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Abstract
Electrogenic Na+ transport across high resistance epithelial is mediated by the epithelial Na+

channel (ENaC). Our understanding of the mechanisms of ENaC regulation has continued to
evolve over the two decades following the cloning of ENaC subunits. This review highlights many
of the cellular and extracellular factors that regulate channel trafficking or gating.
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The aldosterone-sensitive distal nephron represents the final site within the nephron where
filtered Na+ is reabsorbed. ENaCs are expressed in principal cells in the late distal
convoluted tubule, connecting tubule and through the collecting duct, and are the major
pathway for Na+ entry across the apical plasma membrane. The regulated reabsorption of
Na+ via ENaC in the distal nephron has a key role in the control of extracellular fluid
volume, blood pressure, and renal K+ secretion. ENaCs are also expressed within the
airways [1-5], where they have a key role in the modulating airway fluid volume [6, 7], an
important factor facilitating mucociliary clearance [7, 8]. ENaCs are also expressed in the
distal colon, sweat ducts, salivary ducts, inner ear, lingual epithelium, keritinocytes,
lymphocytes and vascular smooth muscle. ENaC expression has also been reported in
endothelium and in various sites within the eye (epithelia within retina, lens, and pigmented
ciliary body and iris [9-17]. The functional role(s) of ENaCs within many of these tissues is,
at present, unclear.

The role of in ENaC in the control of blood pressure is perhaps best exemplified by two rare
inherited disorders. Liddle’s syndrome, an autosomal dominant disorder characterized by
extracellular fluid volume expansion, hypertension and hypokalemia, which is associated
with gain of function mutations within the channel’s β or γ subunit [18-26].
Pseudohypoaldosteronism type I, an autosomal recessive disorder characterized by volume
depletion, hypotension, and hyperkalemia is associated with loss of function ENaC
mutations [27]. Some common ENaC polymorphisms are associated with altered channel
activity [28-31], and may segregate with blood pressure in selected populations (e.g.,
βT594M) [32]. Disorders of mineralocorticoid and glucocorticoid metabolism, as well as
receptor mutations, are associated with increases in ENaC activity and hypertension [33-35].
In addition, cystic fibrosis is characterized by a decrease in airway fluid volume and
increased ENaC activity in airway epithelia. Channel activation reflects, in part, enhanced
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proteolysis of channel subunits [36-38]. The increase in ENaC activity in cystic fibrosis may
contribute to a reduced airway surface liquid volume with associated increases in the
viscosity of airway fluids and reduction in mucociliary clearance [39-42].

ENaC subunit structure
ENaC subunits are members of the ENaC/Degenerin gene family [43-45]. ENaCs from
mammalian kidney tissues are comprised of three subunits, α, β, and γ that likely form a
heterotrimer [46], analogous to the structure of a related gene family member, acid sensing
ion channel 1 (ASIC1) [47].

The three subunits share modest (~30% to 40%) sequence identity. Each subunit has two
membrane spanning helices (TM1 and TM2) resulting in cytoplasmic amino and carboxyl
termini [48, 49]. The cytoplasmic domains have sites that are phosphorylated by specific
kinases, have specific motifs that direct protein-protein and protein-lipid interactions that
affect channel gating or trafficking, and have sites that may directly influence channel gating
or trafficking (Figure 1). Between the TM helices in the linear sequence lies a large
extracellular region. Based on homology to ASIC1, this region is organized in distinct
domains with well-conserved β-sheet domains at the center of the fold and poorly conserved
α-helical domains surrounding the protein core (Figure 1) [50, 51]. This region is
responsible for extracellular ligand-dependent gating, proteolytic activation, and
mechanosensitivity.

ENaC regulation by cytoplasmic factors
The cytoplasmic region of ENaC is comprised of the amino and carboxyl termini of each
subunit. These cytoplasmic domains serve as sites of chemical modification, protein
binding, and interactions with components of the plasma membrane, often in response to cell
signals that regulate ENaC activity by either changing the number of channels at the cell
surface or by changing the open probability of the channel. In addition, the carboxyl termini
serve to link the channel to the cytoskeleton by binding α spectrin and possibly actin [52,
53]. Finally, sites within this region have been implicated in the functioning of the channel,
having roles in ion conduction, ion selectivity, or gating.

