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Abstract
4D (3D spatial+time) echocardiography is gaining widespread acceptance at clinical institutions
for its high temporal resolution and relatively low cost. We describe a novel method for
computing dense 3D myocardial motion with high accuracy. The method is based on a classical
variational optical flow technique, but exploits modern developments in optical flow research to
utilize the full capabilities of 4D echocardiography. Using a variety of metrics, we present an in-
depth performance evaluation of the method on synthetic, phantom, and intraoperative 4D
Transesophageal Echocardiographic (TEE) data. When compared with state-of-the-art optical flow
and speckle tracking techniques currently found in 4D echocardiography, the method we present
shows notable improvements in error. We believe the performance improvements shown can have
a positive impact when the method is used as input for various applications, such as strain
computation, biomechanical modeling, or automated diagnostics.
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Introduction
Heart disease is one of the leading causes of death in the United States. In 2006, an
estimated 26% of all deaths were caused by heart related conditions (Heron et al., 2009).
Fortunately, many of these conditions can be treated or prevented if doctors have the right
tools at their disposal and are able to diagnose pathologies early. The recovery of dense
myocardial displacement from 4D echocardiography is an important endeavor in this regard,
as it has many applications, including in diagnostics, modeling, simulation, and training.

Myocardial strain, which may be readily obtained from displacement vectors, can play a
crucial role in the diagnosis of cardiovascular diseases (Abraham et al., 2002; Yip et al.,
2003). An illustrative pathology related to strain-based diagnostics is Hypertrophic
Cardiomyopathy (HCM) (Carasso et al., 2008; Serri et al., 2006; Afonso et al., 2008). HCM
is an inherited condition that is manifested by an unhealthy enlargement of myocardial
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muscle. Such myocardial enlargement can cause cardiac arrhythmia and/or heart failure, and
is an important cause of morbidity and sudden cardiac death in young adults (Maron et al.,
1995). There are several functional and anatomical disorders associated with HCM,
including severe cardiac hypertrophy, myocardial ischemia, outflow tract obstruction, and
diastolic dysfunction. However, the mechanisms behind the aforementioned dysfunctions
are still not fully understood. The availability of accurate strain information would allow
clinicians to more deeply understand the mechanisms behind HCM, as well as possibly
provide a fast and accurate screening technique for the disease.

Another important application of dense myocardial displacement recovery is in modeling
and simulation. For example, most treatments for the mitral valve involve challenging time-
constrained cardiothoracic surgical procedures; these procedures are often begun with
limited information on the unique structures inside a patient’s heart. The outcome of such
procedures could be improved if potential valve modifications are simulated beforehand,
and if various reconstruction options are compared. However, reliable patient-specific
simulations cannot be performed without first recovering each patient’s unique
physiological characteristics.

Recent modeling and simulation efforts have included patient-specific information to
improve simulation fidelity. For example, Votta et al. (2008) recovers and tracks the valve
annulus from the patient’s 4D ultrasound (US) data. Similarly, Burlina et al. (2010); Sprouse
et al. (2009) recover and exploit the annulus, leaflets, and atrial cavity from 2D and 3D US
data. Obviously, any error in the observation of patient-specific parameters will propagate
and could make the modeling and simulation stages unreliable. Thus, it is clear that a high
accuracy method, like the one described in this paper, could improve patient-specific
modeling and simulation fidelity.

Characterizing complex fast-moving heart structures also requires data with sufficiently high
spatial and temporal resolution. 4D US represents one of the few viable options for this
purpose. In contrast to other modalities such as fluoroscopy, X-ray CT, or MRI, 4D US
involves minimal risks, the equipment required has a small form factor, and it is also
relatively inexpensive. However, while great progress has been made in the development of
piezoelectric elements and signal processing techniques, modern 4D US imaging (see Fig. 1)
is still affected by noise an d artifacts that can make the data difficult to analyze. It is
therefore also important to develop 4D US exploitation algorithms that can cope with these
artifacts.

While the dense myocardial motion estimation method proposed in this paper may be
applied to different types of 4D US data, our clinical data consists exclusively of sequences
acquired using 4D Transesophageal Echocardiography (4D TEE), and our phantom
experiments were performed using a 4D abdominal ultrasound probe. Differences between
our data and data obtained from other 4D US modalities (such as 4D Transthoracic
Echocardiography, or TTE) are mentioned in the discussion section.

