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Abstract
We provide a novel and completely different approach to dimension-reduction problems from the
existing literature. We cast the dimension-reduction problem in a semiparametric estimation
framework and derive estimating equations. Viewing this problem from the new angle allows us to
derive a rich class of estimators, and obtain the classical dimension reduction techniques as special
cases in this class. The semiparametric approach also reveals that in the inverse regression context
while keeping the estimation structure intact, the common assumption of linearity and/or constant
variance on the covariates can be removed at the cost of performing additional nonparametric
regression. The semiparametric estimators without these common assumptions are illustrated
through simulation studies and a real data example. This article has online supplementary material.
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1. INTRODUCTION
Dimension reduction has been an active field of statistical research for the last 20 years and
continues to be important due to the increasingly large amount of available covariates in
various scientific areas. The goal of dimension reduction is to identify one or multiple
directions represented by a matrix β, so that the response Y relates to the covariate vector x
only through a few linear combinations xTβ. When the conditional distribution depends on
xTβ, it is a problem of estimating the central space (Cook 1998); when the conditional mean
E(Y | x) depends on xTβ, it is a problem of estimating the central mean space (Cook and Li
2002).

Started with the ingenious idea of sliced inverse regression (SIR) in the seminal article by Li
(1991), many highly effective methods in the area of dimension reduction have been
developed. For identifying the central space, see, for example, sliced average variance
estimation (SAVE) (Cook and Weisberg 1991) and directional regression (DR) (Li and
Wang 2007) and their variations such as kernel inverse regression (Zhu and Fang 1996),
CANCOR analysis (Fung et al. 2002), and so on. These methods extend the inverse

© 2012 American Statistical Association

Correspondence to: Liping Zhu.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA

NIH Public Access
Author Manuscript
J Am Stat Assoc. Author manuscript; available in PMC 2013 July 02.

Published in final edited form as:
J Am Stat Assoc. 2012 ; 107(497): 168–179. doi:10.1080/01621459.2011.646925.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http:www.tandfonline.com/r/JASA


regression idea and are promising in recovering the central space. However, they all rely on
certain conditions. These conditions mainly include the linearity condition, where E(x | xTβ)
is assumed to be a linear function of x, and the constant variance condition, where cov(x |
xTβ) is assumed to be a constant matrix. These conditions are not always satisfied, and
sometimes could imply stringent assumptions on the joint distribution of x. To be precise,
SIR requires the linearity condition; SAVE and DR require both the linearity condition and
the constant variance condition. If the covariates do not satisfy these two conditions, current
practice often relies on transformation (Box and Cox 1964) or reweighting (Cook and
Nachtsheim 1994), which can restore these conditions sometimes. Li and Dong (2009) and
Dong and Li (2010) successfully remove the linearity condition from the dimension-
reduction problems while their estimators remain to be the inverse regression type. This is
no doubt a great advancement. The residual issue is that they assumed E(x | xTβ) to be a
polynomial function of xTβ and they still required the constant variance condition. These
remaining requirements can still be stringent and difficult to check in practice. Zhu and Zeng
(2006) introduced a dimension-reduction method to identify the central subspace through
using Fourier transformations. Their method, however, requires one to estimate the joint
probability density function (pdf) of x, which is typically infeasible in a high-dimensional
environment. To circumvent this difficulty, they assumed x to be multivariate normal in
implementations. Adapting the idea of minimum average variance estimation (MAVE) (Xia
et al. 2002), Xia (2007) proposed a similar procedure (dMAVE) to recover the central space,
and Wang and Xia (2008) proposed sliced regression (SR) for dimension reduction.
However, their methods estimate the distribution function nonparametrically and heavily
rely on the implicit assumption that all the covariates are continuous. Because all the
existing dimension-reduction methods impose either the above two conditional moment
conditions or distributional assumptions on the covariate vector in one form or another, new
dimension-reduction methods which are free of any of these assumptions are highly in
demand, particularly when some covariates are discrete or categorical.

Similarly, a large amount of literature exists for identifying the central mean space. For
example, when the central mean space is one dimensional, Li and Duan (1989) suggested
using the ordinary least squares (OLS), assuming x to satisfy the linearity condition. Härdle
and Stoker (1989) and Power, Stock, and Stoker (1989) proposed the average derivative
estimation, which requires x to be continuous. Horowitz and Härdle (1996) proposed a
method that allows some covariates to be discrete; however, the number of levels in discrete
variables cannot be large. Ichimura (1993) and Härdle, Hall, and Ichimura (1993) suggested
using nonlinear least squares, which are essentially special cases of our proposal which will
be described in the following. When the central mean space is possibly two or more
dimensional, Xia et al. (2002) proposed the minimum average variance estimation method,
which, similar to the constructive approach in Xia (2007) and the sliced regression in Wang
and Xia (2008), requires x to be continuous. Li (1992) and Cook and Li (2002) proposed the
method of principal Hessian directions which requires x to satisfy both the linearity
condition and the constant variance condition, which are not always satisfied in practice.
Assuming conditional normality of x on Y, Cook and Forzani (2009) proposed a likelihood-
based method, and in the context of classification, Hernández and Velilla (2005) estimated
the dimension reduction space via minimizing a criterion function which involves kernel
density estimation. Yin and Cook (2005); Yin, Li, and Cook (2008); and Park, Sriram, and
Yin (2010) proposed a method to recover the dimension-reduction space via minimizing a
Kullback–Leibler distance.

