
68 Biophysical Journal Volume 105 July 2013 68–79
Automated Maximum Likelihood Separation of Signal from Baseline in
Noisy Quantal Data
William J. Bruno,† Ghanim Ullah,† Don-On Daniel Mak,‡ and John E. Pearson†*
†Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NewMexico; and ‡Department of Physiology, University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania
ABSTRACT Data recordings often include high-frequency noise and baseline fluctuations that are not generated by the sys-
tem under investigation, which need to be removed before analyzing the signal for the system’s behavior. In the absence of an
automated method, experimentalists fall back on manual procedures for removing these fluctuations, which can be laborious
and prone to subjective bias. We introduce a maximum likelihood formalism for separating signal from a drifting baseline
plus noise, when the signal takes on integer multiples of some value, as in ion channel patch-clamp current traces. Parameters
such as the quantal step size (e.g., current passing through a single channel), noise amplitude, and baseline drift rate can all be
optimized automatically using the expectation-maximization algorithm, taking the number of open channels (or molecules in the
on-state) at each time point as a hidden variable. Our goal here is to reconstruct the signal, not model the (possibly highly com-
plex) underlying system dynamics. Thus, our likelihood function is independent of those dynamics. This may be thought of as
restricting to the simplest possible hidden Markov model for the underlying channel current, in which successive measurements
of the state of the channel(s) are independent. The resulting method is comparable to an experienced human in terms of results,
but much faster. FORTRAN 90, C, R, and JAVA codes that implement the algorithm are available for download from our website.
INTRODUCTION
During analysis of experimental data, it is often necessary
to first remove from data records any baseline fluctuations
(1–6) that are not generated by the phenomenon under
study. If nothing is known about the signal beyond its po-
wer spectrum, then the best solution is a Wiener filter.
But when the idealized signal takes on only certain values,
such as in patch-clamp recordings of ion channels,
maximum likelihood can be used to estimate the state of
the channel(s) given some model for the noise. Experienced
experimentalists are able to follow the quantal jumps by
eye and subtract the drifting baseline by manually tracing
out the baseline before processing by other automated
methods.

In the studies of the gating behaviors of single protein
ion channels using the powerful patch-clamp technique
(7), instabilities in the gigaohm seals formed between iso-
lated biological membrane patches and patch-clamp micro-
electrodes often result in substantial fluctuations in the
magnitude of the observed current. Such baseline fluctua-
tions are usually significantly slower than the abrupt
changes in current magnitude caused by opening and clos-
ing of the protein channel, and have to be removed before
the current traces can be analyzed by standardized algo-
rithms such as QUB (8) and HJCFit (9) that model the
channel gating characteristics based on idealized data.
Submitted August 31, 2012, and accepted for publication February 25,

2013.

*Correspondence: pearson@lanl.gov or johnepearson@gmail.com

William J. Bruno’s current address is Gyrasol Technologies, 2029 Becker

Dr., Lawrence, KS 66047.

Editor: R. Astumian.

� 2013 by the Biophysical Society

0006-3495/13/07/0068/12 $2.00
Existing baseline subtraction algorithms can require sub-
stantial time and/or user interaction as the program requires
the user to laboriously check each individual fit by eye and/
or to input nodes by hand. When this happens, the front-
end to sophisticated time-series analysis algorithms (e.g.,
Milescu et al. (8), Qin et al. (9), and Colquhoun (10))
devolves to eyeballing and mouse clicking to indicate the
baseline trajectory, which is susceptible to subjective
bias. Here we develop a minimally parameterized
maximum likelihood (11) approach for separating a quantal
signal from a noisy and varying baseline, which gives re-
sults that largely agree with the mouse-based method and
is much faster.

QUB has a set of techniques for baseline removal: linear
interpolation between a set of user-defined nodes, and a
combined Markov-Kalman process where QUB models
the baseline as a continuous process with Markov channels
superimposed. The Kalman filter tracks the baseline and the
Markov idealization algorithm filters the channel kinetics
from the baseline data. Qin et al. (9) use time-course fitting
in which the response of the recording system to a step
change in input is measured. The step response curve can
then be used to estimate the response to arbitrary patterns
of channel transitions. Time-course fitting requires check-
ing the baseline before and after each opening, which is
time-consuming. Burzomato et al. (12) report having
obtained rate constants of ~130,000/s, faster than the 30-
kHz sampling rate (and 3 kHz filter frequency), with
time-course fitting. The ability of time-course fitting to fit
such fast rates was tested by repeated fits of simulated
data (12,13).
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Colquhoun notes:

‘‘The most obvious danger of time-course fitting is that of

over-ambitiousness. The risk of false events arising from

an attempt to fit events that are too short is just the same

as described above for the threshold crossing method, but

the temptation to fit them may be greater. Not only genuine

channel transitions, but any disturbance (artifactual or

random noise), if sufficiently brief, will produce a signal

that can plausibly be fitted by the time-course method’’ (1).

In time-course fitting, false events that arise from over-
ambitiousness are subsequently removed upon imposing a
maximum time resolution.

In addition, the time-course fitting approach requires an
estimate of the impulse response function (the IRF or
Green’s function) of the recording apparatus. Whereas for
patch-clamp recordings an estimate of the IRF is readily
available, for other single molecule signals it might not
be. An increasing variety of fluorescence techniques are be-
ing used to provide information on single or few molecule
kinetics (14–22). It is not clear that IRF estimates can be ob-
tained in all cases. Although patch-clamp recordings use a
well-characterized filter, other single molecule systems
may involve filtering intrinsic to the experimental methods
used. In most single-molecule studies, the molecules of in-
terest are immersed in a solution containing fluorescent in-
dicators. Such signals involve various chemical reactions,
which can themselves be considered as not particularly
well-characterized filters.

