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Abstract

The outcome of infection by Mycobacterium tuberculosis (Mtb) depends greatly on how the host responds to the bacteria
and how the bacteria manipulates the host, which is facilitated by protein–protein interactions. Thus, to understand this
process, there is a need for elucidating protein interactions between human and Mtb, which may enable us to characterize
specific molecular mechanisms allowing the bacteria to persist and survive under different environmental conditions. In this
work, we used the interologs method based on experimentally verified intra-species and inter-species interactions to
predict human-Mtb functional interactions. These interactions were further filtered using known human-Mtb interactions
and genes that are differentially expressed during infection, producing 190 interactions. Further analysis of the subcellular
location of proteins involved in these human-Mtb interactions confirms feasibility of these interactions. We also conducted
functional analysis of human and Mtb proteins involved in these interactions, checking whether these proteins play a role in
infection and/or disease, and enriching Mtb proteins in a previously predicted list of drug targets. We found that the
biological processes of the human interacting proteins suggested their involvement in apoptosis and production of nitric
oxide, whereas those of the Mtb interacting proteins were relevant to the intracellular environment of Mtb in the host.
Mapping these proteins onto KEGG pathways highlighted proteins belonging to the tuberculosis pathway and also
suggested that Mtb proteins might use the host to acquire nutrients, which is in agreement with the intracellular lifestyle of
Mtb. This indicates that these interactions can shed light on the interplay between Mtb and its human host and thus,
contribute to the process of designing novel drugs with new biological mechanisms of action.
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Introduction

Despite the wide variety of anti-tuberculosis drugs and

significant progress made in treatment administration with

improved control strategies in response to the global tuberculosis

epidemic, tuberculosis (TB) remains an important health problem

worldwide. According to the World Health Organization (WHO),

1.4 million people died from tuberculosis in 2010, 95% of them

from the developing world. Currently, an effective vaccine is

lacking [1,2] and the existing tools for diagnosis and treatment of

TB are limited. Furthermore, a growing prevalence of TB

infection, co-infection with Human Immunodeficiency Virus

(HIV) or Acquired Immunodeficiency Syndrome (AIDS) and an

increased incidence of multi-drug resistant- (MDR-) and extensive

drug resistent- (XDR-) TB constitute major impediments to global

TB eradication programmes implemented so far. This shows that

there is still a need for new drugs with novel therapeutic activities

and vaccine to combat and prevent this disease.

As an intracellular pathogen, Mycobacterium tuberculosis Mtb,

which causes TB, triggers mechanisms to ensure its growth and

viability within the host. This happens through molecular

interactions between specific pathogen proteins and host cells.

As these molecular interactions influence molecular functions, they

may allow the pathogen to alter its gene expression processes, to

control the switching from a replicative (growth) to a non-

replicative (dormancy) state and to develop alternative mecha-

nisms for generating energy [2]. Thus, these interactions are

essential for Mtb survival in the host by modulating the host

response to bacterial infection or by acquiring nutrients it requires

for its growth. This suggests that the identification of the protein

interactions that Mtb uses to invade the host can contribute to the

process of identifying potential targets for designing new drugs.

Unfortunately, experimental studies of host-pathogen protein

interactions are very scarce, so currently we have to rely on

computational methods to elucidate human-Mtb interactions.

Studying protein-protein functional interactions allows the

analysis of an organism’s functioning as an integrated system

and enables the identification of the patterns and properties

driving systems. A functional interaction does not necessarily

involve direct physical interaction or contact, but it rather refers to

a relationship between proteins that contributes to cellular

mechanisms through which a particular protein achieves its

functions. The use of computational approaches and bioinfor-

matics tools has opened a new route toward global analyses of

whole genomes and investigating relationships between genes,

providing the opportunity to look at genes within their context in

the cell [3]. In the context of inter-species analysis, such as Mtb

and its host, investigating functional interactions between genes
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that come into play when infection occurs may help elucidate

mechanisms underlying virulence and pathogenesis associated

with Mtb. Moreover, this would enhance our knowledge about

this bacterial pathogen specific abilities for invasion and division

inside host macropages, defeating the antibacterial mechanisms of

these cells and resulting in disease in the host.

In this study, we predict human-Mtb functional interactions

using the interologs method [4] based on intra-species and inter-

species interactions. Thereafter, these interactions were subjected

to different types of filters, yielding a total of 190 interactions that

we overlaid onto a human and a previously generated Mtb strain

CDC1551 protein functional interaction network [3,5]. We

conducted further analyses on these predicted interactions to

determine whether these interactions are biologically feasible by

looking at the subcellular location of interacting proteins.

Functional analyses performed using the biological processes and

pathways in which these interacting proteins are involved reveal

that these interactions may help understand the interplay between

the human and Mtb. This study provides insights into molecular

mechanisms underlying the Mtb intracellular lifestyle in the host

and host response.

Results and Discussion

We used the literature to identify known human-Mtb interac-

tions and exploited a computational approach, the interolog

method, to predict inter-species interactions between human and

Mtb. These interactions were filtered to ensure high confidence in

the set of interactions produced, reducing the number of false

positives. Subcellular location and functional analyses were

conducted to elucidate biological relevance of these known and

predicted interactions using Gene Ontology (GO) cellular

component and biological process terms [6–8], and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways [9].

