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Avian influenza A viruses, such as the highly pathogenic avian H5N1 viruses, sporadically enter the human population but often
do not transmit between individuals. In rare cases, however, they establish a new lineage in humans. In addition to well-charac-
terized barriers to cell entry, one major hurdle which avian viruses must overcome is their poor polymerase activity in human
cells. There is compelling evidence that these viruses overcome this obstacle by acquiring adaptive mutations in the polymerase
subunits PB1, PB2, and PA and the nucleoprotein (NP) as well as in the novel polymerase cofactor nuclear export protein (NEP).
Recent findings suggest that synthesis of the viral genome may represent the major defect of avian polymerases in human cells.
While the precise mechanisms remain to be unveiled, it appears that a broad spectrum of polymerase adaptive mutations can act
collectively to overcome this defect. Thus, identification and monitoring of emerging adaptive mutations that further increase
polymerase activity in human cells are critical to estimate the pandemic potential of avian viruses.

Ithough the natural reservoirs of influenza A viruses lacking

adaptive mutations that increase polymerase activity in mam-
malian cells (1-53) are wild birds (54), mammals are frequently
infected with influenza viruses of avian origin. These zoonotic
transmissions can cause severe disease in different mammals, in-
cluding cats, dogs, horses, pigs, and humans (55-57), due to the
lack of preexisting immunity in these species to the new influenza
virus strain (Fig. 1). Fortunately, most of these infections are so-
called dead-end infections and are not further transmitted within
the new species due to several barriers. However, on rare occasions
influenza A viruses can indeed break the species barrier and estab-
lish an entirely new virus lineage in a mammalian species, as ex-
emplified by the human pandemic of 1918 (58), the Eurasian clas-
sical swine influenza virus lineage (59), H3N8 influenza viruses in
horses (56), and possibly H17N10-like influenza viruses in bats
(60). Although 16 hemagglutinin (HA) and 9 neuraminidase
(NA) subtypes have been identified in wild birds, human infection
has been documented only for H1, H2, H3, H5, H7, and H9 (61—
64) and only H1, H2, and H3 have been stably introduced into the
human population (56, 65, 66). In the majority of cases, human
pandemics were a result of genetic reassortment events whereby
the circulating human virus strains acquired one or more gene
segments from avian or swine sources (54). However, since hu-
mans in certain regions of the globe are constantly exposed to
H5N1 influenza viruses, there exists a serious concern that this
subtype might acquire mutations to stably cross the species barrier
and start a new pandemic (67, 68).

REPLICATION OF INFLUENZA A VIRUSES

Influenza viruses belong to the family of Orthomyxoviridae, pos-
sessing a single-stranded negative-sense RNA genome that is com-
prised of eight segments (69). The ends of each genome segment
are short complementary elements that form the viral promoter
and are recognized by the viral RNA-dependent RNA polymerase,
which is composed of the three subunits PB2, PB1, and PA (70—
74). Together, the viral polymerase, the nucleoprotein NP, and the
viral RNA genome form the ribonucleoprotein (RNP) complex,
which is responsible for viral mRNA synthesis and genome repli-
cation. Upon infection, viral RNPs (vVRNPs) are released into the
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cytoplasm (75) and transported into the nucleus, where the RNPs
perform all of their enzymatic functions (76, 77). First, primary
transcription is initiated and viral mRNA is synthesized from the
viral genome (VRNA) (Fig. 2). vRNA also serves as a template for
synthesis of a full-length copy (cRNA), which serves as a template
for subsequent synthesis of new viral genomes (78). Viral mRNA
synthesis is primed using a cellular capped pre-mRNA which is
bound by the PB2 subunit (30, 79) and cleaved by the endonu-
cleolytic domain of the polymerase subunit PA (39, 80). Synthesis
of both ¢- and vRNA is apparently primer independent (81-83).
Recent evidence suggests that mRNA is synthesized by viral poly-
merase complexes which are resident on vVRNPs (in “cis”), whereas
VvRNA is synthesized from the cRNA template using soluble viral
polymerase complexes (in “trans”) (84). However, the mecha-
nism of cRNA synthesis and the regulation of the switch between
transcription and genome replication remain largely unknown
(85). The viral nucleoprotein (NP) is one major candidate to reg-
ulate the switch between transcription and replication (86), pre-
sumably by direct interaction with the viral polymerase (87), al-
though this role of NP has been questioned more recently (88).
Interestingly, in addition to the viral nucleoprotein, the nu-
clear export protein NEP (NS2) has been shown to be involved in
the regulation of polymerase activity (11, 89, 90). In contrast to
NP, it is not an essential component of the RNP complex, as it is
not required for transcriptional activity in a polymerase reconsti-
tution assay (Fig. 3). In this system, the effect of NEP on viral RNA
synthesis was shown to be concentration dependent. While very
high NEP concentrations completely abrogated polymerase activ-
ity (11), recent data demonstrate that small amounts of NEP stim-
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FIG 1 Host range of influenza A viruses. Wild water birds represent the nat-
ural reservoir of influenza A viruses, from which they can be transmitted to a
wide variety of other hosts, including horses, cats, dogs, whales, seals, wild
flying birds, chicken, pigs, and humans. Only recently, influenza A virus has
also been detected in bats, although the origin is unclear.