Our method and the QUB Markov-Kalman method both
yield a ranking: the likelihood. When these methods are
run repeatedly with different initializations, one need only
compare the likelihood scores to ascertain which output is
best. There is virtually no subjectivity involved in this sce-
nario. Moreover, maximum likelihood is asymptotically
efficient. In the contemporary state of the art of patch-clamp
data analysis, the use and application of these methods is not
standardized. The method proposed here and some of the
QUB methods are objective in the sense that they return a
model-based maximum likelihood estimate for the data
(by ‘‘model’’ we mean a decomposition of the data into
baseline, signal, and noise), but as Box wrote: ‘‘all models
are wrong’’ (23).

How does the innate incorrectness of the models weigh
against the dangers involved in time-course fitting? We do
not address the comparison of various methods in this article.
Given the variety of single molecule signals researchers are
obtaining, we believe that there is merit in new methods
for solving this old problem, particularly ones as conceptu-
ally simple and fast as the method we put forth here.

Our technique treats the observed data as comprising
three components:

1. A quantal current passing through ion channels;
2. A slowly varying baseline current that we model as a

random walk; and
3. A white noise that represents noise within the patch-
clamp amplifier and measurement apparatus.

We show in Results that the method can work equally well
when the background signal is contaminated by nonwhite
noise. The QUB Markov-Kalman method requires the user
to provide estimates for baseline and channel properties
and generates a Markov model for the channel gating
kinetics. Our method does not generate a Markov model.
In the case of a single channel, our method returns a condi-
tional posterior probability that the channel is open at each
time point. Thus, if the channel PO (equilibrium open prob-
ability) changes abruptly for whatever reason, it does not
pose difficulties for our method. Our method requires an
initial guess for the baseline, which can be quite crude,
plus an initial guess for each of three parameters corre-
sponding to the three components of our model (as ex-
plained in Methods). These parameter initializations are
automatically improved as the method runs.

The current passing through channels is given by the
product of the single channel current and the number of
open channels at each time point. We use the estimation/
maximization (also known as the expectation maximization
(EM) algorithm) to estimate the number of open channels,
which is treated as missing data. The EM algorithm
(24–27) was originally developed by Baum and Petrie
(24) in the 1960s and formalized by Dempster et al. (27).
We integrate out the baseline, which is equivalent to replac-
ing it with a maximum likelihood estimate. In Methods, we
lay out the basic theory for such a system, which yields a
likelihood function for the baseline and the data that is
similar to the path integral representation of the harmonic
oscillator (28,29) or a Gaussian process (30). The Results
section is broken down into two subsections corresponding
to weak and strong filtering. We present applications of the
technique to both synthetic (numerically generated) data
and to ion-channel data obtained with the Axon Axopatch
200B patch-clamp amplifier (Molecular Devices, Sunny-
vale, CA). We find that the algorithm works well on both
weakly and strongly filtered data. The algorithm has a
higher probability of error and can fail to converge on
strongly filtered data.
METHODS

We will describe the basic idea using the language for ion channels that are

either open or closed, but the method can be used for any signal that can be

reasonably approximated as consisting of some number of equally spaced

steps. Both QUB and time-course fitting have methods for traces for which

the channel has multiple step sizes. We have not yet developed code for un-

equal step sizes, but the generalization is straightforward. In this article we

treat equal step sizes only. We first sketch the general theory, then signal/

noise issues. This section closes with a brief explanation of the experiments

that were undertaken to provide the data that the method was tested on. We

remark here that one need not understand the mathematics of the general

theory that underlies the technique to be able to apply the method or to

use the code. For those who are interested more in using the technique
Biophysical Journal 105(1) 68–79
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than in the mathematics, we recommend reading the opening paragraph of

Theory and then skipping to Signal/Noise.
Theory

We imagine an experiment producing a continuous time signal that we sam-

ple discretely at sampling frequency n. The discrete sampling yields a data

record d ¼ (d1,d2,.dT). We shall denote a generic time point in the record

by dt, where t˛ (1,2,.,T). We assume that an open channel passes a current

I and that a closed channel passes no current. In our model, if nt channels

are open at time t, the observed signal (the data: dt) is given by dt ¼ bt þ
Int þ sxxt, where dt is the baseline current flowing through the circuit

although not necessarily through the ion channel, and xt is discrete-time

Gaussian white noise that has moments hxti ¼ 0, hxtxt0i ¼ dtt0. Here dtt0 is

the Kronecker delta and sx is the noise strength. We further assume that

the baseline is undergoing a discrete time random walk, bt ¼ bt�1 þ sb~xt ,

where ~xt is discrete-time white noise like xt. Under these assumptions, it fol-

lows immediately that dt � bt � Int and btþ1 � bt are zero mean Gaussian

distributed random variables with variances s2x and s2b, respectively. We

remark that if the continuous time baseline is undergoing a continuous

random walk, as modeled by a Wiener process (31), that the baseline vari-

ance should scale inversely with sampling frequency, s2b f 1/n. Analogous

to the definition of d, we also define b and n: b ¼ (b1,b2,.,bT), n ¼
(n1,n2,.nT). Our primary goal is to obtain estimates of the nt, but in doing

so we will also obtain estimates of b, s2x , s
2
b, and I as well. It turns out that

it is simpler to parameterize the system in terms of s2x and R2, where

R2h
s2
b

s2
x

(1)

is the ratio of the baseline walk variance to the white-noise variance. We

treat both n and b as missing data, although b is integrated out directly
without the need of EM.