Known Host–pathogen Interactions
Known human-Mtb interactions are not stored in databases as

is the case for many human-virus protein interactions. Through

manual curation of literature, we retrieved 47 inter-species

interactions between Mtb and human, where both interacting

proteins were present in the intra-species human and Mtb

networks. The known human-Mtb protein interactions are mostly

those involved in the recognition of the pathogen by the host.

Specific host receptors recognize specific Mtb components. For

example, the toll-like receptors (TLRs) recognize various bacterial

lipoproteins (lprA, lpqH, lprG) whereas the human pulmonary

surfactant protein A (PSP-A) binds to Mtb surface glycoproteins.

In addition, the human plasminogen protein was found to be

functionally related to 15 different bacterial plasminogen recep-

tors.

Predicted Interactions
The interolog method, described in the Materials and Methods

section, was used to predict human-Mtb interactions and a total of

483 interactions between 175 human and 192 Mtb proteins were

identified. Different filters were applied to assess these interactions,

yielding three types of interactions: ‘‘interolog-DIP-known’’,

‘‘interolog-DIP-array’’ and ‘‘interolog-HPI-array’’, named after

models used to infer and filter them. The two first types of

interactions are derived using intra-species interactions retrieved

from the Database of Interacting Proteins (DIP). Interolog-DIP-

known interactions are filtered using the human-Mtb known

interactions and interolog-DIP-array interactions are those filtered

using expression data by considering only interactions where both

interacting proteins are differentially expressed during infection.

The interolog-HPI-array type of interactions are those inferred

using inter-species interactions from experimentally verified Host-

Pathogen Interactions (HPI) and filtered using expression data, as

mentioned before. After applying these filters: three interactions

involving 6 proteins were classified as ‘‘interolog-DIP-known’’, 78

interactions between 35 human proteins and 47 Mtb proteins as

‘‘interolog-DIP-array’’ interactions and 109 interactions between

85 human proteins and 53 Mtb proteins as ‘‘interolog-HPI-array’’.

These different types of interactions are described below.

Interolog-DIP-known interactions. The interolog-known

interactions comprise 3 interactions between 3 human proteins

and 3 Mtb proteins, as shown in Table 1. We predicted that the

human P07814 protein, which is a bifunctional aminoacyl-tRNA

synthetase, interacts with P0A5U4 (RecA, recombinase A) from

Mtb. The RecA protein is a recombinase functioning in

recombinational DNA repair in bacteria. These two proteins are

the neighbours of the human protein P00747 (plasminogen) and

the mycobacterial protein P77899 (S-adenosylmethionine syn-

thase), respectively, which are known to interact [10]. An

interaction between the human protein ATP synthase subunit

beta, mitochondrial, P06576 and the Mtb protein P0A548, a

chaperone protein DnaJ 1, was also predicted. This second

predicted interaction is the neighbour of three known interactions

between one human protein (P00747) and three Mtb proteins:

P0A5B9 (chaperone protein DnaK), P0A558 (elongation factor

Tu) and P77899 (S-adenosylmethionine synthase). The third

interaction involves the human protein P27361, which is a

mitogen-activated protein kinase 3 (MAPK3), and the probable

acetyl-CoA acyltransferase fadA2 from Mtb. MAPK3 is an

enzyme which is a member of a MAPK family. Induction of the

MAPK pathway is required for the expression of TNF-alpha, IL-

10, and MCP-1 by human monocytes during Mtb infection [11].

The third interaction is the neighbour of the interacting proteins,

the human protein O00206 (toll-like receptor 4) and the Mtb

protein P0A520 (60 kDa chaperonin 2).

Interolog-HPI-array and Interolog-DIP-array

interactions. The Interolog-HPI-array interactions used exper-

imentally verified inter-species interactions for the interolog

predictions, which were further filtered using expression data.

We predicted 109 interactions between 85 human proteins and

53 Mtb proteins. The network contains one large connected

subnetwork of 61 proteins. In the largest subnetwork, we observe

several proteins having 4 or more interactions. The human

proteins NFKB1 and CD74 are connected to 10 and 5 Mtb

proteins, respectively. Both of these proteins are known to play a

role during TB infection. NFKB1 (nuclear factor NF-kappa-B

subunit p105) is part of the NF-kB complex which controls the

transcription of genes involved in the pro-inflammatory response

as well as genes involved in the antiapoptotic response. During

early infection, Mtb inhibits macrophage apoptosis by up-

regulating the NF-kB signaling pathway, resulting in the up-

regulation of FLIP, an inhibitor of death receptor signaling [12].

CD74 or HLA class II histocompatibility antigen gamma chain is

implicated in the transport of MHC (major histocompatibility

complex) class II proteins from the endoplasmic reticulum to the

Golgi complex. Mtb inhibits MHC class II antigen presentation

which reduces the recognition of infected macrophages by CDz
4 T

cells [13]. The Mtb proteins HemL (glutamate-1-semialdehyde

aminotransferase), RpoD (RNA polymerase sigma factor rpoD),

RecN (DNA repair protein recN), ThiC (thiamine biosynthesis

protein ThiC), CydD (Transmembrane ATP-binding protein ABC

transporter) and SdaA (L-serine dehydratase) are connected to 10,

4, 8, 5, 5 and 4 human proteins, respectively.