In this article, we provide a completely different viewpoint for looking at the dimension-
reduction problems. Our approach is through semiparametrics, which has not been
considered in the literature. By casting the dimensional-reduction problem in the
semiparametric framework, the dimension-reduction problems become semiparametric
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estimation problems. Therefore, powerful semiparametric estimation and inference tools
become applicable. We use the geometric approach in Bickel et al. (1993) and Tsiatis (2006)
to analyze these problems and derive the space of the influence functions. This enables us to
construct a rich class of estimators. Many of the existing dimension-reduction methods turn
out to be special cases in this class. In fact, the complete class of influence functions provide
all the possible consistent estimators.

A direct consequence of the semiparametric analysis is the relaxation of the linearity
condition and the constant variance condition. Using the semiparametric construction, we
reveal that these conditions are not structurally necessary. Consequently, in all these existing
dimension-reduction procedures, we can remove these two conditions, and instead replace
the assumed quantity with nonparametric estimation of the corresponding conditional
expectations. Thus, the semiparametric derivation allows us to obtain the dimension
reduction spaces without any distributional assumption on the covariate vector. Another
advantage of the semiparametric analysis is that we do not require all the covariates to be
continuous.

In summary, the contributions of this article are:

1. We introduce a novel and drastically different approach to the dimension-reduction
field. We anticipate to stimulate deeper and richer literature in this direction.

2. We derive the complete class of influence functions, which guarantees to yield all
possible root-n consistent estimators for the column space of β. We demonstrate
how to obtain several most popular dimension-reduction methods from this class.
This further reveals the underlying connection between these different methods and
provides a different and natural motivation for their construction.

3. We completely eliminate the linearity condition, the constant variance condition,
the condition on the quadratic form of the covariates, or, in fact, any moment
conditions on the covariates at all.

4. We eliminate the redundant continuity conditions on the covariates. The new
approach can be readily used even when some covariates are categorical or
discrete.

The outline of this article is the following. In Section 2, we describe the semiparametric
approach to the central space estimation and derive a rich class of estimators. We establish
their link and generalization to several existing dimension-reduction methods in Section 3.
The analysis for central mean space estimation is given in Section 4. We explain the
implementation details on estimation and on selecting the dimension of the central space/
central mean space in Section 5. Extensive simulation studies are conducted in Section 6 to
demonstrate the practical performance and the method is implemented in a real data example
in Section 7. We finish the article with a brief discussion in Section 8. Technical derivations
are collected in an appendix and the online supplementary document.

2. ESTIMATING THE CENTRAL SUBSPACE VIA SEMIPARAMETRICS
Let x be a p × 1 covariate vector and Y a univariate response variable. The goal of sufficient
dimension reduction (Cook 1998) is to seek a matrix β such that

(1)

where  denotes the conditional distribution function of Y given x. (1)
implies that the response variable Y relates to x only through linear combinations xTβ. The
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column space of β satisfying (1) is called a dimension-reduction subspace. Because the
dimension-reduction subspace is not unique, our primary interest is the central subspace,
which is defined as the intersection of all dimension-reduction subspaces, provided that the
intersection itself is a dimension-reduction subspace (Cook 1998).

Following the convention in the area of dimension reduction, we denote by SY|x the central
subspace and assume β to satisfy βTcov(x)β = Id. Note that β is more restrictive than before,
however to avoid introducing a new notation, we keep the same notation. We also assume
SY|x exists and is unique. Here, the number of columns in β, denoted by d, is the dimension
of SY|x and is often referred to as the structural dimension. Our goal is to find SY|x through
finding β ∈ ℝp × d which satisfies (1). To focus on the main issues of the dimension-
reduction problems, we assume throughout our article that the covariate vector x satisfies
E(x) = 0 and cov(x) = Ip. This assumption causes no loss of generality, thanks to an
invariance property of the central subspace (Cook 1998, p. 106).

In model (1), the likelihood of one random observation (x, Y) is

where η1 is a probability mass function (pmf) of x or a pdf of x, or a mixture, depending on
whether x contains discrete variables, and η2 is the conditional pmf/pdf of Y on x. Treating
η1, η2 as infinite-dimensional nuisance parameters while β as the parameter of interest, this
can be viewed as a semiparametric estimation problem. The essential idea in
semiparametrics is to construct estimators through deriving influence functions. Influence
functions can be viewed as normalized elements in a so called nuisance tangent space
orthogonal complement Λ⊥. Thus, if one can successfully derive Λ⊥, one at least has the
hope of characterizing the influence functions and constructing estimators. Because
semiparametrics is not a familiar tool in the dimension-reduction community, we give a
general and more precise explanation in Appendix 0. It is not a simple and straightforward
tool to grasp and to master, and interested readers are encouraged to refer to Bickel et al.
(1993) and Tsiatis (2006) for in-depth understanding. In model (1), using the semiparametric
analysis, we characterize the space of the span of all possible score functions, had η1, η2
been replaced by all possible parametric submodels, to find the nuisance tangent space. We
then derive its orthogonal complement to obtain

See the detailed derivation in Appendix 1. The form of Λ⊥ permits many possibilities for
constructing consistent estimating equations. For example, for any functions g(Y, xTβ) and
α(x), we can choose f(Y, x) to be

Here, f(Y, x) satisfies E{f(Y, x) | xTβ, Y} = 0 and is thus a valid element in Λ⊥. Therefore, a
general class of estimating equations can be obtained using the sample version of

(2)

The resulting estimate is obviously -consistent (Newey 1990).
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Remark 1. Equation (2) is only one convenient way to construct elements in Λ⊥. Other
constructions are also possible. For example, an arbitrary linear combination

also provides a -consistent estimator because it is a valid element in Λ⊥.