Our model implies that the joint distribution function for d, b, and n is

given by

pðd; b; n; qÞ ¼ ~N e�Hðd;b;n;qÞ; (2)

where H is an energy functional given by
Hðd; b; n; qÞ ¼ 1

2s2
b

XT�1

t¼ 1

ðbtþ1 � btÞ2

þ 1

2s2
x

XT
t¼ 1

ðdt � bt � IntÞ2;
(3)

and where q represents the parameters s2x , s
2
b, and I . The value ~N is the

normalization factor
~N ¼ 1P
n

R
e�Hðd;b;n;qÞdd db

; (4)

where
X
n

h
XNch

n1 ¼ 0

XNch

n2 ¼ 0

/
XNch

nT ¼ 0

and Nch is an upper bound on the number of channels contained in the patch.

The values dd and db represent the differentials of all the variables being
integrated over, e.g.,

db ¼
YT
t

dbt:
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In principle, we would like to maximize the likelihood of the data given the

model, L(d;q),

Lðd; qÞh
X
n

Z
b

pðd; b; n; qÞdb; (5)

but this is unwieldy. Although the integral over T dimensions can be dealt

with, the sum is over at least 2T values and cannot be maximized in one step.
Thus we employ the iterative estimation/maximization (EM) procedure. We

made use of Fraser’s accessible discussion of the algorithm (32). The EM

algorithm attempts to find the maximum likelihood estimate of L by first

making an initial guess for q ¼ ~q, and then iterating the steps

Q
�
q0; ~q

� ¼ hlog pðd; b; n; q0Þi
pðb;njd;~qÞ;

q ¼ argmax
q0

Q
�
q0; ~q

�
;

~q ¼ q:

(6)

In the above, hlog pðd; b; n; q0Þi
pðb;nj:d;~qÞ denotes the expectation of

log pðd; b; n; q0Þ with respect to the distribution pðb; njd; ~qÞ. The EM itera-
tion is known to converge to, at worst, a local maximum likelihood estimate

for L(djq).
Because of the simple dependence that the likelihood function has on b,

we can integrate b out and then employ a slightly modified version of the

EM algorithm to solve the remaining maximum likelihood problem,

pðd; n; q; b�Þh
Z

pðd; b; n; qÞ
YT
i¼ 1

dbi

¼ ~N
Z

e�Hðd;b;n;qÞYT
i¼ 1

dbi ¼ N e�Hðd;b�;n;qÞ;

(7)

where b* is the maximum likelihood estimate of b (or equivalently, the

saddle-point) found by minimizing the energy H,
�vH
vb

����
b¼ b�

¼ 1

s2
b

Db� þ 1

s2
x

ðd � b� � InÞ ¼ 0;

and D is the finite difference Laplacian,
Dbihbiþ1 þ bi�1 � 2bi:

Thus
b�ðd; n; qÞ ¼ ��Dþ R2
��1ðd � InÞ: (8)

The Laplacian and associated boundary conditions are discussed in the

Appendix. The normalization constant N is given by
Nz
1

ð1þ NchÞT
�

1

2p

�T=2�1=2
 
1

s2
x

!T=2�1=2

� 2T=2R�
2þ R2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4 þ 4R2
p 	T=2: (9)

The steps leading from Eq. 7 to Eq. 9 are discussed in the Appendix. As

written, the b* in the argument of p(d,n;q,b*) in Eq. 7 is redundant because
b* is a known function of d, n, and q. The reason we have employed this

seemingly redundant notation is just to make clear in the algorithm which

value of b* (old or updated) we used to compute the expected values of n.
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We discuss the precise form that our implementation of the EM algorithm

takes in the Appendix. The distribution pðb; njd; ~qÞ, needed for Q in Eq. 6,

becomes pðnjd; ~q; ~b�Þ after integrating out b. To find pðnjd; ~q; ~b�Þ, we note
that, in general, p(xjy) ¼ p(x,y)/p(y). Thus,

p
�
njd; ~q; ~b�� ¼ p

�
d; n; ~q; ~b

��P
n

p
�
d; n; ~q; ~b

�� ¼ e�Hðd;~b�;n;~qÞP
n

e�Hðd;~b�;n;~qÞ

¼
YT
t¼ 1

p
�
ntjdt; ~q; t

�
:

(10)

The quantity pðntjdt; ~q; tÞ is the conditional probability that there are nt
channels open at the single time point t. To simplify the notation, we write
pðjjdt; ~q; tÞ to indicate the conditional probability that there are j channels

open at time t,

p
�
jjdt; ~q; t

� ¼
exp

 
� ðdt�~b

�
t �~I jÞ2
~s
2

x

!
PNch

k¼ 0

exp

 
� ðdt�~b

�
t �~IkÞ2
~s
2

x

! ¼ 1PNch

k¼ 0

ehjt�hkt

;

(11)

where
hmth

�
dt � ~b

�
t � m~I

	2
2~s2

x

; m ¼ 0; 1; 2; 3;.Nch:

We will use angle brackets without subscripts to denote expectations with

respect to pðjjd ; ~q; tÞ so that
t 

nst
�
h
XNch

j¼ 0

jsp
�
jjdt; ~q; t

�
:

For a single channel or single molecule recording, Nch ¼ 1 and Eq. 11

results in
hnti ¼ 1

eh1t�h0t þ 1
:

For a single ion channel (or molecule) with multiple equally spaced conduc-

tance states, N þ 1 represents the total number of conducting states that
ch

the system can take.