MTB-Human Interaction Map
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The interolog-DIP-array interactions, consisting of 78 interac-

tions between 35 human proteins and 47 Mtb proteins, were

predicted by interologs using intra-species interactions and further

filtered using expression data. There were no common interactions

between the ‘‘interolog-DIP-array’’ and ‘‘Interolog-HPI-array’’

interactions, however, there were proteins shared by the two sets: 3

human proteins and 9 Mtb proteins (Figure 1). The shared human

proteins are MAT2A (S-adenosylmethionine synthase isoform

type-2), AK2 (Adenylate kinase 2, mitochondrial) and CAPZB (F-

actin-capping protein subunit beta). The common Mtb proteins are

DnaB (replicative DNA helicase), RlmN (Ribosomal RNA large

subunit methyltransferase N), Upp (Uracil phosphoribosyltransfer-

ase), SecA1 (Protein translocase subunit SecA 1), RpoD (RNA

polymerase sigma factor RpoD), TopA (DNA topoisomerase 1),

GlnE (Glutamate-ammonia-ligase adenylyltransferase), LigA

(DNA ligase) and SerA (D-3-phosphoglycerate dehydrogenase).

Note that no overlap has been found between predicted and

known interactions and this may be due to the independence of

approaches used to infer these interactions.

Cellular Component Analysis
Protein interactions are often constrained by physical location,

meaning that two proteins are more likely to interact if they are in

the appropriate subcellular location. Thus, we looked closely at the

subcellular location of proteins involved in human-Mtb interac-

tions to investigate possible occurrences of these interactions.

Table 2 shows the subcellular locations of the interacting proteins

for the different data sets.

For the known host-pathogen protein interactions, the human

proteins are located in the membrane or secreted; and the Mtb

proteins are located in the cell membrane, cell wall or secreted.

This is in agreement with the studies the interactions come from,

which focus on the recognition of Mtb by human receptors which

are located on the cell surface. The Mtb proteins are also located

on the cell surface to enable binding to the human receptors. One

exception is the interaction between the human heat shock protein

40 (HSP40) and the Mtb antigen mpt64. The human protein is

annotated as intracellular and the bacterial protein is annotated as

secreted, which is in accordance with [14], co-localizing mpt64

protein and HSP40 in the cytoplasm of HeLa cells.

Mtb is an intracellular pathogen that has evolved strategies to

survive in intracellular phagosomes. A study by van der Wel et al.

[15] shows that after two days of infection, Mtb progressively

translocates from phagolysosomes into the cytosol in nonapoptotic

cells. Therefore, the likely locations of the host-pathogen protein

pairs are intracellular-cell-wall/cell-membrane/secreted if the

pathogen is within the host cell, or secreted-cell-wall/cell-

membrane/secreted if the pathogen just encounters the host cell.

Figure 2 displays locations of interolog-known interactions listed in

Table 1, together with their neighours belonging to known

interactions.

Note that, although GO and PSORTb predicted some of the

interacting Mtb proteins to be cytoplasmic, TubercuList annota-

tion (http://genolist.pasteur.fr/TubercuList) for some proteins, for

example ScoB, Glpk and GadB, suggests that these proteins have

been identified by mass spectrometry in the membrane fraction of

Mtb cells. Therefore, while the subcellular location analysis

provides us with more biological insight into the predicted

interactions, we did not want to rule out possible interactions

based on subcellular location predictions.

Gene Ontology Term Enrichment
To gain insight into the biological processes of the proteins

involved in human-Mtb interactions, we performed a GO term

enrichment analysis using the Database for Annotation, Visuali-

zation and Integrated Discovery (DAVID) Functional Annotation

Chart tool [16,17]. For each protein list of interest (‘‘interolog-

DIP-array’’ or ‘‘interolog-HPI-array’’ proteins), we performed a

GO biological process enrichment analysis using the human

proteins or Mtb proteins from our constructed network as the

background. As suggested on the DAVID website, we selected the

GO terms situated in the fourth and fifth level to avoid very

general GO terms such as ‘‘biological process’’. We used the

Bonferonni p-value, which is a corrected p-value for multiple

testing, and we selected those GO terms enriched in our candidate

protein list by requiring a p-value less than 0.05.

The human ‘‘interolog-DIP-array’’ proteins predicted to inter-

act with Mtb proteins were enriched in nitrogen compound

biosynthetic process, oxoacid metabolic process, carboxylic acid

metabolic process and nucleobase, nucleoside and nucleotide

metabolic process as shown in Table 3. When Mtb cells are

phagocytozed they are exposed to nitric oxide and oxidative stress.

The interacting human proteins may be involved in facilitating

this. On the other hand, the human ‘‘interolog-HPI-array’’

proteins are enriched in processes related to negative regulation

of apoptosis and positive regulation of cellular process (see Table 3).

It is known that virulent Mtb strains inhibit apoptosis of the host

macrophage to protect their replicative niche [18].