Remark 2. It is easy to see that solving (2) does not necessarily yield a unique solution.
Theoretically, as long as we choose g and α so that the matrix A in Theorem 1 has rank p(p
− d) and B is bounded, solving (2) can yield a basis of SY|x, although the basis may not be
unique; and as long as the dimension-reduction problem is identifiable, such g and α always
exist. Regarding the issue of multiple solutions in practice, there are two aspects to it. First,
in a typical estimating equation approach, multiple roots issue presents a challenge. This
problem almost always exists in a finite sample, even under the condition that at the
population level a unique solution exists. There is no established method to handle it as far
as we know. Almost in all the situations, empirical methods are used to select the most
sensible root among several roots. Second, uniquely in the context of dimension reduction,
even if the targeted central space SY|x is unique, its basis—which is what we solve for—is
not. Fortunately, this level of multiple roots issue is not a concern. As any particular choice
of the basis will yield the same space, and the space is what we really aim for.

In Appendix 2, we show that (2) has a double robustness property, in that the consistency is
doubly assured by the term g − E(g | xTβ) and the term α − E(α | xTβ). We can misspecify
either E{g(Y, xTβ) | xTβ} or E{α(x) | xTβ}, the estimator obtained from (2) will still be
consistent. Specifically, if we replace E{α(x) | xTβ} with an arbitrary function h(xTβ), then
(2) becomes

which still yields a consistent estimator. Similarly, if we replace E{g(Y, xTβ) | xTβ} with an
arbitrary function h(xTβ), then (2) becomes

(3)

which also yields a consistent estimator.

Remark 3. To ensure the consistency of the estimation of β, only one of the two expectations
E{g(Y, xTβ) | xTβ} and E{α(x) | xTβ} can be misspecified. The other expectation needs to
be calculated consistently, this typically requires specifying a correct parametric model or
performing nonparametric regression.

Remark 4. In contrast to the existing literature on sufficient dimension reduction (Cook
1998), when using (2) or its misspecified versions to identify SY|x, no additional
assumptions are made on the covariate vector. This means that (i) we do not need to assume
a specific joint distribution for x; (ii) we do not need to assume the linearity condition or the
constant variance condition; and (iii) we do not need to assume x to be continuously
distributed. Although Cook and Li (2005) also considered noncontinuous covariates, they
had to assume a parametric model for the distribution of the covariate vector x conditional
on the response Y.
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Remark 5. If we are willing to make additional parametric assumptions on E{α(x) | xTβ} in
(3), for example, E{α(x) | xTβ} = Cx or E{α(x) | xTβ} = C for a quantity C that may or may
not depend on β, then we will no longer need to perform a nonparametric estimation of
E{α(x) | xTβ} when using (3). Such assumptions greatly simplify the computation. We
suspect this is the implicit motivation behind the linearity condition and the constant
variance condition, which are widely used in the sufficient dimension reduction literature.
We will explore this issue in detail in the next two sections.

The double robustness property further allows us to obtain a -consistent estimator without
any undersmoothing requirement even when d ≥ 3 through nonparametrically estimating
both E{g(Y, xTβ) | xTβ} and E{α(x) | xTβ}. We state this result in Theorem 1 and provide
the proof in the online supplementary document.

Theorem 1. Under conditions (C1)–(C4) given in Appendix 4, the estimator  obtained
from the estimating equation

satisfies

in distribution, where

Here vec(M) denotes the vector formed by concatenating the columns of M.

3. CONNECTION WITH EXISTING METHODS
In this section, we will examine several popular existing sufficient dimension-reduction
methods, and illustrate why they are special cases of the semiparametric estimation family.
We will show that all these methods take advantage of the double robustness property. In
addition, we will point out that the linearity condition and/or the constant variance condition
are used in these methods to simplify the computation. To be specific, the linearity condition
characterizes the mean of x conditional on xTβ by assuming

(4)

and the constant variance condition characterizes the variance-covariance matrix of x
conditional on (xTβ) by assuming

(5)

where P = β(βTβ)−1βT = ββT, Q = Ip − P. Note that here the two conditions are given in the
context where E(x) = 0 and cov(x) = Ip. Here, both P and Q are symmetric matrices.
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Before presenting the specific analysis on these methods, We first highlight two simple
linear algebra results that will be used frequently in the remaining context. These are simple
linear algebra results; hence, we only sketch the proofs in the online supplementary
document.

Lemma 1. Assume Λ is a p × p symmetric matrix of rank d. If and only if β satisfies

then the span of the columns in β is the eigenspace of Λ corresponding to the d nonzero
eigenvalues.

Lemma 2. Assume Λ is a p × p symmetric nonnegative definite matrix of rank d. If and only
if β satisfies

then the span of the columns in β is the eigenspace of Λ corresponding to the d nonzero
eigenvalues.

3.1 Sliced Inverse Regression
The classic SIR (Li 1991) requires x to satisfy the linearity condition (4). It uses the

eigenvectors associated with the d nonzero eigenvalues of the matrix  to
span SY|x. For ease of illustration, we assume that ΛSIR has rank d hence excluding some
degenerated cases.

