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Abstract
Collagen fibrils are believed to control the immediate deformation of soft tissues under
biomechanical load. Most extracellular matrix proteins remain intact during frozen sectioning,
which allows them to be scanned using atomic force microscopy (AFM). Collagen fibrils are
distinguishable because of their helical shape. In the present study, the shape and organization of
collagen fibrils in dissected porcine vocal folds were quantified using nonlinear laser scanning
microscopy data at the micrometer scale and AFM data at the nanometer scale. Rope-shape
collagen fibrils were observed. Geometric characteristics for the fibrils were fed to a hyperelastic
model to predict the biomechanical response of the tissue. The model simulates the micrometer-
scale unlocking behavior of collagen bundles when extended from their unloaded configuration.
Force spectroscopy using AFM was used to estimate the stiffness of collagen fibrils (1 ± 0.5
MPa). The presence of rope-shape fibrils is postulated to change the slope of the force-deflection
response near the onset of nonlinearity. The proposed model could ultimately be used to evaluate
changes in elasticity of soft tissues that result from the collagen remodeling.
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1. Introduction
The microstructure of biological soft tissues is composed of extracellular matrix proteins
(ECMs) saturated within a fluid medium. The ECMs are composed of fibrous proteins, such
as collagen and elastin, entangled in saturated interstitial proteins, such as proteoglycans and
glycosaminoglycans. The former group constitutes the backbone structure of the ECMs,
enabling it to withstand external forces. The relationship between load and deformation for
the ECM structure is typically highly nonlinear. Vocal fold tissue, the focus of the present
study, undergoes simultaneous longitudinal extension and self-sustained transverse
oscillations along the sagittal plane during phonation [1]. It is hypothesized here that
characterization of the tissue microstructure, along with a proper structural model, allows a
better prediction of the biomechanical behavior of the vocal folds.

Collagen and elastin are two common sources of intrinsic contrast in nonlinear laser
scanning microscopy (NLSM). This method does not require staining or preprocessing and
is thus ideal for imaging the ECMs [2]. Second harmonic generation (SHG) has been used to
image noncentrosymmetic structures, particularly collagen fibrils [3, 4]. Fibril-forming
collagens are highly-ordered helical structures that produce considerable nonlinear light
scattering [5]. Two-photon fluorescence (TPF) microscopy has been used to image
fluorophores in many biological organs. Elastin fibers have an intrinsically high cross-
section for TPF emission [6]. Collagen and elastin in human vocal folds were imaged in a
recent study [7].

Collagen fibrils can be easily distinguished from other ECMs in untreated biological tissues
based on their periodic roughness wavelength, called D-banding [8]. This parameter is
determined by the spiral-shape, helical hierarchy of tropocollagens [9]. Undetectable with
NLSM, D-banding can be detected using high-resolution atomic force microscopy (AFM)
images. An AFM study of dissected tendons, where identified D-banding, has revealed that
individual fibrils may be knitted to form a rope [8]. Based on a differential-geometry model
of multi-strand ropes [10], Bozec et al. [8] proved that D-banding can be independent of the
fibril diameter, and this conclusion resolved a shortcoming of previous models [11].

The configuration of ECMs defines the structural entropy that controls the elastic energy of
soft tissues [12]. The quantification of their configuration allows the development of
structural models that could predict the biomechanical behavior in situations where
mechanical properties are impossible to measure directly, such as in scar tissue and wound
healing. Collagen fibrils appear to determine the elastic response of soft tissues under
mechanical load [13]. In one study, a three-dimensional mechanical model of collagen-
reinforced materials, in which collagen fibrils are idealized as helical elastic springs, was
created for soft tissues [14]. A probability function for collagen waviness was introduced
and incorporated into a hyperelastic constitutive model of collagen-reinforced soft tissues
[15]. The biophysical interactions between collagen fibrils and non-fibrous ECMs, which
were included in the viscoelastic models (e.g., [13]), are omitted here for the sake of
conciseness.

Structural characterization over different length scales along with relevant biomechanical
studies [9, 15, 16] has been used to model the biophysics of soft tissues. From a histological
perspective, the human vocal fold consists of two primary layers: the lamina propria and the
vocalis muscle [17]. The ECM structure of the lamina propria is dominated by type I and
type III collagen fibrils, with a higher volume fraction of collagen type III [1, 18, 19]. The
porcine vocal fold was chosen because it has a structure similar to that of human vocal folds
[18, 19].
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The goal of the present study is to characterize the contribution of collagen helical hierarchy
to the nonlinear elasticity of soft tissues using a structural model. The microstructural
morphology of the ECMs in porcine vocal folds was investigated using dual-mode NLSM
and AFM imaging. A protocol developed by Miri et al. [7] was used to quantify the helical
shape of collagen fibrils, and the stiffness of individual fibrils was obtained using AFM-
based nanoindentation. Assuming idealized elastic, multi-strand, rope structures [10], a
strain-energy function associated with the unloaded, stress-free configuration of collagen
fibrils was formulated. The formulation was applied for the simulation of the uniaxial
tension response of a representative volume element of the tissue. The effect of the rope-
fibril volume fraction on the force-deflection response was investigated using a numerical
analysis.