At this point, we can write Q explicitly as

Q
�
q; ~q
� ¼ log N � 1

2s2
b

XT�1

t¼ 1

�
b�tþ1 � b�t

�2
� 1

2s2
x

XT
t¼ 1


�
dt � b�t � Int

�2�
:

(12)

The dependence on ~q is only through b* and the angle brackets. The

end result of this calculation is that we replace the dependence in H

on powers of nt with the expected value of those powers: nt / hnti and
n2t/ hn2ti. We maximize Qðq; ~qÞ by updating q iteratively in the following
steps:

Step 0 (Initialization)

Make initial guess for ~b
�
t ; s

2
x ; I , and R2: ~q ¼ ðs2x ; I ;R2Þ.
Step I (Estimate or expectation)

Update the expected values of nt and nt
2 with respect to p(jjdt,q,t), which we

will denote hnti and hnt2i,

nst
� ¼

XNch

j¼ 0

jspðjjdt; q; tÞ: (13)

At the end of this step, nt and nt
2 in H will be replaced by hnti and hnt2i,

respectively.
Step II (Maximize)

A. Update baseline signal:

b� ¼ ��Dþ ~R
2��1�

d � ~I
n��:
We obtain b* with a standard tridiagonal matrix solver, which is very fast.

Note the dependence in b* is on ~q rather than on q. In substeps B, C, and D
we update the parameters I , s2x, and R2 while keeping b* fixed.

B. Update I :
The derivative of Q with respect to I is

vQ

vI ¼ 1

s2
x

XT
t¼ 1

�hnti�dt � b�t
�� I
n2t ��:

To maximize Q with respect to I , we set the above equation to zero, which
yields
I ¼
PT

i¼ 1

�
dt � b�t

�hntiPT
t¼ 1



n2t
� :

C. Update s2x .:

The derivative of Q with respect to 1/s2 is
x

vQ

v 1
s2
x

¼ Ts2
x

2
� 1

2R2

XT
t¼ 1

�
b�t � b�t�1

�2
� 1

2

XT
t¼ 1

��
dt � b�t

�2 � 2
�
dt � b�t

�Ihnti þ I 2


n2t
��
:

To maximize Q with respect to s2x , we set the above equation to zero, which

yields
s2
x ¼ 1

T

 
1

R2

XT
t¼ 1

�
b�t � b�t�1

�2 þXT
t¼ 1

��
dt � b�t

�2
� 2
�
dt � b�t

�Ihnti þ I 2


n2t
��
:

(14)

D. Update R2:
2
The derivative of Q with respect to R is

vQ

vR2
¼ B

2s2
xR

4
� T

1þ 2þR2ffiffiffiffiffiffiffiffiffiffiffi
4R2þR4

p
2þ R2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4R2 þ R4
p ;

where BhPT�1
t¼1 ðb�tþ1 � b�t Þ2. The updated R2 is the single real positive root

of vQ/vR2 ¼ 0. At this point, ~q ¼ ðs2; I ;R2Þ.
x

E. Return to Step I:

To summarize, we iterate the steps described above in the order

Step 0 / Step I / Step II / Step I. So, in the E step, we compute

the Nch expectation values of nt for each t and in the M step, we update

the parameters based on maximizing Q in Eq. 27. FORTRAN 90, C, R,

and JAVA programs that perform these calculations are available at our

website.
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Signal/noise

There are two noise sources in our model xt and ~xt, where xt is the noise in

the data (dt ¼ bt þ Int þ sxxt) and ~xt is the noise in the baseline

ðbt ¼ bt�1 þ sb~xtÞ,

SNRxh
I
sx

; (15)

I

SNRbh

sb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðNO;NCÞ

p ; (16)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

SNR ¼ I

sx

1

1þ R2maxðNO;NCÞ; (17)

where NO and NC are the mean number of sampling intervals for open and

closed events, respectively. SNR is a standard signal/noise ratio. SNR in-
x b

dicates how much the baseline drifts relative to the current during the

average open or closed event. SNR is the combined signal/noise ratio:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR2

x þ SNR2
b

q
:

SNR must be several times larger than unity for the reconstruction to be

reliable.
Idealization

Technically the algorithm presented thus far does not yield an idealized re-

cord. In the case Nch ¼ 1, the output is simply the posterior probability that

the channel is open at each time point. Thus to obtain the most probable re-

cord we need only take the value of j for which pðjjdt; ~q; tÞ is maximal, so

that we have

nt ¼ argmax
j

p
�
jjdt; ~q; t

�
; (18)

which requires only the Nch function evaluations at each time point.
Experiment

Experimental records of current passing through single inositol 1,4,5-tri-

sphosphate (IP3) receptor (IP3R) channels, which are ubiquitous intracel-

lular Ca2þ-release protein channels localized mainly to the endoplasmic

reticulum and outer nuclear membranes (33), were acquired by nuclear

patch-clamp electrophysiology as described in Mak et al. (34,35). Currents

passing through outer nuclear membrane patches isolated at the tips of

micropipettes were amplified using an Axopatch 200B patch-clamp ampli-

fier (Molecular Devices); filtered either at 1 kHz using a tunable low-pass

four-pole Bessel filter (Frequency Devices, Ottawa, IL) or at 5 or 10 KHz

using the internal tunable low-pass four-pole Bessel filter of the Axopatch

amplifier (Molecular Devices). The current signals were digitized at 5 kHz

using an ITC16 interface (HEKA Instruments, Bellmore, NY) and recorded

directly onto a data acquisition computer using the Pulse þ PulseFit soft-

ware (HEKA Instruments).
RESULTS

To illustrate the use of the technique we apply it to both
simulated and experimental patch-clamp data. We found
that the algorithm works best on data that is unfiltered/
Biophysical Journal 105(1) 68–79
lightly filtered but that it works with a slight modification
on heavily filtered data. The difficulty with heavily filtered
data is that the filtering generates correlations in the noise
x, which becomes harder to distinguish from a random
walk. Larger R2 values can give higher likelihoods but
worse reconstructions on heavily filtered data because the
model assumes no filtering. We found that for the heavily
filtered data the algorithm performed better if we held R2

fixed. Choosing a good value of R2 takes some experience
or repeated comparisons of the output (n) to the input data.
Synthetic data