To obtain SIR as a semiparametric estimator, we set g(Y, xTβ) = E(x | Y) and α(x) = xT in
(2). The linearity condition promises a parametric form E{α(x) | xTβ} = xTP, hence we can
use the misspecified version (3) while selecting h(xTβ) = 0. This choice of g, α, and h in (3)
yields E{E(x | Y)xT}(Ip − P) = 0, or equivalently, ΛSIRQ = 0. Because ΛSIR is nonnegative
definite and has rank d, hence ΛSIRQ = 0 is equivalent to QΛSIRQ = 0. Lemma 2 indicates
that this is equivalent to obtaining the eigenspace of ΛSIR to span SY|x.

The above semiparametric derivation of SIR indicates clearly that the linearity condition is
not structurally necessary for constructing SIR. When the linearity condition (4) does not
hold, we simply lose the convenience of replacing E{α(x) | xTβ} by xTP, everything else
remains unchanged. Specifically, in this case, SIR becomes

where E(· | xTβ) and E(· | Y) need to be estimated nonparametrically. This is what we
propose as the semiparametric generalization of SIR in the absence of the linearity
condition.

3.2 Sliced Average Variance Estimation
The SAVE (Cook and Weisberg 1991) assumes both the linearity condition (4) and the
constant variance condition (5). Similar to SIR, SAVE uses the eigenvectors associated with
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the d nonzero eigenvalues of a matrix ΛSAVE to span SY|x, where

.

To obtain SAVE from the semiparametric approach, we define g1(Y, xTβ) = Ip − cov(x | Y),
g2(Y, xTβ) = g1(Y, xTβ)E(x | Y) and α1(x) = −x{x − E(x | xTβ)}T, α2(x) = xT. As we have

pointed out in Remark 1,  is an element in
Λ⊥, hence it yields a valid semiparametric estimating equation. In this construction, taking
advantage of the double robustness, we are allowed to misspecify E(g1 | xTβ) = 0 and E(g2 |
xTβ) = 0. Some algebra then yields

(6)

The linearity condition (4) and the constant variance condition (5) further allow us to replace
E(x | xTβ) and cov(x | xTβ) with Px and Q, which directly simplifies (6) to

Because ΛSAVE is nonnegative definite, solving ΛSAVEQ = 0 is equivalent to solving
QΛSAVEQ = 0, which is equivalent to SAVE because of Lemma 2.

Relaxing the linearity condition and the constant variance condition is now obvious.
Because (6) is obtained without using these two conditions, we can simply use (6) as the
condition-free semiparametric generalization of SAVE, while in implementation, we need to
estimate E(x | xTβ) and cov(x | xTβ) nonparametrically.

3.3 Directional Regression
Like SAVE, the DR (Li and Wang 2007) also assumes both the linearity condition (4) and
the constant variance condition (5). It uses the eigenvectors associated with the d nonzero
eigenvalues of the matrix ΛDR to span SY|x. Here,

, and  is an independent
copy of (x, Y).

To obtain DR from the semiparametric approach, we choose g1(Y, xTβ) = Ip − E(xxT | Y),
g2(Y, xTβ) = E{E(x | Y)E(xT | Y)}E(x | Y), g3(Y, xTβ) = E{E(xT | Y)E(x | Y)}E(x | Y),
α1(x) = −x{x − E(x | xTβ)}T and α2(x) = α3(x) = xT. Remark 1 indicates that

 is an element in Λ⊥. Taking advantage of
the double robustness property, we misspecify E(gj | xTβ) = 0, for j = 1, 2, 3. The subsequent
estimating equation is therefore the sample version of

(7)

When both the linearity condition (4) and the constant variance condition (5) hold, we can
insert E(x | xTβ) = Px and cov(x | xTβ) = Q in (7). Some algebra then leads to the
equivalence between (7) and
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where the last equality is due to Li and Wang (2007). Because ΛDR is nonnegative definite,
solving ΛDRQ = 0 is equivalent to solving QΛDRQ = 0, which is equivalent to DR because
of Lemma 2.

Similar to SAVE, as (7) is obtained without any of the linearity or constant variance
condition, it can thus be used as a semiparametric generalization of DR.

Li and Dong (2009) and Dong and Li (2010) extended SIR, SAVE, and DR to the case when
the linearity condition (4) is violated while the constant variance condition (5) is true.
Similar analysis shows that these are also special cases of the semiparametric approach.
These results are available in the supplementary document.

4. SEMIPARAMETRIC ESTIMATION OF THE CENTRAL MEAN SUBSPACE
In situations when one only concerns about the conditional mean of the response given the
predictors, Cook and Li (2002) introduced the notion of the central mean subspace. They
defined the column space of β as a mean dimension-reduction subspace if β satisfies

The intersection of all mean dimension-reduction subspaces is defined as the central mean
subspace, denoted by SE(Y|x), if the intersection itself is also a mean dimension-reduction
subspace. The conditional mean model assumes the mean of Y conditional on x relies on
xTβ only. In other words, x contributes to the conditional mean of Y only through xTβ. Our
main interest is to estimate SE(Y|x), or equivalently, a basis matrix β which spans SE(Y|x).