Prior Work
In this paper, optical flow techniques are used to compute 3D velocity vectors for the
myocardium and valves in 4D US imagery. Original approaches to optical flow computation
date back to (Horn and Schunck, 1981; Lucas and Kanade, 1981). In the medical image
analysis field, a substantial amount of work has been done on speckle tracking and optical
flow using 2D+time US images (Cohen, 1993; O’Donnell et al., 1994; Mikic et al., 1998;
Bohs et al., 2000; Burlina et al., 2011), however relatively little research has been performed
using optical flow on 3D+time US images.
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Recent research into correlation-based optical flow techniques applied to 4D US include
works such as (Duan et al., 2005; Yu et al., 2006; Chen et al., 2005). Duan et al. implement
a cross-correlation method using a 7×7×7 search window centered around every 5×5×5 pixel
volume. They utilize this cross-correlation method to track an initial manual segmentation
across frames, and report that the method produces s egmentation volumes within an
acceptable margin of error.

Yu et al. attempt to quantitatively measure and compare the reliability of tracking features
across ultrasound frames. Using echocardiographic imaging models derived from the work
of Meunier and Bertrand (see Meunier, 1998; Meunier and Bertrand, 1995), Yu validates
that speckle decorrelation appears when tissue undergoes lateral rotation (rotation about an
axis orthogonal to the axial axis) or deformation along any axis. The authors also
hypothesize that when using an imaging system with frame rates between 20 to 28 Hz,
frame-to-frame cardiac strain variation may be limited to between 1.5% and 2%.

The sensitivity to noise of early differential methods is often cited as a reason why
correlation-based methods should be used. However, modern 2D performance comparisons,
which utilize datasets with a variety of noise levels (see Barron et al., 1994; Baker et al.,
2007), have consistently ranked variational methods, rather than region-based methods,
among the best performers in terms of accuracy and reliability recovering flow from both
real and synthetic image sequences, and these comparisons take into account many of the
improvements that have been made to optical flow techniques over their original
implementations.

The method we develop in this paper is inspired by the recent approaches of Brox et al.
(2004); Liu et al. (2008); Sun et al. (2010). The method uses a variational technique that
takes into account 4D TEE brightness intensity constraints as well as spatiotemporal
smoothness regularization constraints. We use intraoperative 4D TEE frames to qualitatively
compare the results of our method with the known behavior of the ventricle and mitral valve
during both diastolic and systolic phases. To quantitatively evaluate the method, synthetic
transformations are applied to single intraoperative 4D TEE images, creating pairs of frames
for which ground-truth motion is known. A multipurpose ultrasound phantom is also used
with an external 4D probe to generate real ultrasound data with known ground-truth motion.

Method
The 3D optical flow method presented in this paper is inspired by recent works reported by
Brox et al. (2004); Liu et al. (2008); Sun et al. (2010). The first assumption to computing
optical flow is based on the idea that brightness intensity should remain constant when
visually following a feature point within a bounded temporal window. The applicability of
this idea to ultrasound has been validated in several 2D+time US applications and forms the
basis for speckle tracking, strain computation, as well as recent work related to elastography
(Luo et al., 2007; Ophir et al., 2000; Pellot-Barakat et al., 2004).

Consider two 3D frames taken at times t and t + 1. The brightness intensity constraint states
that the intensity value of a voxel in the first frame of an image at time t and at location x ≡
(x, y, z), must remain constant and match the intensity value of a voxel in our second frame
taken at time t + 1, at position x + u, where u ≡ (u, v, w), i.e.:

(1)

One method for applying this constraint to all of the voxels in our images is to form an
energy function that penalizes differences in voxel value between pairs of frames:
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(2)

The function  constitutes an L2 norm, which allows the application of
quadratic optimization techniques, while behaving as a robust L1 norm when ε → 0.

Because the use of this sole constraint leads to an ill-posed problem (one constraint for three
unknowns u), an additional spatiotemporal smoothness constraint is utilized and is based on
the assumption that the flow between two successive frames and two neighboring voxels
does not involve sudden local changes. This constraint is incorporated by forming an energy
function that penalizes large gradients in our flow vectors at each voxel:

(3)

The final objective function is formed by summing together the two previously discussed
energy components. To allow for the amount of flow vector smoothness to be adjusted as
desired, a weight α > 0 is used, as in:

(4)

To minimize the objective function, which involves an unknown under an integral operator,
the Euler-Lagrange equation must be used.

