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We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main

genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are corre-

lated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When envi-

ronmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability

that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment

independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest.

Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even

under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does

not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without

controlling for the environmental confounder is nonzero, then there is gene-environment interaction either

between the genetic factor and the environmental factor of interest or between the genetic factor and the unmea-

sured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and

discuss the implications of these results for the conduct of gene-environment interaction studies.

case-control; case-only; confounding; gene-environment; interaction; joint tests; marginal genetic association

Abbreviation: ORGE, odds ratio of genetic factor, G, and environmental factor, E.

The interest in examining gene-environment interaction has
steadily increased over the last several years (1–6). In some
studies, the gene-environment interaction itself is of intrinsic
interest. In other studies, potential gene-environment inter-
action is used to attempt to boost the power of tests to detect
genetic variants that are themselves associated with disease
(7–9). The latter typically involves testing jointly for the
presence of a genetic main effect and a gene-environment
interaction or a test of marginal association combined with a
test for gene-environment interaction. In gene-environment
interaction studies, effort is often made to control for popu-
lation stratification so that associations between genetic
variants and disease are not due to confounding by race/
ethnicity (10–16). Less attention, however, is generally given
to the possibility of environmental confounding in these stu-
dies of gene-environment interaction. In this paper, we show
that when the genetic variants and the environmental fac-
tors are themselves correlated, then ignoring environmental

confounding can give rise to severely misleading conclu-
sions in both gene-environment interaction analyses and
tests for joint gene or gene-environment interaction effects.
We show also that when the genetic and environmental
factors are marginally independent, these problems are miti-
gated but do not always disappear.

MATERIALS ANDMETHODS

Joint tests under environmental confounding

We begin by considering the consequence of environmen-
tal confounding for joint tests of genetic main effects and
gene-environment interactions. These tests typically proceed
by specifying a model for the association between the
disease outcome and the genetic and environmental factors
allowing for gene-environment interaction. For example, if
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logistic regression is used, this model may take the form:

logit½PðD ¼ 1jG ¼ g;E ¼ eÞ�
¼ β0 þ β1gþ β2eþ β3ge; ð1Þ

where D is the disease outcome variable, G is the genetic
factor, and E is the environmental factor. The joint test
would then be a test of the joint null hypothesis that both the
genetic main effect and the gene-environment interaction
effect are zero (i.e., that β1 = β3 = 0). This null hypothesis
might then be tested by using a likelihood ratio test. It has
been shown that such a joint test has more power to detect
genetic effects thandoesamarginal test of associationbetween
disease and the genetic variant, over a broad range of—
though not all—scenarios (8).

What happens to this joint test under environmental con-
founding? Let us first suppose that the genetic variant affects
the environmental factor itself and that there is an unmea-
sured confounding variable of the relationship between the
environmental factor and the disease outcome, as in
Figure 1A. Suppose that neither the genetic variant nor the
environmental factor has any effect on the disease itself. In
this case, the genetic variant and the disease outcome will be
unassociated marginally. A test for marginal association
between the genetic factor and the disease will have valid
type I error. What happens to the joint test in this case?
Unfortunately, under environmental confounding, the joint
test at significance level α will in general reject the null with
far greater frequency than the nominal significance level.
We demonstrate this below through simulations but we can
also see why this might be so analytically.

In the setting of Figure 1A, G and D are unassociated
marginally but both are also associated with E marginally. If
2 binary variables are unassociated marginally, and both are
marginally associated with a third binary variable, then the 2
binary variables will be conditionally associated with each
other within at least 1 stratum of the third variable; thus, in
Figure 1A, G and D will be associated conditionally within
at least 1 stratum of E. The phenomenon is sometimes
described in the graphical modeling literature as one of “col-
lider stratification” or “conditioning on a common effect”
(17–20): Two variables, even if marginally uncorrelated,

will in general be correlated conditional on the common
effect. Suppose, for instance, that the mechanism for E in
Figure 1A is that E occurs if at least 1 of U (unmeasured
environmental confounder) or G is present. Although U and
G may be uncorrelated in the population, conditioning on
E = 1, for example, will induce correlation because if for a
particular subject we had that E = 1 and U = 0, then we
would know that G must be 1 for that subject since E occurs
only if at least one of U and G is 1. Likewise, for a subject
E = 1 and G = 0, we would know that U = 1. The variables U
and G will thus be correlated conditional on E.