From the Mtb side, the smallest Bonferonni corrected p-values

were approximately 0.10032 and 0.34548 for GO biological

process terms of proteins involved in ‘‘interolog-DIP-array’’ and

‘‘interolog-HPI-array’’ interactions, respectively. This indicates

that there is no sufficient evidence that our gene or protein list is

enriched in any GO biological processes. However, when looking

at the individual Mtb proteins involved in these interactions, some

of them share the same biological processes with Mtb proteins

previously known to interact with human. These proteins and their

GO terms are listed in Table 4. The biological processes include

those particularly relevant to the intracellular environment of Mtb

in the host, such as growth of symbiont in host, response to stresses

related to the harsh intracellular environment, response to host

immune response, and pathogenesis. Proteins playing a role in

Table 1. The ‘‘interolog-DIP-known’’ interactions.

Human UniProt ID Human protein name Mtb UniProt ID Mtb protein name

P07814 EPRS, bifunctional aminoacyl-tRNA synthetase P0A5U4 RecA, recombinase A

P06576 ATP5B, ATP synthase subunit beta,
mitochondrial

P0A548 DnaJ1, chaperone protein DnaJ 1

P27361 MAPK3, mitogen-activated protein kinase 3 O86361 fadA2, probable acetyl-CoA
acyltransferase FADA2

doi:10.1371/journal.pone.0067472.t001

MTB-Human Interaction Map
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these processes may achieve their goal in protecting the pathogen

from the environment through interaction with host proteins.

Furthermore, 32 and 22 proteins from the ‘‘interolog-DIP-

array’’ and the ‘‘interolog-HPI-array’’ Mtb lists, respectively, were

among the essential genes required for growth identified by

Sassetti et al. using transposon site hybridization (TraSH) [19].

The genes in Sassetti et al. were initially for Mtb H37Rv but the

orthologue file from the Integr8 project [20] allowed us to map

them to CDC1551 genes. In particular, 3 ‘‘interolog-HPI-array’’

proteins are also virulence factors of Mtb, namely NarG (O06559),

RelA (P66014) and MbtB (P71717). NarG is a nitrate reductase.

Nitrate respiration helps the bacteria to survive in O2-depleted

areas of inflammatory or necrotic tissue. NarG interacts with the

human protein sorting nexin SNX6 (Q9UNH7), which is thought

to be involved in several stages of intracellular trafficking. RelA is a

protein that coordinates the metabolism of (p)ppGpp, a mixture of

39-pyrophosphate derivative of GDP (ppGpp) and 39-pyrophos-

phate derivative of GTP (pppGpp). Under stress conditions, such

as nutrient starvation, RelA produces (p)ppGpp that accumulates

intracellularly and suppresses synthesis of stable RNA, induces

degradative pathways and modulates expression of genes involved

in DNA replication [21]. RelA was predicted to interact with the

human protein CALCOCO1 (Q9P1Z2). CALCOCO1 is thought

to be involved in elementary cellular functions linked to Ca2z/

calmodulin signaling [22]. Finally, MbtB, also known as myco-

bactin synthetase protein B, is involved in the initial steps of the

mycobactin biosynthetic pathway. Mycobactins are lipophilic

siderophores of mycobacteria mediating iron acquisition within

macrophages [23]. MbtB interacts with the human proteins

stabilin-1 STAB1 (Q9NY15) and cofilin-1 CFL1 (P23528).

Figure 1. Common proteins between ‘‘interolog-DIP-array’’ and ‘‘interolog-HPI-array’’ interactions. Pink and blue nodes represent Mtb
and human proteins, respectively. Orange nodes are the common Mtb proteins, and green nodes are the common human proteins. Dashed and solid
lines are for ‘‘interolog-DIP-array’’ and ‘‘interolog-HPI-array’’ interactions, respectively.
doi:10.1371/journal.pone.0067472.g001

MTB-Human Interaction Map
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Stabilin-1 is a scavenger receptor and binds to both Gram-positive

and Gram-negative bacteria [24] whereas cofilin-1 is a 18kDa

phosphoprotein that regulates actin cytoskeleton dynamics.

Pathways
Bacterial pathogens attack intracellular-signalling and cytoskel-

etal pathways to alter host responses in a way that benefits them.

For example, Mtb interferes with the NF-kB and the MAPK

signalling pathways [25] leading to the prevention of NF-kB

dependent transcription and the alteration of antigen presentation,

respectively. Bacteria might also hijack host metabolic pathways.

For instance, Chlamydia pistacci hijacks the host’s tryptophan

depletion pathway by intercepting the byproduct kynurenine,

which is used by C. pistacci to produce its own tryptophan [26]. We

used the Kyoto Encyclopedia of Genes and Genomes (KEGG) [9]

to find pathways to which proteins involved in predicted Human-

Mtb interactions belong. The KEGG Mapper-Search and Color

Pathway mapping tool allows us to search given objects, such as

genes, proteins or compounds against KEGG pathway maps. For

each list of proteins (human and Mtb, ‘‘interolog-DIP-array’’ or

‘‘interolog-HPI-array’’), we obtained a list of pathways relevant to

Table 2. Number of proteins in each host-pathogen location pair.