To generate the synthetic data we need to simulate both
signal and noise. The signal is simulated by first choosing
the desired number of open/closed pairs and then choosing
a desired equilibrium open probability (PO) and mean
open time with the open time specified in units of the sam-
pling interval, NO. Then the length of each open event is
chosen randomly to give the selected mean. Closed event
lengths with a mean closed interval NC are determined in
the same way. In the simulation presented here, we added
two twists to make the simulated data more challenging
by having it violate the model in a few plausible ways:

First, we chose the PO for the first-half of the record to be
0.1 and to be 0.2 for the second-half of the record. This was
done to simulate nonstationarity of the channel behavior.

Second, in addition to the noise x, we also treated I as a
random variable with a well defined mean, hIi, and variance
s2x. This was done because ion channel signals are usually
noisier when the channel is open than when it is closed.
Thus the effective sx, sxeff, is sxeff ¼

ffiffiffi
2

p
sx because of the

extra noise when the channel is open. (The variance doubles
so the standard deviation goes up by

ffiffiffi
2

p
.)

We then chose to use a total of 10,000 open/closed pairs.
For the simulation discussed here, this gave us nt for ~T ¼
151,000 time points. Next we construct a random walk for
the baseline according to bt ¼ bt�1 þ sb~xt, where ~xt is a
unit norm, zero mean normal deviate. We construct simu-
lated data according to

dt ¼ bt þ I tnt þ sxxt;

where xt is a unit norm, zero mean normal deviate. We

chose hIi ¼ 40, sx ¼ 5, and sb ¼ 2. We used NO ¼ 2 for
the entire record, and the mean closed interval, NC, switched
from 18 to 8 half-way through the simulation (so that the PO

switched from 0.1 to 0.2 half-way through the record). In
this case, R2 ¼ s2x /s

2
eff z 0.08 and I /sxeff ¼ 7.07 so that

SNR ¼ 40=sxeffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2maxðNO;NCÞ

p z3:6:

This was meant to be challenging for the algorithm. For

most runs we were able to find an estimate of n that was
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accurate to >1%. In Fig. 1, a and b, the thin lines show a
snippet of the time series we generate by this process. The
thick line in Fig. 1 a is the algorithm’s estimate of hnti.
The thick line in Fig. 1 b is the algorithm’s estimate of b.
With these challenging parameters we occasionally have
to play with the starting guesses for the parameters, partic-
ularly the initial single channel current, I , before the
algorithm returns a reasonably accurate estimate of n.
Whether an estimate of n is reasonably accurate or not is
determined by visual comparison between the estimated n
and the raw data.
Unfiltered synthetic data

For this case we took the data as described above and applied
our algorithm to it.We found that we sometimes need to alter
the initial guess for the baseline to reach a better solution.
For the results presented here we chose bt ¼ 0.95 dt for the
initial guess for the baseline. There is nothing fundamental
about the choice of initial baseline. It is probably wise to
try several different guesses, particularly if one is having
difficulty generating a visually satisfactory estimate of n.
The initial guesses for the other parameters were R2 ¼ 0.1,
s2x ¼ 20, I ¼ 505, and Nch ¼ 1. With these guesses the
algorithm converged in 38 iterations (which took a few sec-
onds) and gave estimates for the current of I est ¼ 39.9558,
PO

est ¼ 0.131128, sest2x ¼ 28.1459, and R2 ¼ 0.141. The
true Ptrue

O ¼ 0:1316. We found the total errorX
t

��nt � nestt

��
was ~100, which means >99:9% correct despite the SNR of
3.6. Snippets of the data are shown in Fig. 1. The upper

graph shows 500 time points. The thin line is the raw
synthetic data. The dashed line is the reconstruction bt
est þ

I estnt
est. The dotted line is bt

est. As general rule we recom-
mend comparing dt, b

est, and bt
est þ I estnt

est. The lower
graph is a larger sample of the data. The thin line is the
raw data and the thick one is the estimate of the baseline
that the algorithm returned.
Filtered synthetic data

We generated filtered data, ~d, beginning with unfiltered data,
(d), from the previous subsection. We filtered diffusively
through

~d
ðnþ1Þ
t ¼ ~d

ðnÞ
t þ D

�
~d
ðnÞ
tþ1 þ ~d

ðnÞ
t�1 � 2~d

ðnÞ
t

	
;

with D ¼ 0:15 for six steps where ~d
ð0Þ ¼ d. This produced
the time series shown as the dark line in Fig. 2. The thin
line in that figure is the unfiltered data (d) for the same
snippet shown in the top panel of Fig. 1. In this case we
made initial guesses of R2 ¼ 1, s2x ¼ 20, I ¼ 65.6, and
bt ¼ 0.95 dt. We held R2 fixed because updating R2 on
this data results in an R2 that appears to increase without
bound. This appears to be an essential aspect of filtering
that, in our view, is a significant corruption of the data.
Filtering generates unwanted correlations in the noise.
Consequently the algorithm has trouble distinguishing be-
tween the drifting baseline and the white noise. It tends
to conclude that all the noise is baseline, thus R2 / N
if we update R2. Fig. 3 shows the best reconstruction we
were able to produce in a few minutes of playing around
with various initial parameters. The heavily filtered data
used in Fig. 3 came from the same time series as the lightly
filtered data used in Fig. 1. Fig. 1 a and Fig. 3 can be
directly compared. The algorithm converged in 86
FIGURE 1 Simulated data. (a) (Thin line) Simu-

lated signal d. (Dashed line) Algorithm’s estimate

of bt þ Ihnti. (Dotted line) Estimated baseline, bt.