The implication of this for the logistic regression model 1
is that, under Figure 1A, without controlling for U, at least
one of β1 or β3 will be nonzero. In other words, in large
samples, the joint test will reject the null hypothesis
β1 = β3 = 0 even though neither G nor E has any effect on D.
This occurs because of the environmental confounder U for
which control has not been made. Unfortunately, this
problem gets worse as the sample size increases. Because
the value of either β1 or β3 is nonzero (having not controlled
for U), the joint test will reject the null β1 = β3 = 0 with a
probability tending toward 1 as the sample size increases.
We also illustrate this below through simulations. In
Figure 1A, the marginal test for G would be valid, but the
joint test will be biased. If we could control for the environ-
mental confounder U in the analysis, our joint test would be
valid for detecting genetic effects; without such control, we
get an inconsistent test.

Joint tests under environmental confounding with gene-

environment independence

Consider now Figure 1B in which the genetic and envi-
ronmental factors are marginally independent in the popula-
tion. In this case, under the null hypothesis that G has no
effect on D, the joint test is protected against unmeasured
environmental confounding under the null. The variable U
may induce correlation between E and D, even if E itself has
no effect on D. However, conditional on E, if G has no
effect on E and no effect on D, then G will remain uncorre-
lated with D within all strata of E. Thus, under logistic
regression model 1, if G has no effect on E and no effect on
D, then both β1 and β3 will be zero. The joint test of a main
genetic effect and a gene-environment interaction (e.g., the
likelihood ratio test that β1 = β3 = 0) will maintain valid type
I error under the null that there is no effect of the genetic
variant on the disease, even in the presence of unmeasured
environmental confounding, provided we have marginal
gene-environment independence. Thus far, we have been
considering joint tests for main genetic effects and gene-
environment interaction, but similar principles in fact apply
if the gene-environment interactions themselves are of
intrinsic interest, rather than just being used to boost the
power of tests to detect gene-disease associations.

Gene-environment interactions under environmental

confounding

Suppose now that the genetic and environmental factors
did in fact have effects on the disease outcome, as in

Figure 1. Causal diagrams (A–D) illustrating when environmental
confounding will bias joint tests and interaction tests but not marginal
tests of genetic association. D, outcome; E, environmental factor; G,
genetic variant; U, unmeasured environmental confounder.
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Figure 1C, and that we were interested in assessing the extent
to which the effect of the environmental factors varied accord-
ing to the level of the genetic factor. That is, on the multiplica-
tive scale of the logistic regression model in 1, we were
interested in estimating the gene-environment interaction
parameter β3. The interaction parameter β3 measures the ratio
between 1) the odds ratio for disease when both the genetic
and environmental factors are present and 2) the product of
the odds ratios for disease when just the environmental or just
the genetic factor is present. In general, if the environmental
confounder U is not controlled for, this will bias estimates of
the effect of E on D, and this will in turn also bias estimates
of the gene-environment interaction parameter.
However, as before, some important exceptions occur in the

presence of gene-environment independence. The results that
follow assume a rare outcome as in most case-control studies.
Suppose we have gene-environment independence in the popu-
lation, as in Figure 1D, in the sense that G is independent of E
and U marginally. Suppose further that the environmental con-
founder U does not interact with G on the multiplicative scale
in its effects on D. It then follows that the interaction parameter
estimate of β3 in logistic regression 1, ignoring the environ-
mental confounder U, will be consistent for the true multiplica-
tive interaction between G and E, controlling for U (21). The
main effects for G and for E (β1 and β2) may still be biased, but
the interaction parameter will be valid. This result holds even if
U and E interact in their effects on D. The result, however,
does depend on U and G not interacting in their effects on D.
Because of gene-environment independence, this may be a rea-
sonable assumption since U itself is assumed to be an environ-
mental factor, but it certainly is not guaranteed to hold. The
result does, however, again depend also on the assumption of
gene-environment independence.
There is another interesting implication of this result.

