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Abstract
We describe cell type–specific significance analysis of microarrays (cssam) for analyzing
differential gene expression for each cell type in a biological sample from microarray data and
relative cell-type frequencies. first, we validated cssam with predesigned mixtures and then
applied it to whole-blood gene expression datasets from stable post-transplant kidney transplant
recipients and those experiencing acute transplant rejection, which revealed hundreds of
differentially expressed genes that were otherwise undetectable.

Traditional microarray analysis methods are oblivious to sample cell-type composition.
They can neither distinguish between variations in gene expression resulting from an actual
physiological change versus differences in cell-type frequency, nor identify the contributions
of different cell types to the total measured gene expression. Therefore, their power to detect
differentially expressed genes is strongly affected by the sample variation in cell-type
frequencies1–3.
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Ideally, one would perform between-group differential expression analysis for each of the
cell types in a tissue. Experimental methods for isolating subsets of tissues, such as cell
sorting or enrichment, are prohibitively expensive and may affect cell physiology and gene
expression4,5. In theory, a statistics-based alternative is to quantify the relative abundance of
each cell type in each sample, then deconvolve and compare cell type–specific average
expression profiles for groups of mixed tissue samples (Fig. 1). Cell-type subset
composition can be measured using labeled antibodies to cell-surface markers and flow
cytometry, quantified by histology analyses6 or even estimated from the gene expression
data by deconvolution from cell type–specific probes7–10. Though previous attempts at gene
expression deconvolution have assumed deconvolution to be linear6–8, the relationship
between the gene expression in mixed samples and the actual gene expression of the
constituting cell subsets is unclear. This prevents assessment of the accuracy of
deconvolution-derived profiles, their widespread application and development of such
statistics-based techniques.

We tested the relationship between measured gene expression in mixed samples and the
expression of genes in the isolated pure subsets, in a situation in which all factors are
known. We analyzed tissue samples from the brain, liver and lung of a single rat in isolation
(referred to as `measured pure tissue') as well as in ten different mixture ratios (referred to as
`measured mixtures'; Supplementary Table 1) using Affymetrix expression arrays (Online
Methods). Such mixtures mimic the common scenario in which biological samples in a
dataset are heterogeneous and vary in the relative frequency of the component subsets from
one another.

Next, we reconstituted mixture sample expression profiles by multiplying the measured pure
tissue expression profiles by the frequency of the tissue subset in a given mixture sample.
Overall, experimentally measured mixture data had high correlation with the reconstituted
mixture data (r > 0.95; Supplementary Fig. 1). Probes for which data deviated from the
diagonal comprised only a small fraction of the probes up to a twofold expression change
cutoff (Supplementary Fig. 2); these probes were more abundant in experimentally
measured mixtures than in reconstituted samples, likely because of nonlinear biases in
sample amplification and normalization procedures or probe cross-hybridization
(Supplementary Note 1, Supplementary Fig. 3 and Supplementary Table 2).

The high correlation that we observed between the measured and reconstituted mixtures
suggests that statistical deconvolution of tissue-specific expression profiles from complex
tissue samples using linear regression should yield accurate expression estimates for most
genes. To test this, we applied linear regression fitting to the measured mixture samples
using the mixture ratios (Online Methods). For each tissue, a comparison of the estimated
expression profile of each subset to the measured expression pattern in the pure tissue
showed a high correlation (Fig. 2), indicating that we could accurately deconvolute subset-
specific expression patterns for the majority of genes from whole-sample measurements.

Accurate deconvolution of cell type–specific expression profiles enables the development
and application of statistical techniques aimed at maximizing the information obtainable
from a heterogeneous tissue gene expression assay. To estimate the specificity and
sensitivity of statistical deconvolution to detect differentially expressed genes, we compared
deconvoluted and measured differences in gene expression between tissues. Akin to fold
change, all probes whose estimated abundance difference was greater than a set threshold
were predicted to be differentially expressed. We compared these to a `gold standard' set of
differentially expressed probes between tissues identified from the pure tissue sample
measurements (Online Methods). Receiver operating characteristic (ROC) curve analysis
showed the detection of differentially expressed genes by statistical deconvolution to be
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both highly specific and sensitive with an area under the curve of 0.85 and greater
(Supplementary Fig. 4).

In real-life settings, differences are often assayed between groups of samples, each
containing many cell types, and no `gold standard' gene list exists to tell true difference from
noise. To test the utility of our method to address an important clinical problem in a complex
tissue, we applied cell type–specific significance analysis of microarrays (csSAM) to human
whole-blood gene expression array data from 24 kidney transplant recipients. Of these, 15
were experiencing acute rejection of the kidney, whereas 9 were stable after transplant.
Blood cells represent a particularly complex tissue type, with over a dozen distinct cell types
that can vary in frequency up to 10–20-fold between healthy individuals. In this case, data
on white blood cell subsets from Coulter counter measurements was available for all
individuals analyzed (Supplementary Table 3), distinguishing five major cell types:
lymphocytes, monocytes, neutrophils, eosinophils and basophils.