To facilitate the semiparametric analysis, we write the conditional mean model as

(8)

where  is an unspecified smooth function and E(ε | x) = 0. We emphasize
that because we make no assumptions on ε other than conditional mean zero, (8) is
equivalent to the central mean subspace model. For the conditional mean model (8), the
likelihood of one random observation (x, Y) is

where η1 has the same meaning as in Section 2, ℓ(xTβ) is the mean function of Y conditional
on x (or equivalently, on xTβ), and η2 is the conditional pmf/pdf of the residual ε = Y − E(Y
| xTβ) on x. Here, η2 satisfies E(ε | x) = 0, and is otherwise unconstrained. Similarly, treating
η1, η2, and ℓ as nuisance parameters while β as the parameter of interest, following the
semiparametric analysis in Appendix 3, we obtain the nuisance tangent space orthogonal
complement to be the class of the form

Similar to (1), the form of Λ⊥ allows us to take any α(x) to obtain
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as a valid element in Λ⊥. Hence, a general class of estimating equations can be obtained
using the sample version of

(9)

Similar to Appendix 2, we can easily show that (9) has a double robustness property, in that
we can misspecify either E(Y | xTβ) or E{α(x) | xTβ}, the resulting estimator from (9) will
still yield a consistent estimating equation.

4.1 Ordinary Least Squares
We first inspect the OLS (Li and Duan 1989) method, where the linearity condition (4) is
assumed to hold. The OLS method uses cov(x, Y) to infer a subspace of the column space of
β in (8).

From the semiparametric approach, we let α(x) = x in (9). Taking advantage of the double
robustness, we misspecify E(Y | xTβ) = 0. Then (9) reduces to

Note that (βTβ)−1βTE(xY) is a d × 1 vector. This directly yields cov(x, Y) as a one-
dimensional subspace of SE(Y|x), which is exactly the OLS estimation.

When the linearity condition (4) does not hold, (9) has the form

and can still be used to estimate β. A simple treatment is to set E(x | xTβ) = 0 and solve the
sample version of the above display to obtain β.

4.2 Principal Hessian Directions
The principal Hessian directions (PHD) method (Li 1992) assumes both the linearity
condition (4) and the constant variance condition (5). It uses the eigenvectors associated
with d nonzero eigenvalues of ΛPHD to form a basis of SE(Y|x). Here,

. To obtain PHD from the semiparametric approach, we let α(x)
= xxT in (9). Taking advantage of the double robustness, we misspecify E(Y | xTβ) = E(Y).
The linearity condition (4) and the constant variance condition (5) yield a simplification
α(x) − E{α(x) | xTβ} = xxT − Q − PxxTP, hence (9) reduces to

Lemma 1 indicates that this is equivalent to the PHD method. When either (4) or (5) is not
true, we can use

to estimate β, where we calculate E(Y | xTβ) and E(xxT | xTβ) nonparametrically. We can
opt to misspecify E(Y | xTβ) = 0 or preferably E(xxT | xTβ) = 0 to simplify the computation.
The second simplification
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will be considered as the semiparametric generalization of the PHD method without extra
conditions.

5. IMPLEMENTATION
To focus on delivering the main message, we have avoided detailing the implementation
details in practice, which we explain now.

The proposed semiparametric counterparts of SIR, SAVE, DR, PHD, and so on, which were
respectively denoted by semi-SIR, semi-SAVE, semi-DR, and semi-PHD for ease of
subsequent illustration, all have the similar components of estimating conditional
expectation and solving estimating equations. Because the number of the estimating
equations sometimes is larger than the number of parameters, the implementation is through
minimizing their Frobenius norm. We use the familiar Newton-Raphson procedure to
numerically obtain the minimizer. This essentially means that at the jth iteration β(j), we
perform nonparametric conditional estimation using, say, a kernel regression method to
evaluate an estimating equation at β(j), and use numerical difference to obtain the derivative
of the estimating equation with respect to β evaluated at β(j). We then update β(j). This
process iterates until the difference between two consecutive candidates are sufficiently
small.

Because semi-DR has the most complicated form, we now outline an algorithm for semi-DR

as a concrete illustration. We use β(j) to denote the value of  at the jth iteration, and use
K(·) to denote a kernel function. Let Kh(·) = K(·/h)/h for any bandwidth h. We use the
Epanechnikov kernel function in the implementation. Assume the observations are (xi, Yi)
for i = 1, …, n.

1. Nonparametrically estimate E(xxT | Y) and E(x | Y) using

The bandwidth can be selected using the classic cross-validation procedure. We
evaluate the above estimations at Yi, for i = 1, …, n.

2.
Form ,  and

.

3. Pick an arbitrary starting value β(1), for example, the classical DR estimate.

4. At the jth iteration, form  for i = 1, …, n.

5. Nonparametrically estimate E(x | xTβ(j)) and cov(x | xTβ(j)) using
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and

We use a same bandwidth to estimate the above two quantities to ensure that

 is positive definite. The bandwidth can be selected using the cross-
validation procedure. Evaluate the above estimations at xTβ(j) = t1, …, tn.

6. Form the sample version of the left-hand side of (7):

Update β(j) using the following Newton-Raphson steps.

7. Form the derivative of ∂{∥r(β)∥2}/∂{vec(β)} evaluated at β(j) through numerical
difference. Specifically, let δ be a small number and decide an order for the

elements in β(j). Let  and . Here ek has the same size as
β but has 1 in the kth entry and zero elsewhere. Repeat the procedure in Step 5 to

obtain  and . Set the kth row of ∂{∥r(β)∥2}/∂{vec(β)} to be

. Repeat this for all the entries in β(j) For simplicity, we
denote the resulting first derivative ∂{∥r(β(j))∥2}/∂{vec(β)}. Following similar
procedures, we obtain the second derivative ∂2{∥r(β)∥2}/∂{vec(β)}∂{vec(β)}T.