Under gene-environment independence, the estimate β3 in
logistic regression 1 will be consistent (even ignoring U) if
U and G do not interact on the multiplicative scale in their
effects on D. Suppose then that we had an estimate of β3 that
was nonzero; then, subject to sampling variability, it would
follow that we must have gene-environment interaction
either between G and E or between G and U (21). Essen-
tially under gene-environment independence, the only way
to have a nonzero interaction parameter is for some form of
gene-environment interaction to be present, either with the
environmental factor of interest or with some confounder of
it. Similar results hold for measures of additive gene-
environment interaction, further discussion of which is
given elsewhere (21).
Similar principles also apply to case-only estimators of

gene-environment interaction (22–25). These estimators
assume that the genetic and environmental factors are inde-
pendent. If, in addition, G is assumed to be independent of
U, then first, if G does not interact with U on the multiplica-
tive scale, the case-only estimator of the multiplicative inter-
action between G and E will be consistent even if we do not
control for U (21); and second, if we do have a nonzero
case-only gene-environment interaction parameter, then,
even without assuming no interaction between G and U, we
would be able to conclude some form of gene-environment
interaction, either between G and E or between G and U.

Again, these results depend on the assumption of gene-
environment independence, but, with the case-only estima-
tor, the performance of the estimator itself depends critically
on the assumption of gene-environment independence even
in the absence of environmental confounding (26).

Simultaneous testing for marginal genetic association

and gene-environment interaction under environmental

confounding

Alternatives to the joint test have been proposed to detect
the involvement of a genetic factor in terms of its marginal
association with disease and/or involvement in gene-
environment interaction. In recent studies (9), proposals
have been made to consider the 2 logistic regression models.
The first uses a model for D-G association:

logit½PðD ¼ 1jG ¼ gÞ� ¼ α0 þ α1g ð2Þ

to test the marginal genetic effect, α1 = 0. The second uses
model 1 above to test for the gene-environment interaction,
β3 = 0. We denote the estimator of β3 as β̂cc to indicate fitting
model 1 by using case-control data. Because the Wald χ2

test statistic for testing marginal genetic effect and the gene-
environment interaction are independent (9), they can be
combined to propose a χ22df test of the following form:

Tcc ¼ α̂2
1

Varð bα1Þ þ
β̂
2
cc

Varðβ̂ccÞ
: ð3Þ

Furthermore, modifications of this test were proposed by Dai
et al. (9) by using alternative estimators for the gene-
environment interaction parameter β3 that make use of the
assumption of gene-environment independence. Several of
these alternatives including the classic case-control, the case-
only, and the empirical Bayes method were compared in a
simulation study by Mukherjee et al. (27, 28), and we will
consider these methods again here both in terms of the impli-
cations of environmental confounding and as alternatives for
joint tests in the simulation study. The case-control method is
robust but lacks power for testing G-E interaction. On the
other hand, the case-only method provides substantial power
gain over the case-control method under the gene-environ-
ment independence assumption but incurs severe type 1 error
under violations of this assumption. The empirical Bayes
method is a hybrid compromise that combines the case-
control and case-only estimators with data-adaptive weights
that optimally tradeoff between bias and efficiency under
departures from the independence assumption. The empirical
Bayes approach provides substantial power advantages com-
pared with the case-control method and has far superior
control of type I error compared with the case-only method
under several scenarios of gene-environment association and
moderate study sizes (27). The empirical Bayes estimator con-
verges to the case-control estimator for large sample sizes.
In constructing these various combined tests for marginal

genetic association and gene-environment interaction (9),
we found that the standard case-control estimator of gene-
environment interaction, β̂cc in equation 3, can be replaced
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by these alternative estimators like the case-only estimator
(denoted by β̂co) or the empirical Bayes estimator (denoted
by β̂eb) of the interaction parameter. The independence of
the 2 test statistics still holds (9), and the marginal test and
different gene-environment tests can be combined to give
rise to 2 modifications of the 2-df tests:

Tco ¼ α̂2
1

Varð bα1Þ þ β̂
2
co

Varðβ̂coÞ

Teb ¼ α̂2
1

Varð bα1Þ þ β̂
2
eb

Varðβ̂ebÞ
:

We refer to the 3 procedures mentioned above as the mar-
ginal genetic association + case-control, marginal genetic
association + case-only, and marginal genetic association +
empirical Bayes, respectively. Since environmental con-
founding affects the estimation of the gene-environment
interaction parameter, we expect these combined tests also
to behave similarly to the joint test. Moreover, the mar-
ginal genetic association + case-only procedure and, to a
lesser extent, the marginal genetic association + empirical
Bayes procedure will be affected by violation of the gene-
environment independence assumption, as has been well
characterized in the literature (26–28).

SIMULATION STUDYAND RESULTS

We carry out a simulation study to illustrate the type 1 error
properties of the different tests under the global null hypotheses
of H0: β1 = β2 = β3 = 0, in the presence of environmental con-
founding and under different scenarios of gene-environment
association. We then consider estimation properties of the dif-
ferent approaches, namely, case-control, case-only, and empiri-
cal Bayes estimators of the gene-environment interaction
parameter, β3, when there is nonnull interaction present. We
report bias and empirical coverage properties of the estimated
95% confidence intervals with respect to the true parameter
value (i.e., the proportion of times that the confidence intervals
contains the true parameter) under varying scenarios of envi-
ronmental confounding and gene-environment association.

To numerically illustrate our results, we consider the
setting of a case-control study with disease status D, binary
G, E, and unmeasured environmental confounder U. We
assume the disease to be rare. We first generate independent
binary genetic factor G and unmeasured environmental con-
founder U with given prevalence. Given G and U, we gener-
ate the observed environmental factor E in the controls
following a logistic model:

logit[PðE ¼ 1jG ¼ g;U ¼ u;D ¼ 0Þ�
¼ γ0 þ γ1gþ γ2u: ð4Þ

The parameters γ0, γ1, γ2 are chosen to maintain the desired
values of P(E = 1), the G-E association as measured by the
odds ratio of genetic factor, G, and environmental factor, E
(ORGE), in controls, and the strength of the E and U associa-
tion. Data are simulated in this manner so that the G-E associ-
ation measure is among the controls; the assumption that G

and E are independent among the controls is the exact assump-
tion needed for the case-only estimator in logistic regression
(22); with a rare disease, this assumption is approximately
equivalent to G-E independence in the population. Given the
cell probability configuration of (G,E,U|D = 0) and a disease
risk model of the form

logit[PðD ¼ 1jG ¼ g;E ¼ e;U ¼ uÞ]
¼ λ0 þ λ1gþ λ2eþ λ3geþ λ4uþ λ5gu; ð5Þ

the distribution (G,E,U|D = 1) is generated as described (29).
Note that in model 5, in order to generate environmental con-
founding of different forms, we include the terms involving
D-U association and the possibility of G ×U interaction by
setting the values of the λ4 and λ5 parameters to nonzero value.

Type 1 error rates are estimated by empirical proportion of
rejection of null hypotheses in 5,000 simulated data sets. Bias
andempiricalcoverageprobabilitiesareempiricallyestimatedfor
the nonnull case based on 5,000 simulated data sets as well.