(b) (Thin line) Simulated signal d. (Thick line) Esti-

mate for b that the algorithm found.
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FIGURE 2 Simulated data. (Thin line) The same

unfiltered synthetic data shown in Fig. 1 a. (Thick

line) Diffusively filtered data.
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iterations (which took a few seconds) and generated the
following estimates of I est,filtered ¼ 12, PO

est,filtered ¼
0.171, and (sx

est,filtered) ¼ 5. The true PO
true ¼ 0.1316.

The total error was ~8800, which represents a fractional er-
ror of 8800/151,000 ¼ 0.05. Note though that whereas the
PO is off by 0.04, the fractional error in PO is ~25%.
Clearly we cannot compare the output likelihood scores
for different R2 values when using the algorithm with fixed
R2 on heavily filtered data. If the likelihood score cannot be
trusted for filtered data then the only way to compare
different candidate solutions is by visually comparing
them to the input data and ranking them. This is arduous
and time-consuming. Ultimately we recommend that the
data not be filtered except for frequencies above the sam-
pling rate.
Synthetic data with nonwhite noise

Our method worked equally well on data contaminated
by nonwhite noise. We filtered the white noise so that
its power spectrum increases with frequency similar to
the observed noise (Fig. 4) (see Fig. 1B of Shapovalov
and Lester (36) for comparison) and contaminated
the background signal with the resulting nonwhite noise.
The unfiltered time-trace was generated as described
above. We processed 1000 such time-series traces, each
having more than 100,000 points and 10,000 events. The
mean error was computed by averaging the total error for
each run
Biophysical Journal 105(1) 68–79
 X
t

��nt � nestt

��!

over the 1000 runs. The total error averaged over the 1000

runs with white and nonwhite noise was 65.235 and
65.127, respectively, meaning that only 65 time points out
of 100,000 were classified incorrectly in either case.
Real data

The records shown in Figs. 5 and 6 are two segments from
one of the nuclear patch-clamp experiments that studied
homotetrameric recombinant rat type 3 IP3R channels ex-
pressed in mutant chicken B cells deficient in the expression
of all three of the endogenous IP3R isoforms (37). Solution
on the cytoplasmic side of the channel contained saturating
[IP3] (10 mM), optimal free [Ca2þ] (2 mM), with physiolog-
ical [Kþ] (140 mM) and free [ATP4�] (0.5 mM). Applied
voltage used was 30 mV. The experiment was performed at
room temperature. Two records of the same current trace
but filtered with different corner frequencies of 1 and 5
kHz were acquired simultaneously. For this data we used
an initial baseline guess b[j] ¼ 18, which was an eyeball es-
timate of the baseline toward the end of the data. For the
strongly filtered data (1 kHz corner frequency) we kept R2

fixed at R2 ¼ 0.01. The other parameters were initialized
to s2x ¼ 0.1 and I ¼ 15. This took ~5 min of playing around
with different initial parameters before a visually reasonable
FIGURE 3 Synthetic filtered data. (Thin line)

Unfiltered synthetic data. (Dashed line) Algo-

rithm’s estimate of bt þ Ihnti. (Dotted line) Esti-

mated baseline, bt. This is the same segment as

shown in Figs. 1 and 2. The algorithm had a fairly

low error rate on this segment. The total summed

error for the filtered data is 8801.
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FIGURE 4 Power spectrum of unfiltered synthetic data with non-white

noise. (Shaded line; green online) Averaged power spectrum using a

moving box average with a window of 200 points.
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solution was found. The algorithm stopped after 137 itera-
tions and returned values for the current of 13.37 pA and
s2x of 3.13, and PO of 0.856.

The algorithm was then applied to the less filtered version
of the same current trace with initial parameters R2 ¼
0.000001, s2x ¼ 0.1, and I ¼ 15. In this case, we could up-
date R2. The algorithm converged in 105 iterations, which
took a few seconds on the 88,000 time points. The final
value for R2 was 0.02 and s2x was 3.3. The current that
was returned was 15.68 pA and PO ¼ 0.813. After idealiza-
tion we found a mean open time of 25.4 sampling intervals.
Thus the algorithm gives an estimate of the signal/noise ra-
tios, SNRx ¼ I /sx z 8.6 and SNRz 7. The fact that we ob-
tained different values for PO on the filtered and unfiltered
data raises the question: which PO value was more accurate?

One cannot directly compare the output for the two files
because the input files are slightly shifted from each other
because of the difference in filtering. Simply differencing
the two data sets generates a large number of differences.
Thus we computed 500-point running averages for the two
output files and compared those. The running averages
were largely indistinguishable, except for brief windows
that stood out. In Fig. 6, we plot the raw data (thin line)
with 5-kHz filtering overlain with the algorithms output
for n for the 1-kHz filter frequency (thick dotted line) and
the 5-kHz filter frequency (thick dashed line). In this region
the channel was in a rare extended closed period. The output
from the heavily filtered data missed it and estimated that
the channel was open during this time, which accounts for
the fact that the more heavily filtered data yielded a slightly
higher PO. Visual comparison between the output and the
input is the only standard that we have for gauging the val-
idity of a reconstruction. Thus we concluded that the signal
obtained from the less filtered data is more accurate.