Ubiquitination
Mutations in individuals with Liddle’s syndrome suggested that a proline-rich region (Figure
1B) within the carboxyl-termini of the β or γ subunit have an important role in the
regulation of channel trafficking [18-21, 54, 55]. Staub, Rotin and colleagues used this
region of the β subunit of ENaC as bait in a yeast two-hybrid screen to identify proteins that
interact with ENaC and isolated an E3 ubiquitin ligase, Nedd4 whose WW domains serve to
mediate the interaction between ligase and ENaC [22, 56, 57].

Nedd4-2, the isoform that has a key role in modulating channel activity, is expressed in
tissues that also express ENaC. The Nedd4-2 WW domains interact in vitro with a proline-
rich region that contains a proline-tyrosine (PY) motif in the carboxyl terminus of ENaC
subunits [58-60]. Co-expression studies with Nedd4 and ENaC in oocytes demonstrated that
Nedd4 decreases ENaC surface expression and that this is dependent both on the E3 ligase
domain of Nedd4 and on the presence of lysine residues on the amino-termini of channel
subunits that are the sites of ubiquitin modification [56]. Nedd4-2 dependent ubiquitination
of channel subunits occurs at the cell surface, targeting channels for internalization [61-63].
Following internalization, channels recycle to the plasma membrane or are degraded.
Deubiquitination appears to be an important step that facilitates the recycling of channels to
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the plasma membrane. Recently, ENaC was identified as a substrate for two
deubiquitinating enzymes, UCH-L3 and Usp2-45 [64-66].

The interaction of Nedd4-2 with its target proteins is modified by kinases that phosphorylate
the ubiquitin ligase or ENaC at defined sites. For example, phosphorylation of Nedd4-2 by
serum and glucocorticoid-regulated kinase (sgk1) or by protein kinase A (PKA) results in
the recruitment of an adaptor 14-3-3 protein that disrupts the binding of Nedd4-2 with the
channel and subsequent ubiquitination and channel internalization [67-73]. Sgk1 also
increases channel open probability by directly phosphorylating the carboxyl-terminus of the
α subunit [74]. PKA also activates ENaC by increasing the delivery of channels from an
intracellular pool to the plasma membrane and by increasing channel open probability [75,
76]. The PKA-dependent delivery of channels to the plasma membrane may involve
dephosphorylation of sites within the channel that are targeted by ERK [77]. Other kinases,
such as IκB kinase-β [78], phosphorylate Nedd4-2 and activate ENaC.

In contrast, there are several kinases that enhance the interaction of Nedd4-2 with the
channel and inhibit channel activity. For example, the cellular energy sensor AMP-activated
protein kinase (AMPK) [79, 80] inhibits ENaC in a Nedd4-2 dependent manner. While
Nedd4-2 is an AMPK target, the mechanism by which AMPK enhances the inhibitory
efficacy of Nedd4-2 has not been elucidated. ERK directly phosphorylates βT613 and
γT623 in the immediate vicinity of the PY motif essential to Nedd4-2 binding [81]. ERK-
dependent phosphorylation of ENaC facilitates interactions between the channel and Nedd4,
thereby inhibiting ENaC activity. JNK1 was recently shown to phosphorylate Nedd4-2 and
appears to modulate its activity [80].

The glucocorticoid-induced leucine zipper protein GILZ1 is an aldosterone-induced protein
that activates ENaC by inhibiting MAP kinase signaling and ERK activation. Soundararajan,
Pearce and colleagues have shown that sgk1, GILZ1, Nedd4-2, as well as members of the
Raf-MAP kinase signaling pathway are present within a complex that is associated with
ENaC, termed the ENaC regulatory complex. GILZ appears to have an important role in
recruiting sgk1 to this complex and preventing rapid degradation [62, 82-84].

G protein-coupled receptor kinase, Grk2, has the opposite effect when it phosphorylates
S633 in carboxyl-terminus of the β subunit [85]. Phosphorylation at this site renders the
channel insensitive to regulation by Nedd4-2, resulting in increased surface expression and
channel activity and explains why increased Grk2 activity has been associated with
hypertension [86]. Grk2 also activates channel activity in a manner that is dependent on
Gαq/11 but independent of kinase activity [87].

Other kinases
Although many kinases regulate ENaC, evidence for direct phosphorylation of ENaC
subunits exists for a small subset of these. Protein kinase C (PKC) activation is associated
with an increase in phosphorylation of the cytoplasmic carboxyl-termini of the β and γ
subunits in both live cells and isolated membranes [88, 89], lowering both channel open
probability and the expression of β and γ subunits [89, 90]. PKC activity is required for
insulin regulation of ENaC [91]. At present, it is unclear whether PKC isoforms directly
phosphorylate channel subunits. The PKC δ isoform seems to differentially regulate the αA/
T663 human ENaC polymorphism, although T663 is not a PKC δ phosphorylation site [92].