Host protein
location

Mtb protein
location Known Interolog-DIP-known Interolog-DIP-array Interolog-HPI-array

Intracellular Secreted 1 0 9 8

Intracellular Cytoplasm 0 1 13 5

Intracellular Cell membrane 0 1 23 35

Intracellular Cell wall 0 0 22 11

Membrane Cell membrane 5 0 1 23

Membrane Cytoplasm 0 0 0 3

Membrane Cell wall 2 1 5 4

Membrane Secreted 10 0 1 1

Secreted Cytoplasm 0 0 0 5

Secreted Cell membrane 6 0 0 7

Secreted Cell wall 3 0 0 0

Secreted Secreted 21 0 0 1

Unknown Cytoplasm 0 0 0 1

Unknown Cell membrane 0 0 2 3

Unknown Cell wall 0 0 2 2

Number of proteins in each host-pathogen location pair for proteins involved in the known, ‘‘interolog-DIP-known’’, ‘‘interolog-DIP-array’’ and ‘‘interolog-HPI-array’’
interactions.
doi:10.1371/journal.pone.0067472.t002

Figure 2. Interactions predicted by interologs which are neighbours of known interactions. Pink nodes are human proteins and pink
edges are human interactions. Blue nodes are Mtb proteins are blue edges are Mtb interactions. Red edges are known human-Mtb interactions and
green edges are inter-species interactions predicted by interologs.
doi:10.1371/journal.pone.0067472.g002

MTB-Human Interaction Map
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the protein list. However, not all proteins belong to a pathway and

a protein may be part of several pathways.

Interestingly, the first pathway retrieved while searching the

human ‘‘interolog-HPI-array" proteins against KEGG is the

tuberculosis pathway. 8 proteins, namely CTSD, HSPD1, JAK1,

NFKB1, RAB5A, RAB5C, CALM1 (P62158) and CD74, were

mapped onto the tuberculosis pathway. In particular, CTSD,

RAB5A, RAB5C and CALM1 are all involved in phagosome

maturation which is blocked by Mtb. CALM1 is a Ca2z-

dependent effector protein necessary for the activation of

CaMKII, which is required for the recruitment of EEA1 to the

phagosome. RAB5A and RAB5C are GTPases necessary for

phagosome maturation through the recruitment of a large number

of effector proteins. Lastly, CTSD or cathepsin D is a hydrolytic

protease secreted by the phagolysosome for bacterial degradation.

Figure 3 represents the proteins highlighted on the tuberculosis

pathway from KEGG.

While searching the Mtb proteins from ‘‘interolog-DIP-array’’

or ‘‘interolog-HPI-array’’ against KEGG, one protein from

‘‘interolog-DIP-array’’, namely GroEL (P0A520), was found to

belong to the tuberculosis pathway. GroEL (HSP65, highlighted in

Figure 3) is a 60 kDa chaperonin 2 protein known to interact with

TLR4. In the ‘‘interolog-array’’ data, it was predicted to interact

with three human proteins: CLPP (Q16740), a putative ATP-

dependent Clp protease proteolytic subunit, mitochondrial,

TUFM (P49411), an elongation factor Tu, mitochondrial, and

PRPS2 (P11908), which is a ribose-phosphate pyrophosphokinase

2. Even if the other Mtb proteins did not map to the tuberculosis

pathway, some of them have biological processes that are present

in the list of known Mtb proteins interacting with human proteins

(Table 4). Metabolic pathways, biosynthesis of secondary metab-

olites and microbial metabolism in diverse environments are the

top three pathways the Mtb ‘‘interolog-DIP-array’’ and ‘‘inter-

olog-HPI-array’’ proteins map to.

For each human-Mtb protein interaction with both partners

belonging to one or more pathways, we looked for common

pathways, substrates or products, as well as pathways involved in

TB infection. By applying this method, we were able to reconstruct

a small network centered on the human MAT2A protein

(Figure 4). MAT2A catalyzes the reaction from L-methionine to

S-adenosyl-L-methionine in cysteine and methionine metabolism.

MAT2A was predicted to interact with 10 Mtb proteins in total. 3

of these proteins, namely MetK, RlmN and ThiC, have direct

links to L-methionine or S-adenosyl-L-methionine in metabolic

pathways. MetK is a methionine adenosyltransferase and performs

the same function as MAT2A. RlmN is a ribosomal RNA large

subunit methyltransferase N and specifically methylates position 2

of adenine 2503 in 23S rRNA. Finally, ThiC is a hydroxymethyl-

pyrimidine phosphate synthase catalyzing the synthesis of the

hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine

from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-

methionine dependent reaction. ThiC is an essential gene

necessary for thiamin (vitamin B1) synthesis [27]. Two proteins

interacting with MAT2A, namely Dxs and ScoB, belong to

pathways using S-adenosyl-L-methionine. Dxs catalyses the

formation of 1-deoxy-D-xylulose 5-phosphate, which is consumed

during the biosynthesis of the thiazole moiety of thiamin. ScoB is

the B subunit of probable succinyl-CoA:3-ketoacid-coenzyme A

transferase.

Predicted Interactions and Drug Targets
One of the main reasons to study host-pathogen protein

interactions is the possibility of finding targets to design new drugs.

This is particularly important in the case of TB because of the

existence of drug resistance. A list of 881 potential drug target

proteins was computationally predicted for the Mtb network in a

separate study in the laboratory based on their network properties

[3]. These are important proteins in the Mtb functional network

since they are responsible for several indirect functional connec-

tions between other proteins in network. 878 out of 881 proteins

were present in the Mtb network from this study. We used this list

to identify potential drug targets in the Mtb proteins predicted to

interact with human proteins and we used the Fisher’s exact test to

determine whether the predicted list of proteins contains more

drug targets than expected by chance.