2. Methods and materials
2.1 Nonlinear laser scanning microscopy

Healthy porcine larynges were obtained from a local abattoir immediately post mortem and
immersed in a normal saline solution. The protocol was approved by the Animal Care
Committee of the Faculty of Medicine, McGill University. Three adult porcine vocal folds,
labeled samples I, II and III, were used for the optical sectioning. The inferior vocal folds
were dissected from the larynges by cutting along the sub-glottal wall, the superior vocal
folds and the vocalis muscle [20]. A rectangular area of approximately 2 mm × 4 mm was
excised with sharp blades from the central region of the vocal folds within the sagittal plane.
The thickness of the samples was greater than 2 mm, within the lamina propria. The tissue
was embedded in OCT (Optimal Cutting Temperature Compound, Sakura Finetek, Dublin,
OH) with no wash or dehydration. It was then sectioned using a cryostat microtome and
divided into equal-thickness layers of 100 μm from the epithelium. Each slice was placed
between two 22 mm × 22 mm cover glasses. The slides were placed on the NLSM stage for
imaging.

A custom-built multimodal, multi-photon microscope was used to record the images [7]. In
this study, SHG and TPF emissions were imaged with an excitation wavelength of 1050 nm,
in which the laser light was linearly polarized in the horizontal plane. The excitation
objective (Carl Zeiss, Toronto, Canada) was a 63x 0.9 numerical aperture (NA) water
immersion lens with a 2-mm working distance, and the collection objective was a 20x 0.80
NA water immersion lens with a 0.61-mm working distance. The two sinusoidal parameters
Ho and Ro, corresponding respectively to the periodicity and amplitude of fibers and fibrils,
were extracted from the NSLM images. The periodicity of selected bundles was determined
using Fourier analysis [7]. The overall fiber orientation with respect to the longitudinal axis
of the vocal folds was then determined. ImageJ (NIH, Bethesda, MD, USA) was used to
calculate the area fraction of collagen fibrils or elastin fibers in each image by imposing a
binary threshold after background subtraction [7].

Multimode NLSM allows comparisons between the organizations of soft tissue components
that have intrinsic contrast in the images. Networks of collagen fibrils and elastin fibers were
simultaneously scanned in the same imaging plane. In a previous study of human vocal
folds, a qualitative colocalization analysis was used [7]. Colocalization analysis involves the
determination of how much the SHG and TPF signals overlap. A quantitative approach was
used in the present study to remove observer bias. Pearson’s correlation coefficient,
calculated using ImageJ, quantified the colocalization of the SHG and TPF channels from
the intensity covariance in each pixel [21]. To reduce noise, the background intensity of
each image was subtracted using a rolling-ball algorithm (ImageJ; NIH, Bethesda, MD,
USA). An available randomization approach [21] was selected to calculate the Pearson
coefficient and assess its statistical significance. For each pair of images, 25 random images
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were created by translating horizontally and/or vertically the TPF image in 5-pixel
increments (i.e., −10, −5, 0, 5 and 10 pixels). The scrambled images, with a length scale of
several micrometers, maintain the characteristic shape of the collagen and elastin features.
The Pearson coefficient was calculated for each artificial pair and compared to that of the
original pair. The cases selected for the analyses had at least 22 randomizations with Pearson
coefficients lower than in the original images. About 20% of the images were eliminated
using this criterion.

2.2 Atomic force microscopy
In a separate set of experiments, imaging was performed using an AFM (Multimode
Nanoscope IIIa, Veeco, Santa Barbara, CA), equipped with a NanoScope V controller. The
AFM images were obtained in both the height and the deflection channels using the contact
mode at room temperature. Reflective, gold-coated, sharp silicon nitride micro-cantilevers
(MSNL-10, 0.1–0.6 N/m; Bruker, Camarillo, CA) were used for high-resolution imaging of
sectioned tissue layers in air, at room temperature. Gold-coated silicon nitride micro-
cantilevers (NPG-10, 0.35 N/m; Bruker, Camarillo, CA) were used for nanoindentation tests
on tissue samples immersed in a phosphate buffer saline with pH = 7.6, to simulate
physiological conditions [22].