ulate the synthesis of VRNA and cRNA and, depending on the
experimental system, also mRNA (11, 89). The mechanism by
which NEP enhances VRNA and/or cRNA synthesis and regulates
viral polymerase activity remains unknown, but it appears to oc-
cur independently of its previously described function as a medi-
ator of vVRNP nuclear export (11, 89).
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The discovery of small viral RNAs (svRNAs) generated during
viral replication (91, 92) has furthermore paved the way for a new
understanding of influenza virus polymerase regulation. svRNAs
are 22 to 27 nucleotides in length, corresponding to the 5" ends of
the genomic viral RNA segments, and are synthesized from the 3’
end of the cRNA by the viral polymerase. Functional characteriza-
tion indicates that svRNAs directly interact with the PA subunit
and could provide a segment-specific guide for the viral polymer-
ase to the cRNA templates, thereby promoting synthesis of new
genomic vVRNAs (93). This suggests that svRNAs are involved in
the switch from mRNA transcription to genome replication (91)
and that NEP mediates the generation of these svRNAs by stimu-
lating cRNA synthesis (93).

Duringa replication cycle, atleast 10 different viral proteins are
expressed to establish efficient propagation of the virus in the
infected host (40, 94-97). Besides the requirement of these pro-
teins for essential functions during the viral life cycle, multiple
interactions with host factors, such as DNA-dependent RNA poly-
merase II (Pol II), are required to snatch cap structures from host
mRNAs (98) and to function as part of the cellular splicing ma-
chinery (99, 100) as well as to function as factors for nuclear traf-
ficking (101). In the case of transmission of avian influenza viruses
to mammalian hosts, introduction of adaptive mutations into vi-
ral proteins is essential to ensure optimal functionality and virus-
host protein interactions in the cellular environment of the new
host.

VIRAL FACTORS IMPORTANT IN HOST ADAPTATION

The hemagglutinin (HA) is one of the key factors which deter-
mines the host range of influenza A viruses, since it mediates at-
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FIG 2 Ilustration of the influenza A virus replication cycle. Influenza A virus particle binds to the cellular receptor and enters the cell by endocytosis. The viral
ribonucleoproteins (VRNPs) are released into the cytoplasm upon acidification of the endosome. vRNPs are transported into the nucleus, where transcription
and replication occur. Replication is supported by the viral nuclear export protein NEP. For genome replication, negative-sense viral RNA is transcribed into
plus-sense cRNA that is complexed by the viral polymerase and NP to form the cRNP and serves as a template for VRNA synthesis. After export from the nucleus,
vRNPs are assembled into new viral particles at the plasma membrane and released from the cell.
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FIG 3 Experimental systems for identification of adaptive mutations of influenza A viruses. Several experimental systems are used to identify adaptive mutations
that facilitate host adaptation. These include the following. (A) Bioinformatics analysis of bird- and human-derived influenza virus genome sequences. Such
analyses are frequently used to identify unique nucleotide changes that occur only in humans but not in avian species that are selected in the specific host. (B) The
polymerase reconstitution assay allows functional analysis of adaptive mutations in the polymerase subunits or NP by reverse genetics. Expression plasmids for
the polymerase subunits PB2, PB1, and PA as well as NP and a viral genome analog, harboring a reporter gene instead of the viral protein, are transfected into cells,
and reporter gene activity can be measured 24 h later. With this approach, the activities of polymerases from different influenza virus strains can be compared and
analyzed in human and avian cells. (C) Different animal models, including mice and ferrets, are used to determine pathogenicity and airborne transmissibility
of bird- and human-derived influenza A virus strains. (D) Biochemical analysis can be performed with virion-derived RNPs or recombinant proteins from

different expression systems to study polymerase activity in vitro.

tachment and entry of the virus into target cells. Adaptation from
avian to human hosts has been shown to target three main prop-
erties of HA. A switch in receptor specificity from avian («-2,3-
linked) to human («-2,6-linked) sialic acids as well as stabilization
of the stalk region to allow endosomal membrane fusion at the
optimal pH is crucial for efficient transmission between mammals
(67, 68) and host adaptation (102). Other important factors in-
clude appropriate HA glycosylation, the length of the stalk region
in the neuraminidase (NA), and specific differences in codon us-
age (103-106).