Inflation of type I errors under environmental

confounding

Table 1 shows the type I error rates corresponding to the 4
joint tests ( joint likelihood ratio test for β1 = β3 = 0 in model
1, denoted by G-GE, along with marginal genetic
association + case-control, marginal genetic association +
case-only, and marginal genetic association + empirical
Bayes); the likelihood ratio test for β3 = 0 in model 1 (denoted
by GE); and the marginal test of α1 = 0 in model 2 (denoted
by G). In this setting, there is no G ×U interaction or λ5 = 0 in
model 5. We consider different degrees of environmental con-
founding (γ2 = λ4 = 0, log(2), log(5)) and different gene-
environment association (ORGE = 1.0, 1.5, 2.0). Data were
simulated under the global null hypothesis H0: λ1 = λ2 =
λ3 = 0, that ensures a valid null for the marginal association
tests in model 2. Under G-E independence, or ORGE = 1, type
I errors for all tests maintain the nominal level (α = 0.05) even
when the environmental confounder is ignored in the analysis.
When G and E are associated with ORGE = 1.5 or 2.0 and
when there is no unmeasured environmental confounding
(γ2 = λ4 = 0), all tests maintain valid type I error rates except
marginal genetic association + case-only and marginal genetic
association + empirical Bayes. However, in the presence of G-
E association, the joint test G-GE has inflated type I error
when environmental confounding is present (γ2 = λ4 > 0). The
test of no gene-environment interaction effect (GE) and the
simultaneous test of marginal genetic effect and case-control
interaction (marginal genetic association + case-control) also
exhibit significant inflation of type I errors when the con-
founder effect is large. In this setting, marginal genetic
association + case-control and marginal genetic association +
empirical Bayes have less inflated type I error rates than G-GE
or marginal genetic association + case-only. Moreover, the
joint tests incorrectly reject the null more often as the sample
size increases, confirming numerically that these tests reject
the null with a probability that tends to 1 as the sample size
increases. The marginal test of association remains valid
(Table 1).
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Bias in estimation of gene-environment interaction under

environmental confounding but with no G ×U interaction

Table 2 displays the bias in the parameter estimates
for nonnull gene-environment interaction (β3) and the corre-
sponding empirical coverage probability of the 95% Wald-
type confidence interval using standard case-control ðβ̂ccÞ,
case-only ðβ̂coÞ, or empirical Bayes ðβ̂ebÞ estimator of the

gene-environment interaction parameter under settings with
uncontrolled environmental confounding with γ2 = λ4 = log(5)
but no interaction between the environmental confounder and
the gene. As expected, the interaction effect estimate is consis-
tent, and the empirical coverage probability is maintained at
the nominal level for all 3 estimators when the assumption of
gene-environment independence holds (ORGE = 1), even in the
presence of environmental confounding. Bias starts to increase

Table 1. Type I Errors for 5 Association/Interaction Tests Across a Range of Environmental Confounder Effects

and Sample Sizesa

ORGE γ2 = λ4
b No. of Cases

and Controls

Test for BothG and G × E Effectsc

GEd Ge

G-GE MA +CC MA +CO MA + EB

1.0 0 1,000 0.055 0.053 0.055 0.051 0.050 0.050

5,000 0.050 0.049 0.055 0.053 0.056 0.052

10,000 0.051 0.051 0.048 0.043 0.051 0.049

log(2) 1,000 0.054 0.054 0.052 0.042 0.067 0.048

5,000 0.054 0.049 0.053 0.053 0.051 0.045

10,000 0.056 0.059 0.046 0.043 0.064 0.051

log(5) 1,000 0.047 0.048 0.055 0.047 0.031 0.048

5,000 0.053 0.057 0.060 0.058 0.052 0.051

10,000 0.048 0.048 0.041 0.040 0.049 0.050

1.5 0 1,000 0.048 0.046 0.749 0.067 0.046 0.054

5,000 0.055 0.048 1.000 0.044 0.047 0.053

10,000 0.045 0.044 1.000 0.042 0.052 0.045

log(2) 1,000 0.063 0.058 0.749 0.082 0.055 0.052

5,000 0.046 0.045 1.000 0.050 0.041 0.053

10,000 0.071 0.059 1.000 0.060 0.057 0.050

log(5) 1,000 0.067 0.049 0.807 0.073 0.048 0.048

5,000 0.175 0.058 1.000 0.075 0.070 0.059

10,000 0.286 0.076 1.000 0.091 0.077 0.045

2.0 0 1,000 0.052 0.046 0.995 0.052 0.043 0.050

5,000 0.046 0.042 1.000 0.043 0.047 0.048

10,000 0.049 0.042 1.000 0.043 0.049 0.049

log(2) 1,000 0.047 0.044 0.997 0.050 0.056 0.048

5,000 0.072 0.048 1.000 0.051 0.063 0.051

10,000 0.089 0.056 1.000 0.059 0.045 0.050

log(5) 1,000 0.117 0.051 0.999 0.066 0.057 0.045

5,000 0.440 0.086 1.000 0.096 0.103 0.045

10,000 0.728 0.114 1.000 0.129 0.129 0.052

Abbreviation: ORGE, odds ratio of genetic factor,G, and environmental factor, E.
a We consider P(G = 1) = 0.3, P(E = 1) = 0.4, and P(U = 1) = 0.5 and generate data with λ1 = λ2 = λ3 = λ5 = 0 in