The deflection sensitivity of the piezoelectric transducer was measured by probing the hard
surface of the glass substrates. This procedure could have affected the curvature of the probe
tip, thus the tip radius was determined via scanning electron microscopy, as shown in Fig.
1a. The sphericity of the head of the conical tip was obtained using a regression, and was
found to have a 75 nm radius. The spring constant of the tips was measured using a thermal
tuning method [23]. Most cantilevers remain linear up to a cantilever deflection of 100 nm,
as observed in deflection sensitivity curves. The forces measured in the present study were
less than ~10 nN and the cantilever deflections were less than ~30 nm. Hence, nonlinear
effects were negligible. The optimal cantilever stiffness for a sample can be determined
from the assumptions of Hertz contact theory [24]. An effective stiffness value of ~ 0.3 N/m
was calculated for nanoindentation testing of collagen fibrils in hydrated conditions [22].

Thin sections of three porcine vocal folds with thicknesses of 7–10 μm were prepared using
a procedure similar to that used for the NLSM. The nanoindentation was performed on
collagen fibrils. The force-volume mode produced a map of load-displacement force curves
in a 20 pt × 20 pt grid over the surface of the samples, each of which had an area of 20 μm ×
20 μm. A rate of two indentation cycles per second was applied, yielding a set of 400
indentation curves. The force-volume mode, with a threshold of 6 nN, yielded unloading
force curves, which were used to estimate the elastic tensile modulus as described in Oliver
and Pharr [24]. A distribution of the 400 elastic moduli in the selected area was obtained. In
addition to zero-stiffness points that correspond to pore spaces, contributions of the tissue-
tip adhesion were significant at some points. The corresponding data were then disregarded
in the final analysis. The data were imported into MATLAB (The MathWorks, Natick, MA)
to obtain the histogram. The values of the elastic moduli associated with data population
(i.e., the amplitude of the Gaussian fits) were extracted and the maximum value was
considered to be the elastic modulus of a single collagen fibril.

3. Results
Fig. 1 shows an overview of the experimental approach. Fig. 1e shows the location of the
vocal fold in a porcine hemilarynx and the area where the samples were extracted. The
average stress versus stretch, obtained from uniaxial traction testing of the entire vocal fold
[20], is shown in Fig. 1c. The strong nonlinearity of the stress-stretch curve can be
associated with interactions of collagen fibrils and other ECMs at large deformations [12].
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Fig. 1d shows the merged distributions of elastin (red) and collagen (green) networks
obtained from a single NLSM imaging acquisition. The collagen fibrils have a characteristic
wavy structure while the elastin network looks like a basket. The AFM image, Fig. 1b,
illustrates the nanoscale features of the ECMs, highlighting a higher fibers’ effective size
(e.g., the diameter) than for other ECMs of the vocal fold [18, 19]. The nanoindentation
curve, obtained from AFM, and the scanning electron microscopy image of the AFM tip
used are shown in Fig. 1a.

Selected images of 100μm×100μm regions in the 1st (~ 0–100μm depth), 4th (~ 300–400μm
depth), and 7th (~ 600–700μm depth) layers of sample I are shown in Fig. 2. The left column
shows the distribution of straight elastin fibers and the right column shows the bundles of
crimp-shape collagen fibrils. Variations in the collagen and elastin networks, according to
depth, are evident. Highly distributed within the first layer, the elastin network diminishes at
greater depths (i.e., closer to the muscle), as seen in the 7th layer. The variation is not an
optical sectioning artifact because the imaging was done on separate tissue slices. Fig. 2 also
shows that the collagen fibrils are primarily oriented along the longitudinal axis of the vocal
fold (i.e., the horizontal axis in the images).

The averaged area fractions and associated standard deviations are shown along with
Pearson’s correlation coefficients in Fig. 3. The correlation coefficients support the
observation that collagen and elastin are more entangled in the first three layers. The
periodic, sinusoidal structure of collagen bundles is shown in Fig. 4. Two randomly selected
positions for each layer were imaged with NLSM. Ten bundles were selected in each image
to calculate the average values of the overall orientation, the wave periodicity and the wave
amplitude of the collagen fibrils, as described in Section 2.1.