The Euler-Lagrange equations for (4) are as follows:

(5a)

(5b)

(5c)

where

is the Lagrangian density and

(6a)

(6b)
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(6c)

Here ux ≡ ∂u/∂x. Expanding (5a) through (5c) results in the following equations:

(7a)

(7b)

(7c)

Due to the nonlinearity of the preceding equations, an iterative numerical approximation
technique is used as in Liu et al. (2008). Incorporating inner and outer fixed point iterations,
combined with a coarse-to-fine multiscale image warping approach (as in Brox et al., 2004;
Lucas and Kanade, 1981), we obtain three equations whose solutions make up the
displacement vector for a given slice of the coarse-to-fine pyramid on which we iterate.

Defining

we write (7a) through (7c) at level k + 1 as

(8a)

(8b)

(8c)

where k represents the current level of the coarse-to-fine pyramid. Using Taylor expansions
of the following form

we obtain

(9a)

(9b)

(9c)

where
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and l represents the current step of the fixed point iteration loop. Immediately following
each warping step in the coarse-to-fine pyramid, a 5×5×5 median filter is applied to the flow
vectors (as in Sun et al., 2010). More specifically, we independently apply a 5×5×5 median
filter to each of our three 3D cubes representing the values u, v, and w for each displacement
vector u. Note that as the displacement vectors are 3D, the computation of uk for each level
of the coarse-to-fine pyramid involves trilinear interpolation.

Lastly, to prevent the computation of flow vectors in areas where flow is not well defined
(e.g., regions of uniform intensity), we remove empty and/or blood-filled cavities from our
data and process only the myocardium. To remove all but the myocardium, we use k-means
clustering, after compensating for attenuation, to group all the voxels of our cube into two
clusters, and subsequently run the above variational optical flow algorithm on the brighter
intensity cluster.

Experiments
Intraoperative Data

To qualitatively evaluate the proposed method and discover any challenges associated with
its clinical application, we performed tests on real human TEE data. We collected
intraoperative real-time 4D TEE data from patients at the Johns Hopkins University’s
School of Medicine. Coronary artery bypass surgery was performed on a majority of the
patients, while the remaining few underwent interventions for valvular dysfunction.
Acquisition was performed under a protocol approved by the JHU Institutional Review
Board, and all patients gave informed consent.

4D TEE acquisition was performed using an iE33 Philips console fitted with an X7-2t TEE
probe (Philips Medical Systems, Bothell, WA). The resulting TEE cube sizes were
224×208×208 along the elevational, lateral, and axial directions. These directions denote the
3D ultrasound canonical directions: the axial direction is along the acoustic path and
corresponds here to the z-axis, and the lateral-elevational plane, which contains the array of
transducer elements, corresponds to the x-y plane (see labels in Fig. 1). The 4D TEE probe
was run at frequencies ranging from 3 to 5 MHzl. The spatia resolutions ranged
approximately from 0.4 mm to 1 mm. Data was collected intraoperatively using ECG-gating
and a 7 breath-hold protocol leading to frame rates varying from 24 to 56 Hz. More specific
parameters for each sequence used are detailed in Table 1.

The breath-hold procedure used to collect data is intended to minimize artifacts caused by
the patient’s breathing apparatus. Before acquiring a TEE volume, the anesthesiologist
temporarily deactivates the patient’s respirator and allows the patient’s chest to steady.
However, the patient is still breathing during acquisition, and this may result in unintended
probe motion that can overwhelm meaningful flow. Possible solutions include examining
relative flow within the heart, or registering the myocardium between frame pairs to
eliminate the effects of probe motion or global heart movement.

1Exact center frequencies for the sequences were not available, as they were set automatically by the platform as a byproduct of
selecting other parameters and were not stored. However, the general frequency range has three settings (Penetration, General, and
Resolution) that can be adjusted using the “2D Opt” control.
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3D flow was computed on a sequence of frames spanning one full heart cycle. A total of 28
sequences from 12 separate patients were used. Each sequence contained anywhere between
30 and 50 frames. After computing 3D optical flow, movies were generated for each
sequence displaying flow vector and heat map overlays (see Fig. 7). As shown in Table 1,
the generated movies and 3D flow results were evaluated by a cardiologist and all but one
sequence obtained the highest marks for physiological plausibility in both direction and
magnitude.

Intraoperative Data with Synthetic Motion
To quantitatively assess algorithm performance, we synthetically generated sequences by
subjecting clinical 3D volumes to known motion transformations. Because the motion
transformations were known, ground-truth flow vectors for each voxel could be obtained.
Using these ground-truth vectors, angular and endpoint error, popular metrics for comparing
the performance of optical flow algorithms, were computed. Both error metrics were
computed as in Baker et al. (2007) with a simple extension to handle 3D flow vectors.
Figures 2 and 3 are examples of the 3D flow vectors computed by the variational technique
after lateral rotation of 6° and deformation of 6%.