Practically, δ = 0.001 is sufficiently small to obtain a close approximation of the
derivatives. If more precision is desired, one can simply opt for smaller δ.

8. Update to obtain

9. Repeat Steps 4 to 8 until convergence.

For identification, x must contain at least one continuous variable (Ichimura 1993; Horowitz
and Hardle 1996). The above algorithm is applicable if the support of xTβ is connected.
When the support consists of several disjoint regions, we need to carry out the kernel
estimation in Step 5 in each region.

Another important component in dimension reduction is to decide the dimension d of SY|x or
SE(Y|x). To this end, the bootstrap procedure described by Dong and Li (2010) adapts the
idea of Ye and Weiss (2003) by taking into account the variation of the covariates, and is
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very flexible. This is what we recommend for use in our context. Specifically, we can decide
d through the following procedure. Let λ1, …, λk be the nonzero eigenvalues of

where u and v are two generic random vectors. In addition, we let

For any working dimension k = 1, …, p − 1, we let  be the estimate based on the original

sample, and  be the estimate based on the bth bootstrap sample, for b = 1, …, B. We then
estimate the structural dimension d by maximizing over k = 1, …, p − 1

(10)

Interested readers are referred to Dong and Li (2010) for more details.

6. SIMULATION STUDY
In this section, we conduct simulation studies to evaluate the performance of different
estimation procedures. Unless otherwise stated, we repeat the experiments 500 times each
with sample size n = 200 and reduced space dimension d = 2. Throughout the simulations,

we used the Epanechnikov kernel and fixed  as bandwidth, where  is the
robust estimation of the standard deviation of xTβ, which is the default bandwidth selector
implemented in Matlab routine ksdensity. We choose the predictor dimension p to be 6 and
12, and consider the following two cases for the covariate vector x = (X1, …, Xp)T.

Case 1: We generate (X1, X2)T (corresponding to the case p = 6) and X1, X2, X7, …, Xp)T

(corresponding to the case p = 12) from normal population with mean zero and variance-
covariance matrix (σij)(p − 4) × (p − 4) where σij = 0.5|i − j|. We generate X3 and X4 from
nonlinear models: X3 = |X1 + X2| + |X1| ε1, and X4 = |X1 + X2|2 + |X2| ε2, where εi’s are
independently generated from the standard normal population, X5 from a Bernoulli
distribution with success probability exp (X2)/{1 + exp (X2)}, and X6 from another
Bernoulli distribution with success probability Φ (X2), where Φ(·) denotes the cumulative
distribution function of standard normal population. Note that in this case, both the linearity
condition (4) and the constant variance condition (5) are violated.

Case 2: We generate x from normal population with mean zero and variance-covariance
matrix (σij)p × p where σij = 0.5|i − j|. Note that in this case, the covariates satisfy both the
linearity condition (4) and the constant variance condition (5).

Let β be a basis matrix of SY|x and  be its estimate. To assess the estimation accuracy of ,

we use the Euclidean distance between  and β, defined as the Frobenius norm of the matrix

. In both cases, the distance ranges from zero to two, and a smaller
distance indicates a better estimate.
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6.1 Example 1
We generate the response variable using the following four different models:

where β1 and β2 are p × 1 vectors with their first six components being 

and , respectively. When p = 12, the rest components of β1 and β2
are identically zero. The error term ε has a standard normal distribution. Models (I)–(IV) are
chosen to compare, respectively, SIR, SAVE, DR, and PHD with their semiparametric
counterparts. We also include dMAVE (Xia 2007) and MAVE (Xia et al. 2002) into our
comparison as they are often used as a benchmark. To make a fair comparison on the core
methodologies of these proposals, we estimate the kernel matrices of the classical SIR,
SAVE, DR by using kernel smoothing rather than the usual slicing estimation. This allows
us to avoid selecting the number of slices which usually adversely affects the performance.
Thus, SIR, SAVE, and DR are implemented in their improved form.

The boxplots of the Euclidean distances are reported in Figure 1. The results under Case 1
are presented in panels (A) and (C), where we show the boxplots of Euclidean distances for
different estimation procedures when both the linearity condition (4) and the constant
variance condition (5) are violated. In this case, we can see that the semiparametric
estimates are substantially more accurate than their classical dimension-reduction
counterparts across all four models, indicating the significant improvement when the
violation of these conditions is taken into account. Note that dMAVE has very large
variability in these settings and sometimes even perform worse than the classical dimension-
reduction methods. This is because some covariates are discrete which violates the
continuity requirement of dMAVE. Because the semiparametric estimation procedures do
not require continuous covariates, and they do not rely on any conditional moment or
distributional assumptions, their performance dominates the competitors in all scenarios.
The results for Case 2 are in panels (B) and (D), which contain the boxplots of Euclidean
distances when both the linearity condition (4) and the constant variance condition (5) are
satisfied. We can see that, surprisingly, our semiparametric proposals are still superior to
their classical counterparts in these particular examples. This reminds us of a quite
interesting phenomenon where sometimes, estimating a quantity even if it is known brings
gain (Henmi and Eguchi 2004). However, whether this gain is real, in general, or just in
these specific examples deserves further theoretical investigation. On the other hand, our
estimators seem to perform comparably with dMAVE, which usually produces very accurate
estimates when all the covariates are continuous, such as the case here. Following the
request of a referee, we also experimented the simulations with p = 50, which corresponds to
96 free parameters with the sample size n = 200. Unfortunately, none of the methods
examined above can provide any reasonable results in this case. We believe that to handle p
very large in comparison with n, additional assumptions such as sparsity is needed. The
sparsity assumption assumes many rows of β are zeros, hence the corresponding variables in
x simply have no effect on the response variable Y. Many existing methods are available to
take advantage of the sparsity assumption (see, e.g., Li 2007; Wang and Wang 2010).
Combining the sparsity techniques and the dimension reduction methods are promising
future work.
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6.2 Example 2
Next, we perform simulations to demonstrate the performance of the bootstrap procedure
conjuncted with the semiparametric methods in estimating the structural dimension d. We
continue to use models (I)–(IV) in Example 1, and generate the predictors x from case 1
when p = 6. We generated 100 datasets of sample size n = 200, with bootstrap size B = 100.