Four thin slices were extracted from each AFM sample, at 100-μm intervals of 0–400 μm
depth. Height- and deflection-mode images were recorded at three randomly chosen regions
per sample. The collagen fibrils were identified from D-banding. Careful examination of the
bundles led to the identification of two distinct collagen distribution patterns, as shown in
the first layer of one selected sample (Fig. 5). The left column (Fig. 5a) shows freely
distributed single collagen fibrils, which are less integrated than other ECM biopolymers.
These were observed in all of the samples. The right column (Fig. 5b) shows rope-shape
collagen fibrils, with their notable helical angle and ply radius, found mostly near the
epithelium, at depths of 0–200 μm. Nanoindentation was also performed on several fibril-
like objects by the AFM and the map of the elastic modulus was calculated. A regression of
the normal Gaussian distribution with the moduli yielded three major peaks in most cases,
one of which is presented in Fig. 6. Based on the range of collagen modulus in the literature
[22], the first peak was attributed to non-collagenous ECMs, including elastin, while two
higher peaks were associated with the collagen fibrils. The normal probability function was
defined as

(1)

with Ξ and ζ indicating the mean and the standard deviation of the indentation modulus E.
Using this approach, the indentation moduli of the collagen fibrils were obtained. Two data
sets were averaged to obtain one range of moduli for vocal fold samples. The overall results
were found to vary from 0.5 to 1.5 MPa.
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4. Theoretical model
4.1 A hyperelastic model of collagen-reinforced composites

From an engineering perspective, soft tissues are composite structures composed of elastin
and collagen fibers immersed in hydrated gel-like proteoglycans. Disregarding the effects of
viscosity, the tissue hyperelastic model is based on the definition of the strain-energy
function [15], that is the Helmholtz free-energy when the tissue is subjected to isothermal
deformation. In-vitro experiments in constant-temperature media are commonly performed
for soft tissues [20, 25]. The strain-energy density function, Ψ, denotes the elastic energy
stored in the deformed tissue per unit volume [26]. It is a function of

(2)

where each variable, λi, represents the principal stretch along the ith global coordinate (Fig.
7a). By analogy with engineered fiber-reinforced composites, non-fibrous ECMs supply the
matrix phase and fibrous ECMs constitute the reinforcing fibers. An additive formulation
[26], which assumes affine deformation of all components, expresses the strain-energy
function as

(3)

in which Ψm denotes the isotropic energy of the non-fibrous proteins, Ψf denotes the
anisotropic energy of the fibrous proteins, which occupy a volume fraction of φf.

In vocal fold tissue, the elastin network is generally distributed along random directions
(Figs. 1c and 2). Any possible variation in model parameters along the thickness direction is
neglected here because the loading is planar along the sagittal plane [20]. Thus, the
anisotropic energy, Ψf in Eq. (3), was expanded as

(4)

where Ψc denotes the direction-dependent strain-energy function stored by collagen fibrils
occupying a volume fraction φc, and Ψe denotes the strain-energy contributed to the elastin
fibers. In unloaded tissue samples, collagen fibrils formed a wavy structure with regular
sinusoidal characteristics. Collagen fibrils of vocal folds seem to be predominantly oriented
along the anterior-posterior direction [7]. An anisotropy vector, a, and the associated
probability density function, PO(θ, φ), were thus introduced, where θ and φ are the
azimuthal and circumferential angles (Fig. 7a). The collagen strain-energy function is
expressed inspherical coordinates as

(5)

where Ψfibril is the energy function of one single fibril, and λf is the stretch along a (θo, φo)
[15], which depends on the principal stretches and the orientation vector (θo, φo). A
bisymmetric unimodal distribution function was used to describe the anisotropic spatial
distribution of collagen fibrils.
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The microscale crimp-shape distribution of collagen fibrils was modeled as a planar
sinusoidal curve (Fig. 7a). The infinitesimal arc-length, dl, of one single collagen fiber lying
along the x-axis with a length of L, and lying within the yz plane, is expressed as

(6)

where ℓ is a random variable, which has a non-normal distribution in the y- and z-directions
with a non-zero mean value. A normal Gaussian distribution, with a non-zero mean value,
was assumed for the length probability function

(7)

in which ℓ̄ and Ω2 are the mean value and variance, respectively, as estimated from the
NLSM images. The integration of Eq. (6) along the length of the fibril yields ℓ̄. For a fixed ℓ,
the effective stretch of the fibril is then obtained as

(8)

For convenience, Ψm (λi) and Ψe (λi) were modeled using a Neo-Hookean material model
[26] having shear stiffnesses μm and μe. When a representative cubic block of the tissue is
subjected to a uniaxial extension, λ, the Cauchy stress in the direction of loading (i.e., at θ =
0 and φ = π/2) is obtained from [15]

(9)

where I1 (= λ2 + 2/π) is a strain invariant. The uniaxial traction test data were obtained from
the experiments of a previous, related study [20]. The measured stress-stretch response of
one vocal fold sample is shown in Fig. 1c.

