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Abstract
The cyclocystine ring structure (CRS, 3), which results from a disulfide-bond between adjacent
cysteine residues, is a rare motif in protein structures and is functionally important to those few
proteins that posses it. This communication will focus on the construction of CRS mimics and the
determination of their respective redox potentials.
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A disulfide-bond between adjacent cysteine residues (3, Figure 1) is a very rare occurrence
in protein structures. Currently 32 out of ca. ~28,000 proteins structurally identified in the
Brookhaven Protein Data Bank (PDB) carry this unique motif.1 In every case the amide
bond of the CRS is reported to be in a strained trans geometry with an average ω value of
171°.1 Peptide bonds prefer a trans conformation with a torsion angle of 180° so that the
nitrogen lone-pair can have maximal delocalization into the π-system, while minimizing
steric repulsions from peptidyl side-chains. However, the small ring nature of the eight-
membered CRS allows for multiple amide conformations to be energetically feasible. The
amide bond could adopt a cis conformation, which still allows for delocalization of the
nitrogen lone-pair, but would cause the main peptidyl-chain to have a kink in it. A “strained”
trans conformation allows the main chain to remain relatively unaltered, but still allows for
partial delocalization of the nitrogen lone-pair into the π-system. Our model studies show
that a torsion angle of 180° is not allowed for a CRS due to it’s inability to form the
disulfide-bond. Hence, the nitrogen lone-pair must come slightly out of phase with the π-
system to allow disulfide-bond formation.

A reasonable model for a CRS is cyclooctene. Energetically, the cis isomer is more stable
than the trans as a result of the ring strain required to incorporate a trans double bond. This
ring strain is demonstrated by the higher ΔHHydrogenation of trans-cyclooctene (34.4 kcal/
mol) compared to the cis isomer (23.0 kcal/mol).2 If the cyclooctene analogy is applied to
the eight-membered CRS, one might expect cis amide geometry to predominate. This is not
what has been observed experimentally in the PDB. Investigations into proteins that carry
the CRS reveal that this motif is important for activity.3 The central focus of this study is to
assess how CRS conformation affects the redox potential of the disulfide-bond. Our central
hypothesis is that a CRS with a cis peptide bond should be much more reducing (low redox
potential) than a CRS with a trans peptide bond.
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In order to test this hypothesis, cis and trans substrates were constructed in both oxidized (1
and 2) and reduced forms (10 and 13). Both systems have a central bond (cis/trans-olefin)
with restricted geometry that mimics the 0° and 180° amide conformations of a cis and trans
CRS. The synthesis of these compounds has not been reported previously, though the
theoretical value for the redox potential of 1 has been calculated.4

Retrosynthetically, dithiocines 1 and 2 are available upon intramolecular oxidation of the
appropriate dithiol precursor. Originally the dithiol substrates were to be constructed via
dithioureic salt 6. However, while the synthesis of 6 was non-problematic, the harsh
conditions necessary for the generation of the dithiol led to significant by-product
formation.5 This led to the use of dithioester 7 as the intermediary target, which could
undergo saponification easily (Figure 2).6

The redox properties were determined by thiol-disulfide exchange, with the varying
concentrations of reduced and oxidized forms monitored by 1H-NMR (Figure 3).7

Employment of oxidized or reduced butane dithiol (BDTox and BDTred, respectively), a
species of known redox potential (E0(BDT)), allows for the redox potential of the CRS
mimics to be determined by equations 1 and 2.

(1)

(2)

The synthesis of cis-dithiocine 1 begins with epoxidation of 1,4-cyclohexadiene to generate
8 almost quantitatively (Scheme 1).8 A subsequent one-pot protocol entails diol formation
followed by oxidative ring cleavage and reduction of the intermediate acyclic dial to
produce 9 in good overall yield.9 Formation of dithioester cis-7 occurs under Mitsunobu
conditions,10 after which mild saponification affords dithiol 10.6 Air-oxidation mediated by
CsF impregnated celite produced the desired cis-dithiocine 1.11 Disulfide formation does
occur without the CsF-celite additive, however reaction times are significantly longer.

The synthesis of trans-dithiocine precursor 13 begins with trans-mucionic acid (Scheme 2).
Methyl esterification and reduction generates trans-diol 12.12 Analogous to the construction
of 1, Mitsunobu thioesterification and mild saponification affords trans-dithiol 13 in good
overall yield. While formation of dithiol 13 was not troublesome, oxidative intramolecular
construction of 2 was never realized even under dilute conditions. The only disulfide-bond
containing compound isolated was that of cyclic-dimer 14.

The redox potentials were then determined by equilibrium thiol-disulfide exchange. These
redox experiments reached equilibrium in approximately 5 days in DMSO-d6. Integration of
olefinic signals, as well as others, allowed for the respective redox potentials to be
determined (Figure 3).13 This resulted in a derived cyclomonomeric redox potential of
−0.311 ev for dithiol 10 (Figure 3a),14 which is in close agreement with the predicted redox
potential for this compound.4 The cyclodimeric redox potential of trans-dithiol 13 was
determined to be −0.329 ev (Figure 3b).15 The inability to determine the cyclomonomeric
redox potential for the disulfide-bond of 2 alludes to its highly oxidative character.

The ease of monomeric disulfide formation for the production of cis-dithiocine 1 (low redox
potential) is due to (i) the very high collisional frequency of two sulfur-atoms in close
proximity while in the cis configuration, and (ii) the lack of unfavorable non-bonded
interactions.16 The inability to construct trans-dithiocine 2 is due to the remoteness of the
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sulfur-atoms in conjunction with the rigidity of the central olefinic bond. The higher
monomeric redox potential of 13 is illustrated by its lack of ability to form a cyclic
monomer and its propensity to dimerize as well as oligomerize. Upon disulfide-bond ring
formation there is an absence of ring strain in incorporation of a cis-olefin in the eight-
membered ring when compared to the trans isomer. As a result, cis-dithiocine 1 is much
more stable than trans-dithiocine 2. The stability and absence of ring-strain in 1, when
compared to 2, is also demonstrated via temperature dependent 1H-NMR coalescence
experiments (Figure 4).

It is interesting to compare trans-dithiol 13 to that of a CRS found in proteins. A disulfide-
bond can form between nearest neighbors because the peptide bond is not as rigid as an
olefin. This allows the central peptide bond to “twist” slightly allowing disulfide-bond
formation to occur with a strained transoid geometry. When the central torsional angle is
constrained to 180°, as is the case for 13, disulfide-bond formation is impossible. Redox
enzymes such as mammalian thioredoxin reductase may take advantage of the low redox
potential of adjacent cysteine residues in a cis configuration which cycle between reduced
and oxidized states.17 This is especially true for this enzyme since the redox pair occurs at
the C-terminus, which would minimize the effect of a cisoid peptide bond on the main chain.
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Figure 1.
Small Molecule Mimics of CRS
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Figure 2.
Retrosynthesis of Dithiocines
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Figure 3.
cis- and trans-Dithiol 1H-NMR Equilibrium Redox Experiment

Ruggles and Hondal Page 7

Tetrahedron Lett. Author manuscript; available in PMC 2013 July 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
1H-NMR Temperature Dependent Coalescence Experiment for cis-Dithiocine (1)
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Scheme 1.
Synthesis of cis-Dithiocine (1)
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Scheme 2.
Attempted Synthesis of trans-Dithiocine (2)
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