We report the relative frequency of the bootstrap selected dimensions for models (I)–(IV) in
Table 1. It can be easily seen that with at least 95% accuracy the bootstrap method correctly
chose the dimension, which we consider quite satisfactory.

7. REAL DATA APPLICATION
We illustrate further our semiparametric proposals through a dataset concerning the
employees’ salary in the Fifth National Bank of Springfield (Albright, Winston, and Zappe
1999). The aim of this study is to understand how an employee’s salary associates with his/
her personal characteristics. To this end, an employee’s annual salary is the response
variable Y, and six covariates are possibly associated with the salary: the employee’s current
job level, where a larger number indicates a higher rank (X1); the employee’s working
experience at current bank, which is measured by the number of years of the employment
(X2); the employee’s age (X3); the experience of an employee at another bank prior to
working at the Fifth National, which is measured by the number of years at other banks
(X4); the employee’s gender (X5); and a binary variable indicating whether the employee’s
job is computer related (X6). We removed an obvious outlier in this dataset, leaving 207
observations in the subsequent analysis.

Under various working dimensions k = 1, …, 5, we implement the proposed semi-DR
method given in (7) in association with the bootstrap method described in Section 5, with
bootstrap size B = 1000. The results are presented as boxplots in Figure 2. It is clear that
bootstrap method favors d = 1, which indicates that the six covariates affect the salary
through one single linear combination direction. We present the estimation of this direction
in Table 2. For comparison, we also implement the dMAVE and the classical DR with
kernel smoothing. We emphasize here that dMAVE requires the covariates to be continuous,
which is not the case for gender (X5), and DR requires linearity condition and constant
variance condition, which are not satisfied in this example (see Figure 3). Hence, both
results should not be fully trusted.

To see the dimension-reduction effect from a different perspective, in Figure 4, we present

the scatterplots of Y versus , where  denotes the estimate obtained from Semi-DR,
dMAVE, and DR. We can see that the estimates obtained from Semi-DR and dMAVE
exhibit a more obvious pattern than DR in that the data cloud appears more compact. We
also include in Figure 4 three curves (the dashed lines) fitted from a quadratic function on

. These fit the data cloud rather well and illustrate a homoscedastic error
pattern. Thus, we further used the fitted curves to perform a cross-validation procedure to
calculate the prediction error. The resulting prediction errors from Semi-DR, dMAVE and
DR are, respectively, 21.3191, 23.4481, and 47.0288, which further illustrate the advantage
of the Semi-DR method. All these evidences support the conclusion that Semi-DR has
successfully reduced the dimension from p = 6 to d = 1 and has found the right linear
combination of the covariates in terms of establishing the association between salary and an
employee’s characteristic.
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8. DISCUSSION
It is worth mentioning that (2) and (9) only differ in the first component. For (2), this
component can be constructed from any function of Y and xTβ, namely, any g(Y, xTβ),
while for (9), the only valid choice is g(Y, xTβ) = Y. Thus, the family of estimators provided
by (2) is much richer than the one provided by (9). In fact, it includes the family of (9) as a
subfamily of estimators. This is easy to understand intuitively as model (1) assumes more
structures than model (8), consequently one can have more ways to construct estimators for
(1) and, therefore, model (1) has a larger subspace Λ⊥. Because of this relation, any
estimator for model (8) is necessarily also an estimator for (1). This also agrees with the
dimension-reduction result that the conditional mean subspace SE(Y|x) is a subspace of the
conditional subspace SY|x, because if (1) holds for β, then (8) also holds for β or a submatrix
of β.

For illustration, we have chosen to derive SIR, SAVE, and DR as examples for the central
subspace problem and OLS and PHD as examples for the central mean subspace from the
semiparametric approach, mainly due to their popularity in the dimension-reduction
literature. Because Λ⊥ contains all the influence functions, hence every root-n consistent
method must correspond to a special choice of the functions in Λ⊥. In this sense, the
families given in Sections 2 and 4 are complete.