disease risk model 5 for all settings. The nominal type 1 error level is set at α = 0.05. Results are based on 5,000

simulated data sets.
b γ2, the environmental confounder effect parameter in model 4; λ4, the environmental confounder effect

parameter in disease risk model 5.
c G-GE, the joint likelihood ratio test for H0: β1 = β3 = 0 in model 1; marginal association test (MA) + case-control

(CC), MA + case-only (CO), and MA + empirical Bayes (EB), the simultaneous 2-df tests for marginal genetic effect

and gene-environment interaction, with the interaction test using the case-control, case-only, or empirical Bayes

method.
d GE, the likelihood ratio test for H0: β3 = 0 in model 1.
e G, the likelihood ratio test for H0: α1 = 0 in model 2.
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and the empirical coverage probability starts to decrease for all
3 estimators when the independence assumption is not satisfied
(ORGE > 1), though this occurs for case-only and empirical
Bayes even in absence of environmental confounding (26–28).
The standard case-control estimate is least affected, while the
empirical Bayes estimator performs similarly in larger sample
sizes.

Bias in estimation of gene-environment interaction under

environmental confounding and with G ×U interaction

Table 3 shows the same results when there are environ-
mental confounding and a G ×U interaction, namely,
λ5 = log(2) in model 5. In contrast to Table 2, the interaction

effect estimate is biased, and the empirical coverage proba-
bility is reduced substantially for β̂cc, β̂co, and β̂eb even under
gene-environment independence (ORGE = 1). Among the 3
estimators, the undercoverage of the confidence interval for
β3 using the case-only study design ðβ̂coÞ is the most serious,
even under the independence of G and E. The standard case-
control and empirical Bayes estimators perform similarly,
especially at larger sample sizes.

DISCUSSION

In this paper, we have presented a number of different
results concerning the implications of environmental

Table 2. Bias With Environmental Confounding but WithoutG ×U Interactiona

ORGE λ b
3

No. of Cases
and Controls

β̂cc β̂co β̂eb

Bias Coverage Bias Coverage Bias Coverage

1.0 log(1.2) 1,000 −0.001 0.946 −0.004 0.958 −0.004 0.965

5,000 0.000 0.963 0.001 0.958 0.000 0.967

10,000 −0.003 0.948 −0.003 0.945 −0.003 0.967

log(1.5) 1,000 0.008 0.937 0.004 0.946 0.006 0.961

5,000 0.004 0.957 0.004 0.947 0.004 0.966

10,000 0.000 0.958 0.000 0.961 0.000 0.968

log(2.0) 1,000 0.006 0.946 −0.001 0.933 0.003 0.951

5,000 0.000 0.959 0.001 0.940 0.001 0.959

10,000 0.001 0.938 0.000 0.943 0.000 0.956

1.5 log(1.2) 1,000 0.033 0.947 0.438 0.075 0.107 0.903

5,000 0.028 0.943 0.436 0.000 0.046 0.925

10,000 0.032 0.907 0.435 0.000 0.041 0.894

log(1.5) 1,000 0.036 0.938 0.442 0.084 0.110 0.899

5,000 0.028 0.944 0.435 0.000 0.045 0.929

10,000 0.028 0.935 0.434 0.000 0.037 0.919

log(2.0) 1,000 0.029 0.952 0.432 0.116 0.105 0.909

5,000 0.031 0.947 0.438 0.000 0.049 0.926

10,000 0.031 0.915 0.436 0.000 0.040 0.895

2.0 log(1.2) 1,000 0.053 0.932 0.747 0.000 0.105 0.907

5,000 0.052 0.910 0.746 0.000 0.063 0.893

10,000 0.055 0.851 0.745 0.000 0.060 0.834

log(1.5) 1,000 0.056 0.953 0.752 0.000 0.108 0.927

5,000 0.049 0.930 0.741 0.000 0.060 0.904

10,000 0.050 0.862 0.743 0.000 0.056 0.844

log(2.0) 1,000 0.058 0.954 0.753 0.000 0.112 0.929

5,000 0.051 0.901 0.742 0.000 0.062 0.887

10,000 0.049 0.878 0.741 0.000 0.054 0.862

Abbreviation: ORGE, odds ratio of genetic factor,G, and environmental factor, E.
a Bias and empirical coverage probability of the 95% confidence interval corresponding to the gene-environment