Table 5 presents the number of potential drug targets in each

Mtb protein list with the p-value obtained using the Fisher’s exact

test. Taking a cut-off of 0.05 for the p-value, the ‘‘interolog-DIP-

array’’ and ‘‘interolog-HPI-array’’ protein lists contain more drug

targets than would be expected by chance, with p-values of

2.41|10{6 and 3.80|10{5, respectively. Figures 5 and 6

highlight the Mtb drug target proteins in the ‘‘interolog-DIP-

array’’ and ‘‘interolog-HPI-array’’ interactions, respectively. 5 of

the human proteins from the ‘‘interolog-HPI-array’’ interactions

Table 3. Enriched GO biological process terms.

GO Id GO term Number of genes p-values Bonferonni-correction

GO:0044271 Nitrogen compound biosynthetic process 9 1:04|10{6 0:00024

GO:0043436 Oxoacid metalic process 9 5:42|10{5 0:01228

GO:0019752 Carboxylic acid metalic process 9 6:52|10{5 0:01470

GO:0055086 Nucleobase, nucleoside and nucleotide metabolic process 7 1:19|10{4 0:02676

GO:0048522 Positive regulation of cellular process 27 2:03|10{5 0:01204

GO:0042981 Regulation of apoptosis 17 2:19|10{5 0:01441

GO:0043067 Regulation of programmed cell death 17 2:47|10{5 0:01462

GO:0010941 Regulation of cell death 17 2:59|10{5 0:01531

GO:0043066 Negative regulation of apoptosis 11 6:10|10{5 0:03568

GO:0043069 Negative regulation of programmed cell death 11 6:88|10{5 0:04012

GO:0060548 Negative regulation of cell death 11 7:04|10{5 0:04016

Enriched GO biological process terms in human ‘‘interolog-DIP-array’’ proteins (top) and ‘‘interolog-HPI-array’’ proteins (bottom).
doi:10.1371/journal.pone.0067472.t003
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that mapped onto the tuberculosis pathway interact with Mtb

proteins predicted to be drug targets. In particular, 4 Mtb proteins

interacting with CD74 are predicted drug targets.

Conclusions
In this work, we have predicted and analyzed human-Mtb

functional interactions to gain more insights into molecular

mechanisms underlying the communication flow between Myco-

bacterium tuberculosis (Mtb) and human during infection. After

filtering the set of predicted interactions, for those with evidence of

expression during infection, we first looked at the subcellular

locations of the proteins involved in the predicted interactions to

assess whether these predicted interactions are biologically feasible.

We observed that the Mtb proteins were mostly located on the cell

surface, whereas human proteins were mostly tagged as intracel-

lular, showing the intracellular location of the bacteria in the host.

These subcellular locations reflect the fact that the bacteria is

located within the host cells and suggests that these predictions are

potentially feasible.

We performed functional analyses based on biological processes

and pathway maps in which the interacting proteins are involved.

The biological process analysis of these proteins suggests that

human proteins participating in these interactions play a crucial

role in facilitating the production of nitric oxide and in negative

regulation of apoptosis. The biological processes of Mtb proteins

include those particularly relevant to the intracellular environment

of Mtb in the host. Thus, these interactions illustrate how Mtb

might acquire nutrients and how it modulates the host response to

its advantage. Mapping the predicted interactions onto KEGG

pathways revealed that some of the proteins are known to play a

role in the ‘‘tuberculosis’’ pathway and that Mtb might hijack the

host to acquire nutrients. We also found that the predicted Mtb

proteins are enriched in predicted drug targets. Thus, such a study

can help us to understand the interplay between the host and

pathogen and may prove useful for identifying new drug targets.

Table 4. Important GO biological processes of Mtb ‘‘interolog-DIP-array’’ proteins (top) and ‘‘interolog-HPI-array’’ proteins
(bottom).

UniProt Acc Protein name GO ID GO name

O53832 PstB1 GO:0035435 phosphate ion transmembrane transport

GO:0044117 growth of symbiont in host

P0A558 Tuf GO:0001666 response to hypoxia

GO:0006184 GTP catabolic process

GO:00100039 response to iron ion

P0A602 RpoD GO:0009405 pathogenesis

GO:0009415 response to water

GO:0052572 response to host immune response

P63288 ClpB GO:0006950 response to stress

GO:0009408 response to heat

P63650 ScoB GO:0001666 response to hypoxia

P63852 CtaD GO:0009060 aerobic respiration

P64411 HtpG GO:0006950 response to stress

GO:0071451 cellular response to superoxide

P69942 GlnE GO:0040007 response to ammonium ion

O53306 FadD13 GO:0001101 response to acid

GO:0044119 growth of symbiont in host cell

P63393 IrtB GO:0009405 pathogenesis

O53189 Tig GO:0006457 protein folding

GO:0009267 cellular response to starvation

GO:0046677 response to antibiotic

O06559 NarG GO:0001101 response to acid

GO:0001666 response to hypoxia

P95095 CstA GO:0009267 cellular response to starvation

P66014 RelA GO:0009405 pathogenesis

P71717 MbtB GO:0009405 pathogenesis

GO:0052572 response to host immune response

Q50723 Rv3402c GO:0052572 response to host immune response

P0A602 RpoD GO:0009405 pathogenesis

GO:0052572 response to host immune response

doi:10.1371/journal.pone.0067472.t004
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Materials and Methods