We observed high variation in relative cell-type frequency between individuals but detected
no significant differences in cell-type frequencies between the two groups (P ≥ 0.24 for all
cell types). Whole-blood differential expression analysis using a previously published
method, significance analysis of microarrays (SAM)11, revealed no differentially expressed
genes between the two groups at a relatively permissive false discovery rate (FDR) of 0.3
and reduction in the number of multiple hypothesis tests (Fig. 3a and Supplementary Fig. 5).

Next, for each of the two groups of individuals, we deconvoluted the cell type–specific gene
expression profile by linear regression analysis for each of the quantified cell types in each
group of individuals. Each such cell type–specific expression profile represents the average
for that cell type in that group of individuals. We used these deconvolved cell type–specific
expression profiles to perform cell type–specific differential expression analysis (Online
Methods). For each gene, in each cell type, we calculated the contrast in its deconvoluted
expression between groups of individuals. We repeated the deconvolution and cell-type
contrast procedure with permuted group-label data. To analyze differences in a gene's
expression between two deconvolved cell types, we calculated FDR as the ratio of genes
whose contrast exceeds a given threshold in the real dataset compared with the average
number of genes exceeding the same threshold in the permuted dataset (Online Methods).

Though we detected no differentially expressed genes between the two groups in whole-
blood analyses, sample heterogeneity may have masked biological differences. Applying the
csSAM procedure to the kidney transplant dataset for each of the five quantified cell types,
we identified 318 differentially expressed genes in monocytes at an FDR of 0.15 (Fig. 3b).
We identified no genes as differentially expressed even at an FDR of 0.3 in any of the other
cell types (Fig. 3c–e). However, repeated analysis by considering the one-tailed tests of up-
and downregulated genes separately, identified differentially expressed genes between
lymphocytes and neutrophils of these two groups of individuals as well as 137 genes
upregulated in monocytes in samples from individuals experiencing acute kidney rejection at
an FDR of 0.05 (Supplementary Fig. 6).

In conclusion, here we described the csSAM algorithm, which addresses the extensive loss
of biological signal in microarray datasets when analyzing complex tissue samples that vary
in cellular composition. What are the limitations of this methodology? First, probe saturation
and cross-hybridization may result in inaccuracies of cell-specific expression profiles,
though these do not seem to have a large effect on the accuracy of downstream differential
expression analysis. Similarly, for those genes whose cellular expression changes in
response to changes in the cell subset composition of their microenvironment, deconvolved
cell type–specific expression profile may be inaccurate. Alternative, more sophisticated
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models to linear regression may be developed to address this problem. Unlike traditional
methodologies, csSAM accuracy benefits from variation between samples. Though
additional experiments would be needed to identify csSAM's lower detection boundaries,
accurate estimates of rare cell types may be aided by sample enrichment or inclusion of
highly variable samples, which will yield cell-type frequency–dependent changes in
transcript amounts. The key advantage of csSAM is that it localizes the identified
differential expression to a particular cellular context, which allows clear hypothesis
formulation for follow-up experiments. Though the principal test case here involves blood
cells, our methodology is readily usable with microarray analysis of any heterogeneous
tissue and can be applied to other types of molecular measurements as well.

ONLINE METHODS
Microarray analysis of rat brain, liver and lung

We mixed the cRNA derived from rat brain, liver and lung biospecimens from a single rat in
13 different proportions, three of which were from each of the tissues in isolate (100% lung,
100% brain and 100% liver). The 10 other mixtures included RNA from each of the three
tissues at varying proportions. Each of the samples was analyzed in triplicate
(Supplementary Table 1). Snap-frozen samples of rat liver, brain and lung were kept frozen
while cutting them into pieces. cDNA synthesis and labeling was done with a starting
amount of 1 μg, using the Affymetrix labeling kit, following the manufacturer's instructions.
Each sample was hybridized to rat-specific RAE230_2 whole-genome expression arrays
(Affymetrix), and the resulting cell files were processed by RMA normalization and used for
deconvolution. The abundance of liver, brain and lung tissue in each mixture and their
variation across mixtures paralleled those of the neutrophils, lymphocytes and monocytes,
respectively, in our renal transplant dataset. Tissues were obtained from untreated animals
that were handled according to the Swiss Animal Welfare Law (Tierschutzgesetz, 2005,
2008).

Human renal transplant dataset
Whole-blood gene expression measurements for 24 pediatric renal transplant recipients were
analyzed on human-specific HGU133V2.0 (+) whole-genome expression arrays
(Affymetrix). Informed consent was obtained from all of the subjects enrolled in this study,
and the study protocols were approved by the ethics committee of Stanford University's
School of Medicine. Of the 24 samples, 15 were from individuals showing acute rejection of
the transplant and 9 were from individuals with stable post-transplant course. White blood
cells were analyzed by using Coulter counter to obtain the percentages of monocytes,
lymphocytes, eosinophils, basophils and neutrophils for each sample (Supplementary Table
3). Normalization of data from individuals with stable post-transplant course and acute
rejection was preformed together by RMA and the output was used directly for SAM and
csSAM.