interaction parameter, β3, using standard case-control ðβ̂ccÞ, case-only ðβ̂coÞ, and empirical Bayes ðβ̂ebÞ estimator in

the presence of environmental confounding with no interaction between the unmeasured confounder and gene. We

generate data under P(G = 1) = 0.3, P(E = 1) = 0.4, and P(U = 1) = 0.5 and λ1 = log(1.2), λ2 = λ5 = 0, and λ4 = log(5) in

disease risk model 5 for all settings. The effect of U on E or γ2 in model 3 is also set at log(5). Results are based on

5,000 simulated data sets.
b λ3, the gene-environment interaction parameter in disease risk model 5.
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confounding for gene-environment interaction studies. We
have shown that, if such confounding is left uncontrolled,
joint tests for a genetic main effect are biased, but this prob-
lem dissolves under gene-environment independence, and the
joint tests are again valid, even if the environmental con-
founding is left uncontrolled. Even under gene-environment
independence, uncontrolled environmental confounding can
bias estimates of gene-environment interaction parameters,
unless the unmeasured environmental confounder does not
itself interact with the genetic factor.
The results of this paper have several implications for the

conduct of gene-environment interaction studies. Perhaps
the most important is that environmental confounding should

be taken seriously in studies of gene-environment interaction.
Careful control is often made for genetic confounding by
population stratification using principal components anal-
ysis or other methods (10–16). However, environmental
confounding is frequently ignored in gene-environment inter-
action studies. Because of the severe nature of the biases that
can arise from such environmental confounding, more careful
thought should be given to what factors may be common
causes of the environmental factor of interest and the disease
under study. Efforts should be made at the data collection
stage to measure such variables, and they should then be con-
trolled for in the analysis in order to avoid the biases described
in this paper.

Table 3. Bias With Environmental Confounding andG ×U Interactiona

ORGE λ b
3

No. of Cases
and Controls

β̂cc β̂co β̂eb

Bias Coverage Bias Coverage Bias Coverage

1.0 log(1.2) 1,000 0.111 0.915 0.112 0.856 0.112 0.894

5,000 0.112 0.724 0.113 0.503 0.112 0.636

10,000 0.111 0.552 0.110 0.233 0.110 0.376

log(1.5) 1,000 0.121 0.888 0.110 0.863 0.115 0.883

5,000 0.117 0.732 0.114 0.502 0.115 0.604

10,000 0.113 0.541 0.111 0.249 0.112 0.368

log(2.0) 1,000 0.107 0.905 0.111 0.851 0.109 0.880

5,000 0.112 0.765 0.111 0.557 0.112 0.647

10,000 0.112 0.563 0.110 0.295 0.111 0.415

1.5 log(1.2) 1,000 0.150 0.884 0.558 0.010 0.223 0.800

5,000 0.150 0.587 0.556 0.000 0.168 0.519

10,000 0.155 0.283 0.559 0.000 0.164 0.239

log(1.5) 1,000 0.149 0.869 0.559 0.013 0.224 0.797

5,000 0.150 0.581 0.555 0.000 0.168 0.522

10,000 0.153 0.306 0.558 0.000 0.162 0.267

log(2.0) 1,000 0.156 0.877 0.569 0.026 0.233 0.788

5,000 0.156 0.593 0.557 0.000 0.175 0.520

10,000 0.147 0.345 0.556 0.000 0.157 0.306

2.0 log(1.2) 1,000 0.188 0.840 0.873 0.000 0.240 0.776

5,000 0.179 0.464 0.875 0.000 0.190 0.419

10,000 0.181 0.169 0.874 0.000 0.186 0.145

log(1.5) 1,000 0.168 0.866 0.871 0.000 0.221 0.813

5,000 0.179 0.471 0.874 0.000 0.190 0.430

10,000 0.183 0.166 0.875 0.000 0.188 0.148

log(2.0) 1,000 0.180 0.860 0.875 0.000 0.236 0.806

5,000 0.176 0.505 0.873 0.000 0.188 0.459

10,000 0.177 0.227 0.872 0.000 0.183 0.203

Abbreviation: ORGE, odds ratio of genetic factor,G, and environmental factor, E.
a Bias of the parameter estimate for gene-environment effect, β3, and the corresponding empirical coverage