For further comparison, we implemented one of the most commonly used correlation-based
optical flow approaches and evaluated it using our data. The method computes the cross-
correlation coefficient r across a given search window centered around every 5×5×5 volume
(as in Duan et al., 2009):

(10)

Translation, rotation, and deformation transformations were applied to intraoperative data
and errors were calculated for both methods. Translation was performed by shifting a sub-
cube of the data by a known number of voxels in either the lateral, elevational, or axial
directions. Translation can be expressed by the following equation:

(11)

Tables 2 and 3 compare angular and endpoint error values between the variational method
presented in this paper and the correlation-based method as computed on our data. The
correlation-based method returned zero angular and endpoint error across all translations
tested, while the variational method recorded near-zero angular and endpoint error values,
with angular error values decreasing as the amount of translation increased.

Rotation and deformation transformations we re computed using the following equation (as
in Meunier and Bertrand, 1995):

(12)

where α, β, and γ, restricted to αβγ = 1 by an incompressibility constraint, represent the
amount of lateral, elevational, and axial deformation and θ represents the amount of rotation
about the z axis (i.e. the 3D ultrasound axial direction). Tables 4 and 5 compare flow error
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values for transformations where α, β, and γ are all set equal to 1 (i.e., no deformation), but
θ is varied according to the number of degrees rotation desired. Tables 6 and 7 compare
error values for lateral deformation, which is obtained by setting θ to 0, γ to 1, and adjusting
α (and consequently β) according to the percentage deformation desired. Note that 1%

lateral deformation is achieved when α = 1.01 and . Tables 8 and 9 compare error
values for lateral-axial deformation, which is obtained by varying γ together with α as in the
lateral deformation case. Lateral-axial deformation involves deformation in all three axes, as
the elevational axis is forced to expand due to the incompressibility constraint when the
lateral and axial axes are compressed. Finally, Tables 10 and 11 compare error values for
lateral-axial deformation, as described above, combined with rotation.

In each rotation and/or deformation experiment, lower angular and end-point error values
are observed for the variational method when compared with the correlation-based method.
Across all the synthetic experiment tables, the variational method’s error values increase
steadily as the amount of rotation and/or deformation increases. In some cases (e.g., Tables
4 and 5), the correlation-based method experiences a sudden increase in error values after a
certain amount of rotation and/or deformation. Also, in the case of lateral deformation (i.e.,
Tables 6 and 7), the angular and endpoint error values of the correlation-based method
improve as deformation increases from 1–3%, and subsequently deteriorate as deformation
further increases from 4–6%.

Phantom Data
To account for the various challenges of ultrasound imagery (e.g., attenuation, shadowing,
reverberation, speckle decorrelation, and polar-to-cartesian conversion artifacts) in our
quantitative assessment, we performed a series of experiments on data obtained using a
multipurpose tissue-equivalent ultrasound phantom (Nuclear Associates, Carle Place, NY,
Model#: 84–317). The phantom is composed of Zerdine, a solid-elastic water-based
polymer, and is designed to emulate liver tissue. Embedded within the phantom are
numerous nylon wires and cyst-like structures that, for our purposes, add a degree of
heterogeneity to the data. Still, a majority of the phantom’s volume is relatively uniform and
featureless, and this uniformity makes the computation of flow even more difficult.

Ultrasound acquisition was performed using an Ultrasonix SonixTouch Research console
(Vancouver, BC) and 4DC7-3/40 probe. The probe contains 128 elements in a curved linear
array that is panned back and forth by a motor with 410 steps, where each step tilts the array
by 0.183°. Volumes with a resolution of 484×364×90 were collected using a depth of 15 cm,
transmit frequency of 3.3 MHz, and focus depth of 7.5 cm, resulting in an approximate
spatial resolution of 0.485 mm. The ultrasound probe and phantom were placed inside an
apparatus that maintained their positions, contacting the probe with the phantom, and
allowed for controlled and measurable movement (see Fig. 4).

An initial series of experiments were performed by translating the phantom a known
distance (example frame pair shown in Fig. 5). As the probe’s surface is slightly larger and
more curved than the surface of the phantom, a portion of each volume collected required
masking to prevent the computation of flow outside the boundaries of the phantom.