Statistical deconvolution of cell type–specific expression profiles
Assume expression values Xij for sample i = 1, 2, … n and genes j = 1, 2, … p, and
measured cell-type proportions W = wik for samples i = 1, 2, … n and cell types k = 1, 2, …
K. Our model for a single group of samples is
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where hkj is the gene expression for cell-type k and gene j, and eij is a random error. Letting
X and W be matrices with entries Xij and Wij respectively, we fit this model by a standard
least-squares regression of each column of X on W, to yield the coefficients in the
corresponding column of H. As normalized microarray data do not directly correspond to
transcript abundance, the issue of normalization and scale to use requires additional
investigation and is likely to depend on transcript quantification technology. In the case of a
single-channel array (for example, Affymetrix), we set any coefficients estimated as
negative to zero. We interpreted the estimated hkj as the average gene expression for cell-
type k in the group of samples.

For the two-group model with groups yi = 1 and 2, we assume for groups 1 and 2

respectively. We estimate h1
kj and h2

kj separately from the group 1 and 2 samples,
respectively.

False discovery analysis in the rat experiment
Let Tj be the T-statistic for the true difference between brain and liver expression, for gene j.
Define gene j to be truly higher in brain if Tj > 2. We considered the list of all such genes as
the gold standard for upregulated brain genes. Let hj

1, hj
2 be the estimated expression for

brain and liver from deconvolution, then we declare gene j substantially higher in brain if hj
2

− hj
1 > c, similarly for upregulated liver genes Tj < −2 and hj

2 − hj
1 < − c. We calculate the

receiver operating characteristic (ROC) curves by varying threshold c and comparing the
genes whose difference in estimated expression profiles was above the threshold to those
comprising the gold standard.

csSAM tests for two-class differences
We considered five tests of differences between two classes: (i) whole (mixed) tissue
differences, (ii) differences in cell subset composition, (iii) an adjustment test where the data
is adjusted and a one-degree-of-freedom test is used for comparing the two groups, (iv)
individual tests for each cell-type and (v) an omnibus test for differences across all cell
types.

For the first test, we used SAM9 to test for differences between two classes, ignoring
differences in cell-type composition. For the second test, for each cell type, we performed a
t-test between the two groups to identify substantial differences in composition. Tests 3–5
are new. The third test, data adjustment, has an interesting statistical feature. Let  be the
average composition, that is, let the average of the rows of W and  be the residuals from
the fit. We form the adjusted data for each array,

in which  is  or  and pnk is a constant defined in Supplementary Note 2. We have K
different potential tests, one for each cell type. We define a single test by averaging these K
tests with weights proportional to the cell-type average frequencies. We then compute the
usual T-statistic Tj from the adjusted data and use it to test for differential expression. Thus,
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the adjusted data  is well calibrated in the sense that the T-test based on this data is exactly
equivalent to the usual statistical test for the corresponding contrast. This equivalence holds
for any contrast vector , not just the average composition. In this sense, it is appropriate to
treat the adjusted data as real data  (see Supplementary Note 2 for a proof and
Supplementary Fig. 7 for application of this test on our clinical dataset).

For the fourth test, cell type–specific differential expression, we use the contrast  as
the test statistic and median-center its distribution. For the omnibus test, we compute the
quantity

in which  is the estimated standard error of the corresponding difference (see
Supplementary Fig. 8 for application of this test on our clinical dataset).

Full R source code for csSAM and demonstrations are available in Supplementary Data.
Updates will be available at http://buttelab.stanford.edu/doku.php?id=public:data.

Estimation of FDR for csSAM cell-specific tests
To estimate FDR, we fix X and W and permute y, the assignment of samples to groups, to
yield y*. We then fit the two-group model to the data (X,W,y*). As for the cell-specific
expression profiles of the original data, we median-center the contrast. In each case we
estimate the FDR by V/R, where R is the number of genes exceeding a given threshold in
the original data, and V is the average number of genes exceeding the same threshold in the
permuted datasets. This yields an estimated FDR for genes for each individual cell-type
comparisons as well as for the omnibus test. Use of a positive or negative threshold yields
separate FDRs for upregulated or downregulated genes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of csSAM. Different cell types are denoted by circles, diamonds and hexagons.
csSAM identifies cell type–specific differential expression, as shown by the arrows on the
right.
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Figure 2.
Statistical deconvolution of complex tissues yields accurate estimates of pure tissue-subset
expression. (a–c) Density plots of estimated tissue-specific gene expression deconvoluted
from mixed tissue samples plotted against measured gene expression from individual
tissues. Color represents point density from a single probe (cyan) to 100 probes (yellow).
RMA, robust multichip average.
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Figure 3.
csSAM reveals cell type–specific differential expression undetectable at heterogeneous
tissue level. (a–f) Differential expression analysis in whole blood (a) and the indicated cell
types (b–f) between samples from individuals with acute rejection and stable post-transplant
course.
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