4.2 A rope-shape model of collagen fibrils
Following the model suggested by Bozec et al. [8] for sub-fibrillar length scales, we
assumed that collagen fibrils coil around each other to form a rope-like ply with a right-
handed helical shape at the micrometer length scale. The ply shape might be the result of an
incomplete self-assembly of smaller fibrils. Two distinct types of fibrils were thus identified,
which suggests a strain-energy function of the form

(10)

in which  represents the strain energy function for single fibrils, considered as

elastic rods, and  represents the strain energy function for rope-shape
fibrils, with volume fraction φply. A rope is assumed to have n strands, forming a cylinder of
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radius, R, with helical angle, ϕo, which is the complement of the pitch angle (Figs. 5b and
7b). The detailed derivation of the strain-energy function of a single rope-shape fibril is

presented in Appendix A. The strain-energy function  is then considered to have a

quadratic form, similar to the second part of , as in Eq. (A.7).

4.3 Application to vocal folds lamina propria
Because of its importance for voice production, the lamina propria at a depth of about 0.5
mm [18, 19] was the focus of this study. The representative element is assumed to be
homogenous and non-isotropic, with an anisotropy vector in the range 0° ≤ θo ≤ 90°. The
sinusoidal waveform function was quantified, as shown in Fig. 4, and image analysis was
used to calculate ℓ̄ and Ω by computing the arc-length of y = Ro sin(2πx/Ho). The overall
orientation, θo, was also imposed with a probability density function, PO (θ, φ,), assuming
φo = π/2 (i.e., planar loading). A modified von Mises distribution function was used,

(11)

where I0(κ) is the modified Bessel function, and κ is the concentration parameter. Eq. (11)
satisfies the normalization condition. The volume fraction of fibrous proteins, φf, and the
volume fraction of collagen, φc, were deduced from histological data [18, 19].

The geometric parameters of rope-shape fibrils were estimated from the AFM images (Fig.
5). The helical angles and the ply radii were measured in the images, using NanoScope
Analysis 1.4 (Veeco, Santa Barbara, CA). The data are summarized in Table 1. Volume
fraction values, φply, of 0.30 and 0.70 were assumed in the calculations. Collagen fibrils play
a negligible role for small deformation. The strain-energy function related to matrix and
elastin is described by a single constant, which was identified from the linear portion of
stress-stretch curves [25]. Assuming equal stiffness, the corresponding shear moduli were
obtained as μm = μe = 15×103 Pa. Eq. (9) calculates the Cauchy stress of a uniform cubic
element subjected to uniaxial loading. For a representative volume element, Eq. (9) was
used to calculate stress versus axial stretch. A script written in MATLAB (The MathWorks,
Natick, MA) was used to calculate the stress for two values of the moment of anisotropy, κ,
and the rope-fibril volume fraction, φply, as shown in Fig. 8.

5. Discussion
5.1 Spatial distributions of collagen and elastin networks

As illustrated in Figs. 1b and d, NLSM and AFM methods were used to image vocal fold
tissue for the development of a strain energy formulation that considers the collagen helical
hierarchy. The spatial distribution of ECMs in unloaded and untreated tissue slices defines
the stress-free-microstructure. The elastin fibers are more isotropic than collagen fibrils in a
planar distribution (i.e., the sagittal plane). This observation supports the hypothesis of the
isotropic contribution of the elastin network to the strain-energy function, and it
substantiates the poor colocalization of SHG and TPF signals. Comparisons between the
fibrous structure seen in Fig. 1d and non-fibrous ECMs in Fig. 1b suggest that fibrous
proteins are the dominant structure at the micrometer scale in terms of mechanical resistance
while other ECMs play a more effective role at smaller scales. The cellular components are
not included in the present study because of the composition of the lamina propria [1].

The collagen and elastin networks are more organized near the superficial layer, as shown in
Figs. 2a and 2b, than in the deep layer of the lamina propria, as shown in Figs. 2c and 2d. In
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the muscle (Figs. 2e and 2f), the elastin fibers disappear and the collagen network is rather
isotropic, in consistency with histological data [18, 19]. Human vocal folds have regularly
oriented collagen and elastin networks [7] while the porcine vocal fold lamina propria has a
more randomly distributed structure. These differences suggest distinct mechanical
properties. The phonatory function of vocal folds requires an integrated, unidirectional
network of collagen and elastin. A similar waviness seen in Fig. 2 was observed in collagen
fibrils taken from intact vocal folds fixed in formaldehyde [7], which shows that the crimp
shape of the collagen fibrils is not caused by tissue preparation.