The human functional interaction network was constructed by

combining three datasets, namely the human protein interaction

network used by Bossi and Lehner [28], together with data from

the REACTOME [29] and STRING [30,31] databases. Using a

cut-off score of 0.65, a human network of 16,548 proteins and

334,070 interactions was obtained. This cut-off score was chosen

so that the interactions in the Bossi and Lehner network which

have a score greater than or equal to 0.65 and are considered

reliable could be integrated into the network. A previously

generated functional network was used for Mtb [3,5], which

combines data extracted from the STRING database, gene

expression and sequence data [32–34]. The final Mtb network

contains 4,070 proteins and 38,049 interactions. Note that here we

used a stricter cut-off score for selecting interactions compared to

[3,5].

Predicting Host-pathogen Interactions
The interologs method was used to infer host-pathogen

interactions. Interologs are conserved interactions between a pair

of proteins which have interacting orthologs in another organism

[4]. More precisely, the interaction X=Y in one species is referred

to as interologs of X
0
=Y

0
in another species if X

0
and Y

0
are

orthologs of X and Y , respectively. The ortholog data was

retrieved from the Integr8 project [20] at the European Institute of

Bionformatics (EBI) and intra-species interactions are from the

Database of Interacting Proteins (DIP) [35] as depicted in Figure 7.

Note that these inter-species functional interactions were further

investigated by filtering based on two criteria: connections to

known interactions, referred to as ‘‘interolog-DIP-known’’ inter-

actions, and whether they are expressed during infection, referred

to as ‘‘interolog-DIP-array’’ interactions. The procedure followed

is shown in Figure 8.

Figure 3. The ‘‘interolog-HPI-array’’ proteins overlaid on the tuberculosis pathway from KEGG. Pink background represents the proteins
present in the ‘‘interolog-HPI-array’’ list.
doi:10.1371/journal.pone.0067472.g003
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Filtering of Predicted Host-pathogen Interactions
Interolog-DIP-known dataset. Given a known human-Mtb

interaction and an interaction predicted by interologs using

interaction data downloaded from the DIP database, if the human

interolog protein is a neighbour of the human known interacting

protein and the Mtb interolog protein is a neighbour of the Mtb

known interacting protein, then the interaction predicted by the

interolog is an ‘‘interolog-DIP-known’’ interaction. Note that the

neighbours of a protein are the proteins directly connected to it in

the protein interaction network. This was applied to all possible

(x,y) pairs, where x is a human-Mtb interaction predicted by

interologs and y is a known human-Mtb interaction, to produce

the set of ‘‘interolog-DIP-known’’ interactions. Note that human

or Mtb known protein refers to human or Mtb protein involved in

a known human-Mtb interaction and similarly, human or Mtb

interolog protein is a protein involved in an interaction predicted

by interlogs.

Interolog-DIP-array dataset. The outcome of an infection

depends on how the host responds to the pathogen and how the

Figure 5. Drug targets in the ‘‘interolog-DIP-array’’ network are depicted with a diamond shape. Pink and blue nodes represent Mtb and
human proteins, respectively. The color grades reflect protein subcellular localizations, the more we move outside the cell, the darker the color.
doi:10.1371/journal.pone.0067472.g005

Figure 4. Interactions involving MAT2A. A thin arrow indicates direct interaction, whereas a thick arrow indicates that there are several steps.
doi:10.1371/journal.pone.0067472.g004
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pathogen evades the immune system. Investigation of the entire

transcriptome of a cell during infection may provide a hint about

the host-pathogen cross-talk. This is feasible using microarray

technology which allows the simultaneous analysis of expression of

thousand of genes. Therefore, this method has been widely used to

study the interplay between the host and the pathogen.

Unfortunately, the microarray data gives us only a set of genes

that might interact as they are expressed under the appropriate

conditions, but does not tell us explicitly which gene interacts with

which other gene. That is why the interactions predicted by

interologs were combined with the microarray data: the interologs

predicts the interactions and the microarray data ensures that the

interactions could occur as the interactors are present during

infection. Microarray data studying the transcriptional changes

upon infection both in Mtb and in macrophages and dendritic

cells derived from the same donors over a time-course experiment

from Tailleux et al. [36] was used for the analysis. Raw human

microarray data used in our analysis was provided by the authors

of the article. We performed the analysis described in [36] on the

data to obtain the human genes differentially expressed during

Mtb infection. In this paper, the authors applied a filter based on

Detection calls to filter out noisy data before selecting differentially

expressed genes: they first removed the probe sets called ‘‘Absent’’

over all conditions and replicates; then they determined the 95th

percentile of all the signals of the entire dataset flagged with an

absent call and used it as a threshold to remove all the remaining

probe sets whose expression values were always below the

threshold in each sample. The remaining probe sets were used

for the analysis. Differentially expressed genes were detected using

the Limma Bioconductor library, which is based on the fitting of a

linear model to estimate the variability in the data. A threshold p-

value of 10{4 was used to select differentially expressed genes. The

list of Mtb genes differentially expressed were downloaded from

Figure 6. Drug targets in the ‘‘interolog-HPI-array’’ network are depicted with a diamond shape. Pink and blue nodes represent Mtb and
human proteins, respectively. The color grades reflect protein subcellular localizations, the more we move outside the cell, the darker the color.
doi:10.1371/journal.pone.0067472.g006

Table 5. Number of drug targets and p-value for each Mtb
protein list.