Casein kinase 2 activates ENaC in association with phosphorylation of intracellular C-
terminal sites βS631 and γT599 [93, 94]. Activation likely results from reduced Nedd4-2
binding, increasing the number of channels at the cell surface. Casein kinase 1 also
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differentially regulates the αA/T663 human ENaC variant, although the effect is indirect
[95].

Members of the WNK (with no lysine (K)) kinase family modulate ENaC activity. The N
termini of all four WNK kinases activate ENaC. This appears to reflect, in part, activation of
sgk1 [96]. Furthermore, sgk1 phosphorylates and appears to modulate WNK4 activity [97].
While one group suggested that full length WNK1 and WNK4 have been reported to
activate ENaC [96], another group showed that WNK4 inhibits ENaC [97, 98].

Lipids
The anionic, cellular phosphoinositides phosphatidylinositol (3,4,5)-trisphosphate
(PI(3,4,5)P3) and phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) affect ENaC function.
Patch clamp studies have shown that PI(4,5)P2 and PI(3,4,5)P3 can directly activate
channels through binding to tracks of cytoplasmic basic residues in the β and γ subunits
[99-103]. Increased levels of these phosphoinositides are associated with increased ENaC
open probability. PI(4,5)P2 was also associated with increases in ENaC surface expression
[104]. In addition to its well defined effects on ENaC gating, the local generation of
PI(4,5)P2 via phosphatidylinositol 4-phosphate 5-kinase α enhances ENaC endocytosis
[105].

PI(4,5)P2 regulation of ENaC appears to be a convergence point for various regulatory
pathways. The activation of luminal purinergic receptors, results in activation of
phospholipase C, hydrolysis of PI(4,5)P2 and an inhibition of ENaC activity [106, 107].
Likewise, epidermal growth factor inhibits ENaC by activating receptor tyrosine kinases,
which leads to depleted PI(4,5)P2 levels [108].

Methylation reactions have been implicated in the activation of ENaC by aldosterone [109,
110]. Aldosterone stimulates carboxylmethylation of proteins and phospholipids, and
inhibition of these reactions blunts the ENaC response to steroid stimulation [111]. Two
potential target proteins of methyltransferases are k-ras and the ENaC β subunit. Induction
and processing of k-ras appears to be important for regulation of ENaC in A6 cells [112].
Methylation of ENaC in planar lipid bilayers has been shown to lead to an increase in open
probability of the channel [113]. Edinger and co-workers have identified a methyltransferase
that targets the β subunit of ENaC [114].

In addition, palmitoylation of ENaC β and γ subunits at specific cytoplasmic cysteine
residues was recently reported [115]. β subunit palmitoylation increases channel open
probability, but does not affect the number of channels at the membrane. Only a small
percentage of channels were reported to be palmitoylated, suggesting that ENaC
palmitoylation may occur at specific locations within cells. The palmitoyltransferase(s) that
regulate the modification of channels by palmitate, as well as the upstream regulators of this
process have not been reported.

Sodium
Increases in intracellular Na+ reduce both ENaC surface expression as well as open
probability, a process referred to as feedback inhibition. The reduction in surface expression
is dependent, in part, on G proteins and on Nedd4-2 and related ubiquitin ligases [116-118].
The reduction in channel open probability may be due to a reduction in proteolytic
processing of ENaC subunits (see below) [119, 120].
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Trafficking itinerary
The assembly and export of channels from the ER, forward trafficking of assembled
channels through the biosynthetic pathway to the plasma membrane, retrieval from the
plasma, and the recycling or degradation of internalized channels are events that require
specific accessory proteins. Changes in channel trafficking at any of these steps may alter
the cellular or surface pool of channels. A growing number of proteins that influence ENaC
trafficking have been identified, including ER chaperones [121, 122], members of the rab
family of GTPases [123-126], SNARE proteins [127-130], ubiquitin ligases and
deubiquitinating enzymes (see above), and members of the ESCRT (endosomal sorting
complexes required for transport) complex that targets internalized channels for degradation
[131].