Signal area fractions that represent the layer-wise distribution of collagen and elastin fibers,
are shown in Fig. 3. The TPF signal strength was nearly uniform down to a depth of 0.6 mm,
beyond which it significantly decreased in the vocal muscle [19]. The SHG signal has a high
magnitude below the epithelium and then becomes uniform at varying depths, all the way
down to the muscle. The collagen within the superficial layer, immediately below the
epithelium, is oriented parallel to the surface, causing an increased SHG signal (Fig. 2b).
Fig. 3 confirms the homogeneity of the lamina propria in porcine larynges and substantiates
the use of a homogeneous model. The human vocal fold lamina propria, in contrast, is
multilayered [18, 19], which requires more elaborate modeling.

Insight into the interactions between collagen and elastin networks is provided by SHG and
TPF images (Fig. 3). The Pearson’s correlation coefficient, in general, ranges from −1 to +1,
with +1 indicating perfectly correlated objects. A positive number was expected as collagen
and elastin fill the entire space, but the correlation decreased beyond a depth of ~ 0.4 mm.
The Pearson’s coefficient was found to vary between ~ 0.12 and ~ 0.50 for the porcine
lamina propria. Qualitative colocalization, based on observation, however, may indicate a
lower correlation for porcine tissue than for human tissue [7]. This criterion cannot offer a
rigorous comparison because the fibrous structures are vector-valued, curvilinear objects.

5.2 Structural characterization of collagen fibrils at two length scales
A sinusoidal regression curve (Fig. 7a) was used to extract the periodicity and orientation of
collagen fibrils. The lamina propria (< 0.5 mm) has a uniform distribution of parameters
with respect to the muscle. For a depth of 400 μm, the measured amplitude and periodicity
were Ro = 3.08 ±1.01 μm and Ho = 20.62 ±7.43 μm, respectively. The free length of the
fibrils (i.e., after uncurling) was then computed and used in the simulation. Referring to Fig.
4, the dominant orientation was around zero degrees, with a lower variance in the regions
close to the epithelium. The estimated threshold stretch, where the collagen network
dominates the stretch-stress response, was 1.19 ± 0.08. This value was implemented in the
free-length probability function shown in Eq. (7) to generate Fig. 8.

Because surface scanning using AFM can suffer from cutting artifacts, the high-intensity
regions of the height-mode images were eliminated. The compliance of vocal fold tissue
prevented AFM imaging in hydrated conditions; however, tissue dehydration may have
affected the imaging. The images revealed two types of collagen fibrils: single and rope-
shape. Two porcine samples taken from intact vocal folds, and fixed in formaldehyde, were
also imaged by AFM as control experiments. Similar patterns were observed. Insignificant
physical integrations between single fibrils and other ECM macromolecules were observed
in the AFM images. The rope-shape fibrils were better integrated with non-fibrous ECMs, a
characteristic of type I collagen [12], which suggests that rope-shape fibrils may fall into this
category. Models based on the additive decomposition of material elastic energy (Eq. (4))
appear incapable of representing this group of collagen fibrils.
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5.3 Biomechanics of collagen-reinforced soft tissues
The technical difficulty involved in in-situ measurements necessitates a multiscale,
structural model that can predict the stiffness of tissue from that of individual components,
such as collagen fibrils. The AFM-based indentation (Fig. 1a) offers a mechanical
characterization tool at the nanometer scale. It was used along with statistical analysis to
estimate the stiffness of collagen fibrils (Fig. 6). The indentation elastic modulus may be
influenced by the soft microstructure underneath the collagen fibril being indented.
However, collagen stiffness on the order of GPa, which was reported for dehydrated samples
[22], seems large for vocal folds.

The present formulation assumes affine deformation between collagen fibrils and other
ECMs (Eq. (4)). The mechanical resistance contributed by collagen fibrils is a result of their
natural stiffness and the loose cross-linking between collagen fibrils and other ECMs.
Biomechanical aspects of collagen fibrils have been investigated by two approaches [27].
One approach involves isolating and purifying collagen fibrils, and determining their
structure and interactions in vitro [28]. The other approach includes measurements of the
bulk mechanical properties of collagenous tissues [20], and predictions of collagen stiffness
from multiscale models. In contrary to the two approaches, AFM-based nanoindentation of
fresh tissue samples allows for biomechanical characterization of a single collagen fiber in
its natural configuration.

Mechanical testing results (Fig. 1b) show that the stress vs. stretch response is nonlinear for
stretch values greater than around 1.2. The model shown in Eq. (9) may be used to simulate
the behavior of a tissue representative volume element, e.g., when comparing Fig. 8 and Fig.
1b. The initial parts of the curves in Fig. 8 (λ < 1.2) belong to collagen-free contributions,
highlighting the resistance of non-fibrous ECMs and elastin. The collagen fibrils uncurl with
negligible resistance to the loading. A comparison between the curves for different φply’s
reveals the region (1.2 < λ < 1.4), where untwisting the rope-shape structures has a great
influence on the stiffness (i.e., the tangential modulus). For large stretches where 1.4 < λ,
the collagen fibrils act like unlocked free rods and stress-versus-stretch obeys a parabolic
relationship. The dispersion of anisotropy, κ, affects the tissue response in this region. The
main contribution of the rope structures in the present formulation can be observed as
greater slope changes in the region 1.2 < λ < 1.4 for different volume fractions of rope-
shape fibrils, φply. The untwisting mechanism controls the transition from the linear
response to the nonlinear (i.e., parabolic) response at large stretch values.