We also applied the method outlined to IP3R Ca2þ chan-
nels from insect Sf9 cells observed in [IP3] ¼ 300 nM and
free [Ca2þ]¼ 70 mM (34,35). The top panel of Fig. 7 (black)
shows 1 s of raw data (5000 sampling intervals) filtered at
5 kHz. (The raw data is available on our website in file
N1_it.txt.) The middle panel of Fig. 7 (green) shows the
same data after the baseline was removed by hand using
spline fits. We did the spline fits for only half the file.
This process took about two days for Mak, who considered
this a particularly challenging data set. The bottom panel of
Fig. 7 (red) shows hnti for the same data. This takes seconds
for the algorithm to process with a few additional minutes
required to find good initial guesses for the parameters
and baseline.

The method works equally well on patch-clamp data from
multiple ion channels. Raw data (sampled at 5 kHz and
filtered at 1 kHz) from a patch-clamp experiment on IP3R
from Sf9 cells ([IP3] ¼ 10 mM, free [Ca2þ] ¼ 70 mM) is
shown by the thin line in Fig. 8 a, where up to three channels
open simultaneously. The baseline extracted by the method
is shown by the thick line in Fig. 8 a, whereas the idealized
signal generated is shown in Fig. 8 b. An expanded view of a
1000 time-point segment of the raw and idealized time se-
ries from Fig. 8, a and b, is shown in Fig. 8, c and d, respec-
tively. Nt ¼ 0, 1, 2, and 3 in Fig. 8, b and d, represent zero,
one, two, and three channels open simultaneously.
Obtaining the codes and data

All files used in the creation of this article are available
at ftp://ftp-t10.lanl.gov/pub/pearson/baseline.tar.gz. This
archive includes working C and FORTRAN implementa-
tions of the baseline subtraction algorithm described in
this article. It also includes R and JAVA versions that are
currently under development. All other code and data used
in generating this article is contained in this archive as well.
FIGURE 5 Experimental data. Sampling fre-

quency: 5 kHz. (Thick line) Filter frequency

5 kHz. (Thin line) Filter frequency ¼ 1 kHz.
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FIGURE 6 (Thin line) Raw data sampled at 5

kHz with a 5 kHz filter frequency. (Thick dashed

line) The algorithm’s estimate of Ihnti using the

lightly filtered data as input. (Thick dotted line)

The algorithm’s estimate of Ihnti using the data

filtered with the 1 kHz filter as input. This snippet

was found by plotting running averages of the two

estimates and looking for the regions where there

were large differences.
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CONCLUSIONS

Baseline removal and idealization algorithms have been
employed for decades(8,10). Despite that fact, many exper-
imentalists still resort to performing this arduous task by
hand. The discovery of green fluorescent protein (38) and
its subsequent development by Shimomura et al. (38) has
enabled experimentalists to obtain signals from a rapidly
growing number of single molecules. Single molecule data
is necessarily noisy. Algorithms are needed to extract signal
out of the noise.

For lack of a simple automated method, experimentalists
resort to the eye and mouse-based approach for processing
noisy quantized signals such as the patch-clamp data repre-
senting the current through an ion channel in various
conducting states. This laborious manual procedure some-
times costs experimentalists more time for processing the
data than the actual experiment. Here we have developed
a minimally parameterized likelihood method to process
the noisy quantal data with a varying and drifting baseline.
The underlying model we use assumes the data is the sum of
three components: the current passing through open chan-
nels, a slowly varying baseline that we model as a random
walk, and white noise.

We demonstrate the accuracy of our method by applying
it to both real and synthetic time-series data. On unfiltered
synthetic data we demonstrated that we could accurately
reconstruct the underlying signal for a signal/noise ratio of
SNRx ¼ 3.6 and SNRx ¼ 7. On heavily filtered synthetic
FIGURE 7 Comparison. (Top panel) Raw data. (Middle panel) Data with b
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data we were forced to hold R2 fixed and the method over-
estimated the PO.

When applied to experimental patch-clamp data we
found SNRx z 8.6 and SNRx z 7. We had previously
estimated that SNRx in our patch-clamp system was between
10 and 20. We also applied the algorithm to a current trace
that was recorded with two different filter frequencies.
Based on visual comparison between the input data and
the output data we found that the lightly filtered data yielded
a more accurate solution. As expected, based on our simu-
lations, we were forced to hold R2 fixed on the more heavily
filtered data but not on the lightly filtered data.

On another data set of heavily filtered experimental data,
our method proved comparable to a mouse-based method in
accuracy, but much faster. The method can easily be adopted
for noisy quantized signals from other systems. For unfil-
tered/lightly filtered data, we found that we did not need
to make visual comparisons between different candidate
solutions. The one with the best likelihood score was always
the one that gave the best visual comparison to the input
data. Thus one can explore how different initial parameter
values affect the outcome without needing to visually
compare the different solutions. There is, however, one
caveat to the likelihood score. The algorithm would occa-
sionally return estimates of the single channel current, I ,
that were near zero (femtoamps and smaller). For a single
channel these solutions would always give PO ¼ 0.5 and
they would tend to have the best likelihood scores for the
data set. Ruling these bad solutions out did not require
aseline subtracted by hand. (Bottom panel) Output of our EM algorithm.