ENaC regulation by extracellular factors
The extracellular region of proteins in the ENaC/Degenerin family confers sensitivity to
exogenous factors. Based on homology to ASIC1, this region of ENaC is likely organized
into several discrete domains (see Figure 1) [47, 51]. At the center of the fold are two β-
sheet domains termed the “palm” and “β-ball”. These domains are well conserved across the
gene family and form the core of the trimer. Stemming from this foundation are the “finger”,
“thumb”, and “knuckle” domains. These are likely formed by helical and coiled regions and
are poorly conserved among members of the family. The thumb domain is also characterized
by ten conserved cysteines that form five disulfide bonds in the ASIC1 structure, confirming
a disulfide bridged helical ladder in the α subunit of ENaC that had been proposed based on
functional data [132, 133]. Several extracellular or external factors influence ENaC activity
at the cell surface: ions, proteolytic cleavage, and mechanical stress [51].

Sodium, chloride and protons
Na+ and Cl− both have physiologic roles in ENaC regulation, while the effect of H+ is
species-specific. Extracellular Na+ has long been known to acutely down-regulate ENaC
activity, a process referred to as Na+ self-inhibition [134]. This is an allosteric inhibitory
effect that results in a reduction in channel open probability [135, 136], and is distinct from
the slower “feedback inhibition” due to increases in the intracellular Na+ concentration
[116-118]. The extracellular Na+ binding site(s) and the mechanism of transduction remain
undefined. Cl− has recently been reported to modulate ENaC activity [137]. The ASIC1
structure revealed 3 Cl− binding sites at each of the intersubunit interfaces [47]. Testing
analogous ENaC residues at these sites defined by the interface of the thumb and palm
domains of different subunits suggests that two of these are allosteric effector sites for Cl−

[138]. Protons activate human, but not rodent ENaCs [139]. In additional, divalent cations
such as Zn2+ and Ni2+ modulate ENaC activity [140, 141].

Proteases
Na+ channel subunits undergo assembly in the endoplasmic reticulum, where core, high
mannose asparagine-linked glycans are added at specific sites and are later modified to
complex-type endoglycosidase H-resistant forms [142, 143]. ENaC α and γ subunits are
also cleaved by the pro-protein convertase furin in the biosynthetic pathway [143, 144]. The
α subunit is cleaved twice by furin releasing an imbedded inhibitory tract, which partially
activates the channel by increasing its open probability [135, 145-147]. The γ subunit is
cleaved once by furin. Cleavage of the γ subunit by a second protease at a site distal to the
furin cleavage site releases a second, distinct inhibitory tract that further activates the
channel [146, 148-150]. Proteases that cleave the γ subunit at a distal site and activate the
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channel have been found on the plasma membrane and within the epithelial lumen (for
reviews, see [149, 151]).

Shear stress
ENaCs are expressed at the apical surface of cells in the distal nephron, where they are
subjected to variable mechanical stresses due to variable fluid flow rates. ENaC, like several
members of its gene family, is mechanosensitive and is activated by laminar shear stress
[152-155]. The structures involved in the mechanical stress response are not yet defined, but
altering membrane composition had little effect, making membrane deformation an unlikely
mechanism [156]. Conversely, structures that have been implicated in the response of the
channel to other ligands appear to modulate the stress response [157-159].

Summary
Mechanisms of ENaC regulation are complex, involving a myriad of both intracellular and
extracellular factors. It is notable that the vast majority of these regulatory mechanisms,
many of which are in the pathways that we now know are modulated by ENaC regulatory
hormones such as aldosterone and vasopressin, have been described over the past two
decades. There are clear gaps in our understanding of many of these regulatory mechanisms.
For example, how do PKC isoforms modulate ENaC activity? How are the multiple
phosphorylation sites within Nedd4-2 coordinated to alter its regulatory functions? How do
external and internal factors influence structural transitions that affect channel gating? It is
likely that these and other questions will be answered over the next decade.
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Figure 1.
(A) Model of the extracellular and transmembrane regions of the α subunit of ENaC [50].
Domains within the extracellular region are noted. The dashed line indicates the pseudo
three-fold symmetry axis. (B) Linear depiction of the cytoplasmic regions of the three
mouse ENaC subunits. Secondary structure prediction was performed using Jpred3 [160].
Predicted α helices (rectangles) and β-strands (arrows) are noted. PY motifs, ERK and Grk2
phosphorylation sites, palmitoylation (plm) sites, and PI(4,5)P2 and PI(3,4,5)P3 binding sites
are indicated.
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