probability of the 95% confidence interval using the case-control ðβ̂ccÞ, case-only ðβ̂coÞ, or empirical Bayes ðβ̂ebÞ
interaction estimator when environmental confounder and its multiplicative interaction with gene are not controlled.

We consider P(G = 1) = 0.3, P(E = 1) = 0.4, and P(U = 1) = 0.5 and λ1 = log(1.2), λ2 = 0, λ4 = log(5), and λ5 = log(2) in

disease risk model 5 for all settings. Thus, this simulation setting allows for the G ×U interaction. The effect of U on E
or γ2 in model 3 is also set at log(5). Results are based on 5,000 simulated data sets.

b λ3, the gene-environment interaction parameter in disease risk model 5.
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Another important implication of the results here is that
the extent of the bias that arises when environmental con-
founding is present and not controlled for depends critically
on whether or not the genetic and environmental factors are
marginally independent. Gene-environment independence
does not completely alleviate bias due to environmental con-
founding in estimates of gene-environment interaction
parameters, but it does mitigate considerably the settings in
which such biases can arise. As seen above, with joint tests,
violation of gene-environment independence can severely
bias these tests. Unless a researcher is very sure that the
gene-environment independence assumption holds, joint
tests (leveraging an environmental factor for discovering
new loci) should perhaps be avoided as they can be severely
biased in the presence of environmental confounding. When
they are used, the simultaneous tests (9) that combine a mar-
ginal test and a test using either a case-control estimator
(marginal genetic association + case-control) or an empirical
Bayes estimator (marginal genetic association + empirical
Bayes) of the interaction parameter seemed least suscep-
tible to the biases documented. The marginal genetic
association + case-only approach suffers the most from vio-
lation of gene-environment independence and should be
avoided if the researcher is uncertain of this assumption.

Gene-environment independence is commonly assumed
in the literature and, in many cases, it is a reasonable
assumption. However, when the tests are used for the pur-
poses of detection, there may be insufficient knowledge to
evaluate the assumption. Moreover, there are documented
settings in which the genetic variants are related to both the
environmental factor under study and also the disease
outcome as, for example, was recently shown to be the case
with the effect of variants on 15q25 on smoking and lung
cancer (30–33). At this point, such settings are probably
more the exception than the rule, and researchers are at least
partially protected from environmental confounding by
gene-environment independence. However, as personal
knowledge of one’s own genetic risk factors increases, if
such knowledge leads to changes in behavior and environ-
mental exposures, this gene-environment independence may
no longer be preserved (34). The biases described in this
paper will then also be more prominent.

Furthermore, even under gene-environment indepen-
dence, environmental confounding can still give rise to bias
in gene-environment interaction parameter estimates. Effort
should be made to control for environmental confounding.
When this is not possible, sensitivity analysis techniques for
gene-environment interaction have been developed (21) to
help assess the extent to which an unmeasured environmen-
tal confounder would have to be related to both the environ-
mental factor of interest and the disease outcome to
substantially change qualitative and quantitative inferences.
We would recommend the use of these methods when it is
not possible to control for environmental confounding. In
the genome-wide association study and the post–genome-
wide association study age, extraordinary technological
development and advances in measurement have increased
our capacity to evaluate and control for genetic factors and
confounding that might be associated with them. Amidst
this extraordinary progress, it is important not to lose sight

of the other side to the story—the environment. Efforts
should likewise be directed at the measurement of environ-
mental factors and potential confounders, as well as at the
analytical control for these confounders, when necessary, to
eliminate bias and to help ensure accurate inferences.
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