Angular and endpoint error values for both the variational and correlation-based methods are
presented in Tables 12 and 13. Both the variational and correlation-based methods exhibit a
significant increase in angular and end-point error values when compared with the synthetic
translation experiments. Also, the variational method shows consistently lower angular and
endpoint error values than the correlation-based method, and both methods display an
increase in error values as the amount of phantom translation increases.
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Discussion
This paper describes a novel 3D motion flow computation method for estimating myocardial
motion between pairs of volumetric ultrasound frames. The method extends to 3D and
incorporates features of state-of-the-art 2D techniques by Brox et al. (2004); Liu et al.
(2008); Sun et al. (2010). The salient features of the method are as follows: using first order
(brightness constancy) and second order (smoothness) constraints; exploiting coarse-to-fine
pyramid computation; applying median filtering at each intermediate computation stage of
the pyramid; and using iterative numerical techniques to solve non-linear equations.

Qualitative evaluations of intraoperative data were performed by a cardiologist to determine
if the variational method returned physiologically plausible flow vectors. Also, to better
quantify algorithm performance, an evaluation is presented using several metrics, operating
both on synthetically transformed intraoperative data, as well as phantom data. Additionally,
comparisons are shown between the variational method presented in this paper and a
commonly used correlation-based approach, such as the method presented in Duan et al.
(2009).

While many of the metrics that we utilize to compare methods are currently used by
researchers in the field, the results shown in our comparisons need to be qualified with a
word of caution, as there are many factors that can reduce the meaningfulness of such a
comparison. Perhaps the most important factor is that we are simply not processing the same
data. Tables 14 and 15, containing error values for 2D versions of the variational and
correlation-based methods, as run on the Middlebury public dataset (Baker et al., 2007), are
included to demonstrate the large variation in error values across different test data. In the
case of 4D TEE data, we believe that large variations in error values can be explained by
differences in intensity uniformity between sets of test data (size and location of regions
where optical flow is difficult to compute), as well as motion magnitude. To clarify what we
mean by motion magnitude, especially as it may pertain to our synthetic experiments where
motion magnitude is seemingly controlled, let us use the rotation transformation as an
example. To generate Tables 4 and 5, we rotated intraoperative data about the center of each
224×208×208 cube. As a result, voxels further from the center of rotation underwent larger
displacements. But, because each intraoperative data set contains varying levels of contrast
and different tissue distributions, and because we do not compute flow in empty and/or
blood-filled cavities, the amount of motion present in a pair of synthetically rotated frames
may vary. Thus, to present a proper comparison of methods using identical data, we
implemented one of the most commonly used correlation-based approaches.

Based on the comparisons performed, the variational method shows promising
improvements in error values that may have a positive impact when the method is applied to
a broader algorithmic pipeline. As shown in Tables 2 and 3, both the variational and
correlation-based methods exhibit low angular and endpoint error for synthetic translation
experiments. Because synthetic translation does not result in any decorrelation, the
correlation-based flow perfectly matched the ground-truth, mimicking results reported by
Duan et al. (2007). On the other hand, the smoothness constraint and coarse-to-fine
approach used by the variational method caused it to return flow with very small amounts of
error, as it must contend with handling the sudden flow changes at the translated subcube’s
boundaries. Error values for rotation and deformation transformations, presented in Tables 4
– 11, show a more sizable performance improvement for the variational method over the
correlation-based method. For both methods, angular and endpoint error rises steadily as the
number of degrees rotation or percent deformation increase. However, the variational
method’s average endpoint and angular error values are consistently lower than the
correlation-based method’s error values, at times recording up to a twenty-fold improvement
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in the case of rotation, and four-fold improvement in the case of deformation. The standard
deviation of endpoint and angular error values for flow returned by the variational method
are also consistently and significantly lower than for the correlation-based method. Of note
is the fact that the endpoint and angular error of flow returned by the correlation-based
method suddenly increases after 4° rotation. We believe this sudden increase to be due to the
magnitude of flow vectors extending beyond the range of the 7×7×7 search window used by
the correlation-based method.

Phantom flow comparisons were also performed. The phantom data used contains noise,
artifacts (which are discussed later), and a limited number of features for optical flow
algorithms to easily track, thus making it a more realistic and difficult problem to solve. As
previously mentioned, the sensitivity to noise of early differential methods is a common
rationale for why correlation-based methods should be used. Citing modern 2D performance
comparisons, which utilize datasets with a variety of noise levels (see Barron et al., 1994;
Baker et al., 2007), we argued that modern variational methods can outperform region-based
methods on noisy imagery. Our findings from the phantom flow experiments confirm this
hypothesis. As can be seen from Tables 12 and 13, the variational approach performs
significantly better than the correlation-based approach on translational phantom data. While
the correlation-based approach is able to successfully match some regions within the
phantom, the high amount of noise and lack of features cause it to produce flow vectors with
very high error values (see Fig. 6(a)). On the other hand, the variational approach, with the
aid of a smoothness constraint and coarse-to-fine technique, is able to match the sparse
nylon features and produce relatively consistent flow vectors across the entire volume of the
phantom (see Fig. 6(b)).