Mtb protein list
Number of drug
targets p-value

Interolog-known 1/3 0.52

Interolog-array 25/47 2.4161026

Database-array 25/53 3.8061025

doi:10.1371/journal.pone.0067472.t005

Figure 7. Steps for inferring inter-species interactions using
the interologs method. Dotted lines represent orthologs, the solid
line represents intra-species interaction and the dashed line represents
inferred inter-species interaction.
doi:10.1371/journal.pone.0067472.g007

MTB-Human Interaction Map

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e67472



BmG@Sbase under the accession E-BUGS-58 (http://bugs.sgul.

ac.uk/bugsbase). To find the ‘‘interolog-array’’ interactions, we

took the interologs and found those where both the human and

Mtb protein partners were differentially expressed in the above

experiments.

Interolog-HPI-array dataset. Here, we used a variant of

the interologs method, referred to as ‘‘Interolog-HPI-array’’,

where instead of using intra-species interactions to predict the

interologs, experimentally verified interactions between human

and bacterial proteins were used. From the inter-species human-

pathogen interactions, if the pathogen protein has an ortholog in

Mtb, an interaction between the human and Mtb proteins was

inferred. The experimentally verified host-pathogen interactions

were downloaded from two databases dedicated to inter-species

interactions, namely the Pathosystems Resource Integration

Center (PATRIC) [37] and the Host-Pathogen Interaction

database (HPIDB) [38]. We filtered host-pathogen interactions

from HPIDB to only retrieve human-bacterial protein interac-

tions. All the protein interactions from PATRIC were used since it

contains only human-bacterial protein interactions. These inter-

ologs were then filtered by taking the interactions where both

proteins are differentially expressed during infection. The same

microarray data as for the ‘‘interolog-DIP-array’’ interactions was

used.

Subcellular Localization
Gene ontology (GO) cellular component (GO CC) terms were

used to find the location of the human and Mtb proteins. The GO

CC terms were converted to GO slim terms. A GO slim is a

truncated version of the GO ontologies where the more specific

terms are mapped to one or more high-level terms. The

‘‘Investigate GO slim option’’ of the QuickGO tool from EBI

was used for that purpose.

For the human proteins, we used the GO slim generic, which is

a predefined GO slim set. The set is not species specific but it has

many terms pertaining to eukaryotic organisms, and contains 35

cellular components terms. We used all the protein IDs of the

human network to filter the annotation. We then downloaded the

results and collected the GO cellular components that we divided

into three groups: intracellular, membrane and secreted. We also

have the unknown category containing proteins that have no

cellular component annotation. The intracellular group contains

the terms referring to all components inside of the cells. The

membrane group only contains the plasma membrane and the

secreted group contains the proteins in the extracellular region.

Since a protein may be annotated to more than one group, we set

the final annotation of the protein as the furthest it can go outside

the cell.

We used only the GO slim terms relevant to prokaryotes in the

GO slim generic to build the GO slim terms for the Mtb proteins

and we used all the protein IDs of the Mtb network to filter the

annotation. In the case where the protein had no subcellular

location, we used PSORTb to predict its location, which was the

case for 2,272 proteins. PSORTb is a web-based tool for

prediction of subcellular location in bacterial protein sequences

[39]. The final predictions of localization of proteins were

‘‘Cytoplasmic’’, ‘‘CytoplasmicMembrane’’, ‘‘Cellwall’’, ‘‘Extracel-

lular’’ and ‘‘Unknown’’. We used these locations to divide the

predicted locations into 5 main categories, from the inside of the

cell to the outside: cytoplasm, cell membrane, cell wall, secreted

and unknown. Secreted proteins are proteins secreted into the cell

surroundings and proteins whose locations could not be identified

were classed as ‘‘unknown’’. Again, if a protein was annotated with

more than one location, then we took the one that is furthest from

the inside of the cell.

Human-Mtb Protein Interaction Functional Analysis
To understand the functional features of the predicted human-

Mtb interactions, we are interested in the biological processes in

which interacting proteins are involved, as well as in the pathway

maps to which they belong in order to characterize the biological

role of these interactions. For this purpose, we used the known

human and Mtb protein annotation data downloaded from the

Gene Ontology Annotation (GOA) project (http://www.ebi.ac.

uk/goa) and a list of pathways relevant to the protein list from the

KEGG database. We used the DAVID tool to perform a GO

biological process term enrichment analysis in order to highlight

the most relevant terms considering proteins in the intra-species

network generated as the background. The DAVID tool was

initialized to select GO terms located from the fourth or fifth levels

of the GO directed acyclic graph to avoid very general GO terms.

Figure 8. Flowchart depicting the prediction of host–pathogen interactions and their analysis.
doi:10.1371/journal.pone.0067472.g008
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