The proposed model is based on the idea that some of the elastic energy required to move a
fully-extended crimped fiber is used to untwist the fibrils. As a strain-energy theory, the
model can simulate the tissue response based on its unloaded configuration. The formulation
further enables the derivation of analytical expressions, which can be implemented in a
numerical analysis [16] to predict the tissue response for physiologically relevant stress
states. The present model has some limitations. The solid mechanics of soft tissues was only
considered, assuming no interactions between the solid structure and interstitial fluid. The
fluid phase may contribute significantly to the viscoelasticity of the tissue [20]. The
evolution of non-collagenous ECMs, particularly elastin fibers, when collagen fibrils
undergo deformation was also excluded. Finally, the model does not consider fibril cross-
linking (i.e., fibrils did not interact). The mechanisms of ECM remodeling should be
investigated in future experiments.

5.4 Implications to collagen remodeling in wound healing and tissue engineering
In contrast with available constitutive models [13, 15, 16], the proposed formulation
provides a mathematical framework to study the biomechanical evolution of soft tissues
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under remodeling or growth. For example, vocal fold scarring that results from the surgical
removal of vocal fold lesions and voice abuse is a common problem in voice clinics [29].
Long-term consequences of scarring include tissue remodeling, during which the ECM
composition changes over weeks until a mature scar is formed [29]. Collagen fibrils undergo
helical self-assembly at different length scales with significant effects on the biomechanical
behavior of the tissue.

Many vocal fold lesions are treated by the injection of tissue-engineering biomaterials [23].
Design and fabrication of injectable biomaterials has followed a trial-and-error approach
without a good understanding of ECM remodeling (e.g., for the vocal fold tissue [30]).
Interaction of collagen fibrils and tissue engineering scaffolds affects ECM remodeling and
eventual tissue elasticity. The remodeling process by which the neo-ECM matures into a
heterogeneous and anisotropic structure can affect the mechanical stiffness of the tissue in
ways that could be modeled using the framework proposed in the present work.

6. Conclusion
The microstructure of porcine vocal fold tissue was visualized using nonlinear laser
scanning microscopy (NLSM) and atomic force microscopy (AFM). The results showed the
distribution of collagen and elastin networks in label-free fresh tissue slices. The basket-like
elastin network and crimp-shape collagen fibrils were imaged by NLSM. Colocalization of
collagen fibrils and elastin fibers was negligible in porcine tissue, unlike in previous studies
of human vocal folds. Collagen fibrils were identified by their surface D-banding, and their
nanoscale features were mapped by AFM. Two distinct fibril constituents were identified:
freely-distributed single fibrils and rope-shape fibrils.

The elastic properties of collagen-reinforced soft tissues were investigated using a composite
structural model, where the effect of fibril untwisting was included using classical rope
mechanics. Nanoindentation with AFM was further applied to estimate the linear modulus of
collagen fibrils, which was found to be in the range of 0.5–1.5 MPa. A simple calculation of
stress versus stretch revealed the contribution of the collagen helical hierarchy to the
nonlinear relation between external loading and tissue deformation. This model can predict
the biomechanical behavior of vocal fold tissue, where assembly of the collagen fibrils
factors heavily into the remodeling process. The proposed methodology for microstructural
characterization and the strain-energy formulation are applicable to other soft fibrous
tissues.
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Appendix A
Referring to Fig. 7b, a ply is made of n strands of radius r twisted around each other on a
uniform circular cylinder of radius R and infinite extent (i.e., R/Lo ~ 0), a physically
motivated assumption. Two geometrical constraints were used in a previous study [10] to
obtain perfectly bonded strands. The global reference (x, y, z) is used for defining the
external loading and a right-handed orthonormal coordinate frame (e1, e2, e3) is introduced
for kinematical analysis. In the case of constant curvature and torsion, the parametric arc-
length vector is written as

(A.1)

where ϑ(s) = s sinϕ/R and s represents the arc-length and ϕ is the helical angle or the
complement of pitch angle (Fig. 7b). The consistency of perfect contact between adjacent
strands in a right-handed ply is guaranteed [8] by

(A.2)

(A.3)