As previously mentioned, optical flow results generated from real intraoperative sequences
using the variational method described in this paper were also evaluated by a cardiologist.
This evaluation provides qualitative insight into the performance of the algorithm when
applied to real clinical data. While the synthetic and phantom experiments previously
discussed help characterize algorithmic performance operating on images of varying motion
magnitude and noise, they do not incorporate all the complexity of physiological heart
motion. For example, the synthetic rotation experiments test unidirectional rotation only. For
healthy individuals, the ventricle will exhibit a twisting motion as it contracts and expands,
resulting in opposite rotation at the basal and apical regions of the ventricle. The
cardiologists qualitative evaluation of intraoperative flow results provides confirmation of
satisfactory algorithmic performance on imagery containing more complex motion, and
supplements the quantitative synthetic and phantom evaluations.

The intraoperative data evaluated consisted of 4D TEE imagery. TEE images are
characterized by having the left atrial cavity closest to the probe, separated from the left
ventricle (LV) chamber (seen at the bottom of the frustum) by the mitral annulus and the
mitral valve apparatus (valve leaflets). The computed flow movement in each sequence
appears complex, but the overall assessment can be broadly summarized as follows: During
the first phase of the heart cycle, the mitral valve leaflets open up and the flow vectors on
the leaflets correctly point downwards to wards the apex of the left ventricle. At the same
time, the myocardial wall relaxes and the computed flow vectors on the myocardium are
seen moving up and outwards towards the peripheral part of the field. These two movements
happen together and correctly represent the diastolic portion of cardiac cycle. After the LV
cavty fills with blood, opposite computed flow vectors on both structures are observed. Flow
vectors lying on the mitral valve leaflets point up towards the left atrium, and, as the
myocardium contracts and shortens its length, the myocardial flow vectors point inwards
toward the apex and center of the LV cavity drawing a curve with an inside-cavity direction.
At the end of the systolic phase, during isovolumic relaxation, as the atrium fills up and
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starts a descending motion, the vectors on the mitral valve reverse direction and point
downward.

There are several intricacies to clinical data that can affect optical flow results: For example,
signal attenuation can degrade contrast, and as a result, make it more difficult to match voxel
intensities and compute optical flow for objects further away from the ultrasound probe;
Shadowing and reverberation can obscure texture or create spurious texture that detracts
from the true motion present in a cube; Polar-to-Cartesian conversions can artificially stretch
or compress features; Stitching artifacts resulting from the 7 breath-hold protocol can result
in chunks of a cube being artificially translated; And finally, limited acquisition frame rates
may mean that fast moving tissue (such as the mitral valve) will have large displacements
between pairs of frames, which can result in increased error (as shown in the synthetic
experiments). Despite all these factors, after running the variational method across
sequences of varying image quality and frame rates, all but one sequence obtained the
highest marks from a cardiologist for following physiological motion, as shown in Table 1.

Another issue worth considering is the applicability of presented performance results to
transthoracic echocardiography (TTE). Compared to TEE, TTE generally entails additional
signal attenuation because it must traverse skin and fat layers. TTE imagery may also
contain more significant shadowing due to the ribs, and additional reverberation caused by
the lungs and pleural interface. In addition, patient specific conditions such as emphysema,
obesity, and rib cage deformities can worsen the aforementioned artifacts. However, despite
the increased prevalence of artifacts in TTE data, the clinical TEE and phantom data used
still contain shadowing, attenuation, and reverberation effects, albeit to a lesser degree.
Thus, we believe our performance comparisons provide some insight into the method’s
performance on TTE data, but more investigation into the performance of variational
methods on TTE data is required.

Finally, it is worth noting that when these methods are applied to more complex algorithmic
pipelines, to track tissue for example, flow estimation errors will compound over time. In
other words, without correction, residual flow estimation errors in each frame will
accumulate, resulting in increased error as an object is tracked over a sequence of frames.
Also, as can be seen from the presented comparisons, both optical flow methods perform
better on images with less movement (fewer degrees rotation, less deformation, etc.). One
way to achieve less motion between two frames in a sequence is to capture data with a
higher frame rate, but most systems used clinically today operate at frame rates significantly
lower than necessary for correlation-based methods to maintain reasonable errors (especially
given the rapid motion of heart structures). As such, we believe that variational methods will
show significant improvements over correlation-based methods when used in real-world
applications.