Finally, we acknowledge here that the linearity condition and the constant variance
condition, when assumed to hold only at the true value of β, can be mild and often hold
approximately, especially when p is large (Hall and Li 1993). However, our simulations in
Case 1 have shown that this approximation may not be sufficient to justify making and using
these assumptions. In other words, if we assume the linearity condition and/or constant
variance condition to hold exactly at the true β while, in fact, they are only approximately
true, the subsequent estimation of the central subspace or central mean subspace can be quite
different. In addition, even if the linearity and constant variance conditions do hold exactly,
our limited numerical results seem to indicate that it might be still beneficial not to use them
if one is concerned more about the estimation quality than the computational cost.
Investigation on whether this is indeed a general phenomenon or some special isolated
instances is a worthy endeavor.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: SOME TECHNICAL DERIVATIONS

A.1. General Introduction to Semiparametrics
Consider the Hilbert space H consisting of all the mean zero, finite variances, length m
vector functions of x, Y, where the inner product between two functions h, g is defined as
E(hTg). Here and in the following definitions, all the expectations are calculated under the
true distribution. The nuisance tangent space Λ is a subspace of H defined as the mean
squared closure of all the elements of the form B S, where S is an arbitrary nuisance score
vector function, and B is any conformable matrix with m rows. Here the nuisance score
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vector functions are calculated conventionally in every possible valid parameterization of
the infinite-dimensional nuisance parameter, where a “valid parameterization” means that
there exists one parameter value which yields the truth. Furthermore, Λ⊥ is defined to be the
orthogonal complement of Λ in H.

Semiparametric theory ensures that every regular, asymptotic linear, root n consistent (RAL)
estimator corresponds to an influence function, and every influence function is a normalized

element in Λ⊥, where the normalization is to ensure . Here, Sβ is the usual score
vector with respect to the parameter of interest β, and we use ϕ to denote an influence
function and Im to denote the size m identity matrix. This link between the complete family
of RAL estimators and the space Λ⊥ allows one to derive estimators through characterizing
Λ⊥ and identifying members in Λ⊥. Every explicit identification of one function in Λ⊥

ensures the discovery of one estimator. This is the semiparametric approach that drives all
our derivations.

A.2. The Derivation of Λ⊥ in Model (1)
Denote the nuisance tangent space corresponding to η1 and η2, respectively, Λ1 and Λ2. We
have

Obviously, Λ1 ⊥ Λ2, hence Λ = Λ1 ⊕ Λ2. It is easy to see that .

We now show that . Obviously, functions

having the required conditional expectation property are certainly elements in . To show

that elements in  have to satisfy the conditional expectation requirement, consider any

. We let g = E(f | βTx, Y) − E(f | βTx). Obviously, g ∈ Λ2 hence E(gTf) = 0. On
the other hand,

Hence g itself should be zero. This means f indeed satisfies the conditional expectation
requirement.

We now show that

To see this, note that its form simply says for any element in Λ⊥, it should satisfy the
condition E(g | βTx, Y) = 0. Let us denote the set A = {f(Y, x) − E(f | βTx, Y) : E(f | x) = E(f

| βTx) ∀ f}. Obviously, . Because
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hence  as well. Hence, A ⊂ Λ⊥. On the other hand, for any f ∈ Λ⊥, because ,
we have E(f | βTx, Y) = a(βTx) for some a. Writing this out, we obtain

Now, we have

because E(f | x) = 0 due to . Thus, elements in Λ⊥ indeed have the form f(Y, x) − E(f

| Y, βTx). The requirement of these elements belonging to  generates the second
requirement of A, and we obtain Λ⊥ ⊂ A. This completes the derivation of Λ⊥.

A.3. The Double Robustness of (2)
Denote E*(g | xTβ) the misspecified function of E(g | xTβ). We have

Denote E*(a | xTβ) the misspecified function of E(a | xTβ). We have
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A.4. The Derivation Λ⊥ in Model (8)
Denote the nuisance tangent space corresponding to η1, η2, and m, respectively, Λ1, Λ2, and
Λm. Straightforward derivation yields

Consequently, we have

To further derive Λ⊥ ⊂ (Λ1 + Λ2)⊥, we first inspect an α(x)ε ∈ Λ⊥. For any h(xTβ), α(x)
satisfies

This implies E{α(x) | xTβ} = 0. Therefore,

A.5. Regularity Conditions for Theorem 1
(C1) The univariate kernel function K(·) is Lipschitz, has compact support. It satisfies

The d-dimensional kernel function is a product of d univariate kernel functions, that is,

 for u = (u1, …, ud)T. Here, we abuse the
notation and use the same K regardless of the dimension of its argument.

(C2) Let r1(xTβ) = E{α(x) | xTβ}f(xTβ) and r2(xTβ) = E{g(Y, xTβ) | xTβ}f(xTβ). The mth
derivatives of r1(xTβ), r2(xTβ) and f(xTβ) are locally Lipschitz-continuous.
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(C3) The density functions of x and xTβ, denoted, respectively, by fx(x) and f(xTβ), are
bounded from below and above. Each entry in the matrices E{α(x)αT(x) | xTβ} and E{g(Y,
xTβ)gT(Y, xTβ) | xTβ} is locally Lipschitz-continuous and bounded from above as a function
of xTβ.

(C4) The bandwidth h = O(n−κ) for 1/(4m) < κ < 1/(2d).
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Figure 1.
Boxplots of Euclidean distances for models (I)–(IV) with p = 6 and p = 12 in Example 1.
Semi-SIR, Semi-SAVE, Semi-DR, and Semi-PHD are shorten to S-SIR, S-SAVE, S-DR,
and S-PHD, respectively, in the labels.
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Figure 2.

Boxplot of the  values defined in (10) from 1000 bootstrapped Semi-DR.
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Figure 3.

The Q–Q plot of , with  estimated from Semi-DR, dMAVE, and DR. (The online
version of this figure is in color.)
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Figure 4.

Scatterplot of Y versus , with  estimated from Semi-DR, dMAVE, and DR. The dash
lines are fitted curves based on quadratic regression modeling.
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