Eq. (A.2) gives δ, a shift parameter, based on known ϕ, and Eq. (A.3) yields the helical
radius R. The mechanics of the rope model provide governing equations [10]. When the
rope is extended by axial force Fo per unit length of the rope, the equilibrium equation is
then

(A.4)

where Kb is the bending stiffness and Kt is the torsional stiffness of each strand. Also τ is
the axial torsional strain in each strand and may be decomposed as [10]
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(A.5)

with γ being the internal pretwist, also called Love’s twist, locked during creation of the
rope. The second term is τo (≡ sin 2ϕ/2R), the strand twist (Fig. 7b). Although this model
neglects some characteristics of deformation in the strands, it is suitable for large
deformation [10, 31]. The axial stretch is defined accordingly as λ̄f = cosϕ/cosϕo [10] with
ϕo as the balanced helical angle. A convex and coercive strain-energy function (per strand)
is a assumed here with a quadratic function of the bending/torsion strains, as shown below
[31].

(A.

6)

The formula above expresses the energy of the ply as far as it is twisted. The pretwist, γ, is
computed by imposing Fo = 0 and ϕ = ϕo in (A.4) and (A.5). To generalize the problem, it is
further assumed that the strand acts like a single fibril when it is completely straightened.
Considering Ē as the axial stiffness, the strain energy function is further modified

(A.

7)

2 where H(•) is the Heaviside function.
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Figure 1.
a) Typical force-deflection curve obtained by AFM-based nanoindentation. Scanning
electron microscopy was used to characterize the AFM tip. Scale bar is 5 μm; b) A typical
height AFM image for porcine vocal fold superficial layer in which brighter regions exhibit
higher height. Scale bar is 1 μm; c) A typical stress-stretch curve of vocal fold tissue
samples. The sample, shown with it speckle pattern, was subjected to uniaxial sinusoidal
tension at 1 Hz; d) A dual-mode NLSM image of porcine vocal fold lamina propria, in the
sagittal plane. e) Anatomy of porcine hemilarynx. The vocal fold tissue is between the
thyroid and arytenoid cartilages. The location of sample excision for imaging is shown.
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Figure 2.
Selected images of TPF (red) and SHG (green) channels for the first (a,b), the fourth (c,d)
and the seventh (e,f) 100μm layers in sample I. The excitation wavelength was 1050 nm.
The TPF (red) and SHG (green) channels were recorded at 600/50nm and 525/50nm
wavelengths. The pixel-resolution of a and b are twice the other images. Scale bar is 20 μm.
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Figure 3.
Depth distribution of the mean area fraction and its standard deviation for the recorded data,
at two random locations in each of three samples, for TPF (red) and SHG (green) channels.
Vertical dashed lines indicate separate tissue slices. The depth coordinate was placed in the
coronal plane, the epithelium toward the vocalis muscle. Solid red line, TPF area fraction;
dashed blue line, SHG area fraction; dotted black line, Pearson correlation coefficient.
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Figure 4.
Depth distribution of the mean collagen sinusoidal parameters and its standard deviation, at
two random locations in each of three porcine vocal fold samples, based on the Fourier
series regression. Vertical dashed lines indicate separate tissue slices. The depth coordinate
was placed in the coronal plane, the epithelium toward the vocalis muscle. Solid red line,
sample I; dashed blue line, sample II; dotted black line, sample III.
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Figure 5.
Selected images of single fibrils (a) and rope-like fibrils (b) imaged by AFM, at a depth of
0–100 μm. Scale bar is 1μm. The ply radius, R, and the helical angle, ϕ, are shown in the
right image.
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Figure 6.
Distributions of data population versus indentation modulus E from nanoindentation of a
vocal fold tissue sample; blue curve for the first fit corresponding to non-collagenous ECMs;
red curve for the second fit associated with collagen fibrils type III; green curve as the third
fit associated with collagen fibrils type I; black bars for the indentation moduli. A
combination of the second and third Gaussian distributions was considered as the stiffness of
collagen fibrils.
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Figure 7.
a) Schematic representation of an area of interest imaged by NLSM and a selected single
helical fibril with its regression function. b) Schematic of a four-strand rope model.
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Figure 8.
Distributions of axial stress σ versus axial stretch λ for a representative block material of the
tissue, obtained by Eq. (9); dot-dashed black line for a case of collagen-free material model,
Ψfibril = 0; dotted red line for κ = 0.05 and φply = 0.30; dashed blue line for κ = 0.05 and
φply = 0.70; solid green line for κ = 1.05 and φply = 0.70. See also Eq. (10) Eq. (11). The
distribution from the free-length probability function in Eq. (6) is also shown using a pink
line. The black arrows show the initiation of the second-order parabolic response.
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