteins or promoter activation of an onco-

gene seldom involve the coding sequence directly and are there-

fore not visible in WES data; although there has been limited

success in capturing known fusion junctions in cohorts expected

to harbor them when the target can be restricted to a small interval

(Lipson et al. 2012). WGS analyses have dramatically increased our

knowledge of the number of translocations and deletions giving

rise to gene fusions, so the list of these events is still growing.

Among the 487 genes in the current cancer gene census (http://

www.sanger.ac.uk/genetics/CGP/Census/), 326 are observed in

chimeric protein fusions generated through translocation. Like

point mutations, most translocations observed in most individual

tumors seem to be random and do not lead to apparent functional

changes in oncogenes or tumor suppressors. However, across

populations of AML (The Cancer Genome Atlas Research Network

2013), lung adenocarcinoma (Imielinski et al. 2012), and lung

squamous cell carcinoma (The Cancer Genome Atlas Research

Network 2012b), nonfunctional fusions involving tumor sup-

pressors contribute significantly to the overall mutation spectrum

in these cancers.

Analysis of paired reads from WGS data led to the discovery of

chromothripsis (Stephens et al. 2011), the result of a catastrophic

shattering of one or more chromosomes followed by misjoining of

the scrambled fragments upon repair, and kataegis, the localized

bursts of point mutations often correlated with somatic structural

variation. The mechanisms for neither of these processes is clearly

understood, although it is interesting to note that chromothripsis-

like events have been observed in normal human germline DNA,

at translocation break points, and are associated with congenital

deformities and mental retardation (Kloosterman et al. 2011;

Chiang et al. 2012). Cancer cells are apparently utilizing a mecha-

nism for recovering from catastrophic error that is available in

normal cells, suggesting the possibility that the extremes of chro-

mothripsis seen in some tumors have accumulated over several cell

divisions rather than in a single event. In any case, the associa-

tion of extensive rearrangement with key tumor suppressors and

oncogenes in some patients suggests that chromothripsis may

sometimes mediate tumorigenesis and associates with clinical

outcome (Magrangeas et al. 2011; Molenaar et al. 2012; Hirsch

et al. 2013; Malhotra et al. 2013).

Genetic heterogeneity of tumors
Although the existence of intra-tumor phenotypic heterogeneity

has been recognized from the early days of experimental cancer

research, the intra-tumor genetic heterogeneity has not been well

demonstrated until recently with the significant advances of high-

throughput next-generation sequencing technologies. In the past

two years, researchers have characterized in detail the population

structures and evolutionary paths in a variety of primary and

metastatic cancers, including childhood acute lymphoblastic leu-

kemia (Anderson et al. 2011) and secondary acute myeloid leuke-

mia (Walter et al. 2012), human pancreatic cancers (Campbell et al.

2010; Yachida et al. 2010), breast cancers (Geyer et al. 2010; Navin

et al. 2010, 2011), renal clear-cell carcinomas (Gerlinger et al.

2012), and metastatic medulloblastoma (Wu et al. 2012). Inves-

tigations have been done using both the spatially separated cancer

samples (Gerlinger et al. 2012) and the regionally separated cancer

samples (Navin et al. 2010; Yachida et al. 2010). Genetically dis-

tinguishable subpopulations in a mixture of cancer cells were

well demonstrated by single-nucleus and single-cell sequencing

(Navin et al. 2011; Hou et al. 2012; Xu et al. 2012). Overwhelming

evidence shown at the DNA level and the RNA level has revealed

the coexistence of genetically divergent clonal subpopulations

within tumors. Intra-tumor heterogeneity has been suggested

as a common feature in both solid tumors and hematological

malignancies.

Recent studies have evaluated the clonal relationships

among primary and metastatic cancers (Campbell et al. 2010;

Yachida et al. 2010; Navin et al. 2011; Gerlinger et al. 2012).

These studies showed that seeding metastases require few, if any,

additional driver mutations beyond those found in the primary

tumors. Continuous acquisition of mutation and clonal ex-

pansion during the development of a tumor results in an as-

semblage of subclones that can be represented by a branching

evolutionary tree. The metastatic cells seem to emerge from small,

seemingly arbitrary subclones in the original tumor. Surprisingly,

different regions of a single tumor may harbor different muta-

tions in the same driver gene, suggesting a process of convergent

evolution in the development of the tumor (Gerlinger et al.

2012). The implications for clinical treatment of tumors are

daunting since this suggests that genomic analysis from needle

biopsies may yield a biased view of the genetic landscape of the

tumor (Gerlinger and Swanton 2010; Anderson et al. 2011;

Sequist et al. 2011). Yap et al. (2012) suggest that the genetic

heterogeneity observed within most tumors, combined with the

polygenic nature of drug resistance, may hamper both the dis-

covery of predictive biomarkers and the development of anti-

tumor molecular therapeutics.
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Challenges for the future

These exciting insights have only come in the past several years as

the technologies involved in sequence capture and sequencing

have matured (Fig. 1), enabling sequencing centers and consortia

to more effectively exploit the utility of the reference genome.

Here, we have focused on novel discoveries. The wealth of in-

formation accumulated so far has illuminated the roles of all

cancer genes in the biology and pathogenesis of the disease, but

there is much more to come, along with new challenges.

There now exist data sets from hundreds of cancer sequencing

projects for which most of the focus of the studies from those

projects was on the components we know best how to analyze.

Thus, our analysis is biased toward variants whose function we

readily understand—the low-hanging fruit—even if the sequence

data itself is unbiased. Although much progress has been made,

there is still considerable potential for discovery in existing data;

however, the downstream functional analyses are overwhelmed.