Conclusion and Future Work
We present a novel method for the estimation of dense 3D myocardial displacement from
4D TEE. Tests were performed on synthetic, phantom, and intraoperative TEE data, and
demonstrate a considerable reduction in error. This method may be applied to biomechanical
simulations, myocardial strain computation, elastography and automated diagnostics of
pathologies, such as HCM.

Our future work will involve applying flow estimation to the characterization and clinical
validation of pathologies such as HCM or mitral valve disease (MVD). As seen in Figure 7,
optical flow is also computed on the mitral valve. Our preliminary analysis of mitral valve
flow has shown promising results. More work on quantitatively evaluating the ability of
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optical flow techniques to characterize the complex and rapid motion of the mitral valve is
required. We view the work reported in this manuscript, especially the performance
evaluation of the method against the state of the art in speckle tracking, as a necessary first
step towards the application of the variational motion flow method to clinical diagnostics.

Also, the experiments presented in this paper are applied primarily to 4D TEE data.
However, the variational method we present is not limited to one modality. More
investigation is required to evaluate the performance of our method on TTE data. We will
also investigate performance of the method against motion computed using tagged MRI.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A rendered 3D ultrasound image taken using a 4D TEE probe. The mitral valve, intra-atrial
cavity, sections of the intraventricular cavity, and the aortic valve are all visible in the image
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Figure 2.
3D flow vectors computing using the variational method on ultrasound data that has been
synthetically rotated by 6° (i.e., α, β, and γ are all set equal to 1, and θ is set to 6°)
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Figure 3.
3D flow vectors computed using the variational method on ultrasound data that has been

synthetically laterally deformed by 6% (i.e., α = 1.06, , and γ = 1)
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Figure 4.
Phantom apparatus. The 4D abdominal probe is held in place, contacting the top of the
multipurpose tissue-equivalent ultra-sound phantom (black object with white markings)
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Figure 5.
Example phantom data: two long-axis slices (one highlighted blue, the other highlighted red)
showing 6 mm translational phantom movement
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Figure 6.
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Computed 3D flow vectors for a pair of phantom images containing a translation of 6 mm
(a) Correlation-Based Method, (b) Variational Method
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Figure 7.
3D optical flow computed on intraoperative data. Top row: down-sampled 3D displacement
vectors overlayed in 2D, Bottom row: heatmap of 3D displacement vectors, Left side: long-
axis 4-chamber view, Right side: long-axis 2-chamber view
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Table 2

Synthetic translation angular error comparison

Trans.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1 voxel 0.09° 0.73° 0° 0°

2 voxels 0.06° 0.46° 0° 0°

3 voxels 0.04° 0.33° 0° 0°

4 voxels 0.03° 0.26° 0° 0°

5 voxels 0.03° 0.20° 0° 0°

6 voxels 0.02° 0.16° 0° 0°
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Table 3

Synthetic translation endpoint error comparison (voxels)

Trans.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1 voxel 0 0.02 0 0

2 voxels 0 0.02 0 0

3 voxels 0 0.02 0 0

4 voxels 0 0.02 0 0

5 voxels 0 0.02 0 0

6 voxels 0 0.02 0 0
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Table 4

Synthetic rotation angular error comparison

Rot.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1° 0.73° 2.64° 1.43° 7.95°

2° 0.78° 2.83° 2.22° 10.03°

3° 1.01° 3.91° 3.55° 12.32°

4° 1.13° 5.26° 9.43° 21.34°

5° 1.28° 6.40° 21.79° 34.22°

6° 1.52° 7.86° 35.43° 41.54°
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Table 5

Synthetic rotation endpoint error comparison (voxels)

Rot.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1° 0.02 0.09 0.04 0.22

2° 0.04 0.14 0.09 0.41

3° 0.07 0.20 0.26 0.75

4° 0.10 0.31 0.93 1.60

5° 0.14 0.43 2.14 2.68

6° 0.18 0.61 3.55 3.42
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Table 6

Synthetic lateral deformation angular error comparison

Axial Def.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1% 1.16° 0.94° 20.77° 7.75°

2% 1.15° 0.71° 14.05° 8.58°

3% 1.39° 0.67° 10.98° 7.60°

4% 1.71° 0.72° 9.36° 8.54°

5% 2.07° 0.81° 8.78° 10.22°

6% 2.44° 0.92° 9.20° 12.31°
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Table 7