FIGURE 8 Patch-clamp data from multiple channel. (a) Raw time-series

data from three simultaneously patch-clamped IP3Rs in Sf9 cells (thin line)

and the baseline extracted from the noisy data (thick line). (b) Processed

signal generated by the method. (c and d) Expanded views of the traces

in panels a and b, respectively.
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any effort because one needed only to read off the output
current to know that the solution was bad. In a subsequent
article, we will show that our approach can also be used
on optical data.
APPENDIX

Normalization

Note that the energy functional has the same form as that for a driven

discrete time-harmonic oscillator. Thus integrals over b are essen-

tially path integrals for the harmonic oscillator process. Normalization

requires that
X
n

Z
pðd; b; nÞdd db ¼ 1; (19)

thus

~N ¼ 1P
n

1R
e�Hðd;b;n;qÞdb dd

;

where db¼ db1db2.dbT. The d differentials, dd, are defined similarly save

for a minor technical point that we must discuss first.
It will prove convenient to rewrite the energy using Dirac’s notation as

H ¼ 1
2s2

b

hbDyjDbi þ 1
2s2

x

hd � b� Injd � b� Ini

¼ 1
2s2

b

hbj � Djbi þ 1
2s2

x

hd � b� Injd � b� Ini;
(20)

where D is the differencing operator (with transpose Dy),
Dij ¼ �dij þ dijþ1 for i ¼ 1; 2;.T � 1;

DTj ¼ 0 for j ¼ 1; 2;.T;
and D is the discrete Laplacian, Dij ¼ �2dij þ dijþ1 þ diþ1j for i and j s 1

or T and D1j ¼ �d1j þ d2j and DTj ¼ �dTj þ dTjþ1.
If we could do all of the d integrals right now, we would then need to

evaluate

Inth

Z
exp

�
� 1

2s2
b

hbj�Djbi
�
db:

A general result for Gaussian integrals of the above form is
Intf
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DetðDÞp ;

butD is a singular operator; we cannot blithely do the d integrals. This is the

technical difficulty that we alluded to above. We avoid this difficulty by
choosing not to integrate over d1, which is equivalent to choosing a refer-

ence current by which all others are measured.

We can rearrange the energy to single out the terms involving d1 so that

H ¼ 1

2s2
b



bj �eD jb� þ 1

2s2
x



~d � ~b� I~n��~d � ~b� I~n�

þ 1

2s2
x

�ðd1 � In1Þ2 � 2b1ðd1 � In1Þ
�
;

(21)

where
��~d � ~b� I~ni ¼ jd2 � b2 � In2; d3 � b3 � In3.dT � bT � InTi.

The operator � eD is identical to �D except � eD11 ¼ 1þ R2. Now the
Gaussian integrals can be done by inspection. (First, do the d integrals

over (d2,d3,.dT), then all of b integrals.) This yieldsZ
e�HYT

i¼ 1

dbi
YT
i¼ 2

ddi ¼ ð2pÞT�1=2�
s2
x

�T=2�1�
s2
b

�T=2
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det
�� eD�

r ;
(22)
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where Detð� eDÞ is the determinant of � eD. It is straightforward to show by

induction that Detð� eDÞ ¼ R2. We have nearly determined ~N in Eq. 4:

~N ¼ 1P
n

1R
e�H
YT
i¼ 1

dbi
YT
i¼ 2

ddi

¼ 1

ð1þNchÞT

�
1
2p

�T�1=2
 

1
s2
x

!T=2�1=2�
1
s2
b

�T=2

R:

The summation over n gave the factor of (1 þ Nch)
T. At this point we have

managed to find the normalization factor for the full distribution function
but we plan to integrate out b.

We need the marginal distribution p(d,n;q), so we still have somework to

do. Note that the energy functional has the same form as that for a discrete-

time driven harmonic oscillator. Thus integrals over b are essentially path

integrals for the harmonic oscillator process.

In what follows, we integrate out the bt so that we can use maximum

likelihood to find the other parameters. For the marginal likelihood we have

Lðd; n; qÞ ¼
Z

e�Hðd;b;n;qÞ YT
i¼ 1

dbi

¼ ~N
�
2ps2

b

�T=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð�Dþ IR2Þp e�Hðb�;dÞ

¼ N e�Hðd;b�;n;qÞ;

(23)

where b* is the maximum likelihood estimate of b, I is the T � T identity

matrix, and
N ¼ ~N
�
2ps2

b

�T=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð�Dþ IR2Þp :

To calculate the determinant of�Dþ IR2 we take advantage of the relation-

ship to the path integral for the harmonic oscillator and find (29) that in the
large T limit

Det
��Dþ IR2

�
z

�
1

2

�
2þ R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 4R2

p 	�T

;

so that
Nz
1

ð1þ NchÞT
�

1

2p

�T=2�1=2
 
1

s2
x

!T=2�1=2

� 2T=2R�
2þ R2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4 þ 4R2
p 	T=2; (24)

and then
LogðN Þ ¼ K þ T � 1

2
Log

 
1

s2
x

!
þ LogðRÞ

� T

2
Log

�
2þ R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 4R2

p 	
;

(25)

where K is constant with respect to sx, R
2, and I .
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Our Implementation of the EM algorithm

Thus the form the EM algorithm takes for our model is to initialize q ¼ ~q
and ~b

�
, which is the starting guess for the baseline. Then we iterate the

following steps:

b� ¼ argmin
b


H�d; b; n; ~q��
pðnjd;~q;~b�Þ; (26)

Q
�I0; s02

x ;R
02; ~q
� ¼ 


log p
�
d; n; I 0; s02

x ;R
02; b�

��
pðnjd;~q;~b�Þ;
(27)

I ¼ argmaxQ
�I ; s02

x ;R
02; ~q
�
; (28)
I0

s2
x ¼ argmaxQ

�I ; s02
x ;R

02; ~q
�
; (29)
s02
x

R2 ¼ argmaxQ
�I ; s2

x ;R
02; ~q
�
; (30)
R02

~q ¼ �I ; s2
x ;R

2
�
;

~b
� ¼ b�:
Note that b* is fully specified by Eq. 8 because n is summed over in the

expectation and d is given. Thus, in Eq. 27, b* is simply a vector of con-
stants, so that Qðq; ~qÞ is simply a function of s2x, R
2, and I .
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