First, very few of the mutations receive functional validation

in in vitro and in vivo studies. New mutations in known cancer

genes are not necessarily functional in a given patient’s disease,

whereas the ones that are functional can add important new

insights into the mechanism of pathogenesis in play, exemplified

in the case of novel mutations in the extracellular domain of

ERBB2 (Greulich et al. 2012). ERBB2 signaling is most commonly

activated by amplification of the gene. These mutations sug-

gested novel mechanisms of activation of ERBB2 signaling in

lung cancer.

Second, the beneficial value of functional follow-up in mouse

models is recognized but still expensive and time consuming, al-

though new approaches with genetically engineered mice may

help (Heyer et al. 2010).

Third, the tail of the mutation profiles (Fig. 3) grows, as

study cohorts become larger, adding many novel significantly

mutated genes to the cancer inventory. Computational ap-

proaches that predict functional consequences of amino acid

substitution have advanced significantly as more mutational data

has accumulated (Radivojac et al. 2013), but further improve-

ments are required. Knowing which mutations are likely to be

deleterious will be extremely helpful in culling the list of muta-

tions in cancer genes; though this may still be insufficient. Many

of the proteins have multiple functions, some of which are un-

known. So, functional testing will always be required. This is

creating a bottleneck in discovery, which must be met with in-

creasingly rapid and high-throughput methods for functional

validation (Chin et al. 2011).

The prediction of the functional consequences of chromo-

somal-scale structural variation can be challenging. When in-

dividual events disrupt gene structures, the interpretation is sim-

plified. In most cases, however, genomic changes are difficult to

interpret. Distinguishing functional from passenger mutations in

the noncoding portions of the genome is an open frontier. The

completion of ENCODE, which has identified myriad functional

elements in DNA, brings an enormous resource to bear on the

challenge of interpreting the functional role of variants outside

coding sequences. Methods to make functional predictions are not

yet in hand, although approaches that parallel coding sequence

strategies are a starting point (Chapman et al. 2011) and leave

a formidable challenge for functional follow-up.

There have been substantial gains on all fronts from the war

on cancer. The 10 years since the finishing of the human reference

genome has been particularly fruitful, primarily as a consequence

of the improved ability to identify and catalog somatic changes in

cancer genomes. Looking forward, perhaps the greatest challenge

now is translating discoveries into treatments based on strategies

mapped out from patients’ individual mutation profiles. The

number of approved targeted cancer drugs today is still limited

(Table 1A). By-and-large, these reflect targets that have been

available for a long time: Three-fourths of the targeted genes were

in the 2004 census. The list of drugs under development (Table 1B)

includes one-half newly discovered targets, suggesting the impact

of discovery fostered by the genomic era is starting to make its

mark. With the data generation continuing unabated, revealing

even more detail of the working of the cancer cell, the list of

targets can be expected to accelerate. We are realizing the vision of

Dulbecco and benefiting tremendously from the effort to finish

the human genome.

Table 1A. Cancer genes with FDA approved drugs

Gene
symbol Function

Approved
drugs

Experimental
drugs

Cancer
Gene

Censusa

EGFR Receptor tyrosine kinase 7 3 Yes
KDR Receptor tyrosine kinase 2 12
KIT Receptor tyrosine kinase 5 2 Yes
ERBB2 Receptor tyrosine kinase 2 0 Yes
FLT3 Receptor tyrosine kinase 2 0 Yes
FLT4 Receptor tyrosine kinase 2 0 Yes
FGFR1 Receptor tyrosine kinase 1 4 Yes
FGFR2 Receptor tyrosine kinase 2 2 Yes
FGFR3 Receptor tyrosine kinase 1 0 Yes
PDGFRA Receptor tyrosine kinase 3 0 Yes
PDGFRB Receptor tyrosine kinase 5 0 Yes
NTRK1 Receptor tyrosine kinase 2 0 Yes
RET Receptor tyrosine kinase 1 2 Yes
ABL1 Nonreceptor tyrosine

kinases
4 7 Yes

ABL2 Nonreceptor tyrosine
kinases

2 1 Yes

LCK Nonreceptor tyrosine
kinases

1 11 Yes

BRAF Serine/threonine kinases 1 3 Yes
AKT1 Serine/threonine kinases 2 3
PIM1 Serine/threonine kinases 1 20 Yes
RAF1 Serine/threonine kinases 1 0
PPARG Nuclear receptor 13 24 Yes
RARA Nuclear receptor 6 1 Yes
CREB1 Transcription factor 2 0
JUN Transcription factor 3 0
NFKB2 Transcription factor 1 0
ALDH2 Aldehyde dehydrogenase 3 3
SDHB Succinate dehydrogenase 1 2 Yes
SDHC Succinate dehydrogenase 1 2 Yes
SDHD Succinate dehydrogenase 2 2 Yes
PIK3R1 Phosphoinositide

3-kinases
1 1

ACSL3 Isozyme 1 0
CCND1 Cyclin D1 1 0 Yes
COL1A1 Type I collagen 1 0 Yes
GMPS GMP synthase 1 0 Yes
RB1 Tumor suppressor 2 0 Yes
ATIC Bifunctional enzyme 2 5 Yes
TOP1 DNA topoisomerase 4 3 Yes
BCL2 Suppresses apoptosis 3 0 Yes
TSHR Receptor for thyrothropin 1 0 Yes
SMO G protein-coupled

receptor
1 0 Yes

CARS Cysteinyl-tRNA synthetase 1 0
FCGR2B Regulation of immune

response
20 0

aYes, if present in Cancer Gene Census (Futreal et al. 2004).
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