Synthetic lateral deformation endpoint error comparison (voxels)

Axial Def.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1% 0.02 0.02 0.46 0.24

2% 0.03 0.02 0.41 0.29

3% 0.05 0.03 0.41 0.25

4% 0.09 0.04 0.44 0.37

5% 0.13 0.06 0.51 0.58

6% 0.18 0.08 0.68 0.85
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Table 8

Synthetic axial-lateral deformation angular error comparison

Axial-Lateral Deformatio
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1% 1.47° 1.15° 20.69° 9.78°

2% 1.61° 0.79° 22.82° 12.71°

3% 2.05° 0.82° 33.14° 21.75°

4% 2.60° 0.95° 44.49° 28.14°

5% 3.16° 1.12° 54.81° 31.40°

6% 3.71° 1.29° 62.82° 32.33°
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Table 9

Synthetic axial-lateral deformation endpoint error comparison (voxels)

Axial-Lateral Deformation
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1% 0.04 0.03 0.54 0.24

2% 0.08 0.04 0.96 0.60

3% 0.15 0.07 1.85 1.20

4% 0.26 0.12 2.92 1.69

5% 0.39 0.19 4.04 2.08

6% 0.55 0.26 5.12 2.38
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Table 10

Synthetic axial-lateral deformation and rotation angular error comparison

Deformation and Rotation
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1% + 1° 1.32° 1.08° 18.69° 10.35°

2% + 2° 1.38° 1.16° 26.51° 21.24°

3% + 3° 1.67° 1.44° 41.96° 32.16°

4% + 4° 2.17° 1.97° 53.67° 35.29°

5% + 5° 2.70° 2.45° 61.86° 35.65°

6% + 6° 3.24° 2.87° 67.63° 35.12°
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Table 11

Synthetic axial-lateral deformation and rotation endpoint error comparison (voxels)

Deformation and Rotation
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1% + 1° 0.04 0.04 0.61 0.39

2% + 2° 0.09 0.08 1.57 1.42

3% + 3° 0.16 0.15 3.02 2.43

4% + 4° 0.29 0.27 4.48 3.18

5% + 5° 0.46 0.42 5.88 3.86

6% + 6° 0.66 0.61 7.24 4.53
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Table 12

Phantom translation angular error comparison

Trans.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1 mm 15.68° 9.27° 26.10° 24.07°

2 mm 14.98° 15.46° 27.67° 33.92°

3 mm 13.55° 18.97° 46.77° 43.37°

4 mm 13.87° 20.39° 71.93° 42.29°

5 mm 16.88° 25.42° 81.02° 39.40°

6 mm 20.10° 29.27° 83.68° 38.84°
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Table 13

Phantom translation endpoint error comparison

Trans.
Variational Cross-Correlation

Mean Stdev. Mean Stdev.

1 mm 0.36 0.19 0.95 1.01

2 mm 0.60 0.48 1.37 1.35

3 mm 0.97 1.01 2.86 2.21

4 mm 1.47 1.63 5.48 2.24

5 mm 2.35 2.51 7.68 2.19

6 mm 3.49 3.44 9.61 2.21
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Table 14

Error in degrees and pixels, using the variational method in 2D, for images in the Middlebury public dataset
(Baker et al., 2007)

Image Pair
Angular Error Endpoint Error

Mean Stdev. Mean Stdev.

Dimetrodon 3.21° 5.71° 0.21 0.33

Grove2 2.87° 8.07° 0.20 0.47

Grove3 7.36° 18.71° 0.81 1.54

Hydrangea 2.67° 7.59° 0.26 0.51

RubberWhale 10.14° 27.05° 0.23 0.49

Urban2 4.40° 13.38° 0.48 1.49

Urban3 6.57° 24.03° 0.80 1.96

Venus 12.41° 34.53° 0.65 1.01
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Table 15

Error in degrees and pixels, using the correlation-based method in 2D, for images in the Middlebury public
dataset (Baker et al., 2007)

Image Pair
Angular Error Endpoint Error

Mean Stdev. Mean Stdev.

Dimetrodon 17.71° 26.84° 0.79 1.13

Grove2 13.77° 24.87° 0.83 1.14

Grove3 39.42° 43.41° 2.90 3.18

Hydrangea 25.70° 39.18° 1.88 2.11

RubberWhale 11.92° 17.17° 0.42 0.62

Urban2 54.06° 46.70° 7.97 8.50

Urban3 68.43° 51.45° 7.01 5.21

Venus 42.46° 45.48° 2.90 2.80
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