As an antagonist of the alpha/beta interferon (IFN-a/f)-me-
diated host immune response, the NS1 protein plays a critical role
during zoonotic transmission (107). The nonessential viral pro-
tein PB1-F2 was shown to be able to antagonize the interferon
response (108). Additionally, the viral nucleoprotein NP mediates
escape from restriction by the interferon-stimulated human MxA
protein (50, 109, 110). Polymerase activity of various avian influ-
enza A viruses was shown to be strongly impaired in mammalian
cells, restricting replication of avian viruses in mammals (10, 111,
112). Low polymerase activity results not only in fewer copies of
vRNA for packaging into new viral particles but also in reduced
mRNA synthesis and expression of viral proteins. Perhaps most
important for zoonotic viruses, low polymerase activity results in
fewer opportunities for the virus to create new variant genomes
containing potentially beneficial mutations. For this reason, mu-
tations in the polymerase subunits that increase transcriptional
activity are fundamental for avian influenza viruses to adapt to the
human host.

THE DEFECT OF AVIAN H5N1 POLYMERASES REMAINS
ELUSIVE

The molecular basis underlying the low polymerase activity of
avian influenza A viruses in human cells remains a mystery. How-
ever, several mechanisms have been postulated to be responsible
for this constraint. One popular hypothesis suggests that cellular
factors are responsible for the inhibition: either the presence of a
negative factor in mammalian cells which leads to inhibition of
avian polymerases or the absence of a positive factor in mamma-
lian cells—or the inability of avian viruses to bind such a positive

7202 jviasm.org

factor—needed for high polymerase activity has been proposed to
account for the restriction of avian polymerases in human cells
(113, 114). Furthermore, it has long been unclear which transcrip-
tional activity of avian polymerase—synthesis of viral mRNA,
cRNA, or VRNA or of all three—is restricted in human cells. Re-
cent work has provided evidence that VRNA synthesis, and
thereby VRNP accumulation, is significantly reduced in avian in-
fluenza virus-infected cells, possibly due to the generation of de-
fective complementary RNPs (cRNPs), which also results in re-
duced mRNA synthesis (11). These results suggest that only one
enzymatic process may be constrained in human cells; however,
further work is required to more precisely characterize this defect
in avian polymerases.

ADAPTIVE MUTATIONS IN THE VIRAL POLYMERASE

The significance of enhanced polymerase activity during cross-
species transmission of avian viruses to humans is highlighted by
the occurrence of numerous adaptive mutations in the viral poly-
merase proteins during natural infections of mammals (including
humans), as well as in experimental infection of animal models.
Based on different experimental systems (Fig. 3), adaptive muta-
tions conferring enhanced polymerase activity in mammals have
been identified in all three subunits of the viral polymerase, NP,
and NEP (Fig. 4) (115, 116). Interestingly, most mutations reside
in the PB2 subunit, where they localize in two clusters: in the N
and C termini of the protein.

The most often-observed and well-described mutation codes
for a lysine instead of a glutamate at position 627 of the PB2 pro-
tein (PB2-E627K) and is solely sufficient for replication of several
avian influenza viruses in mammals (3, 10, 12, 111). Amino acid
627 is located in the C-terminal region of the PB2 protein which
includes the eponymous “627 domain” in addition to the impor-
tin alpha-binding domain (117). The change from glutamate to
lysine at this position has been proposed to influence host adap-
tation on multiple levels. It has been shown to increase transmis-
sibility of avian viruses between mammals (118), presumably due
to increased polymerase activity at lower temperatures, as found
in the human upper respiratory tract (33 to 35°C) compared to the
avian intestinal tract (38 to 40°C) (12, 119). In addition, assembly
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FIG 4 Described mutations increasing polymerase activity in mammalian cells. Published data were analyzed to screen for predicted host-adaptive amino acids
(Bioinformatics) and mutations experimentally shown to increase activity of an avian influenza virus polymerase in the context of mammalian cells or to increase
pathogenicity in a viral infection (Experimental) (115, 116). Functional domains are indicated in green (interaction with viral proteins), red (involved in nuclear
localization), purple (involved in nuclear export), orange (interaction with cellular proteins), yellow (MxA resistance), and blue (RNA binding).

of new VRNPs was suggested to be impaired during replication of
avian influenza virus in mammals due to unstable binding be-
tween NP and the PB2 subunit, a defect that was rescued by the
mutation PB2-E627K (113, 120-122). Furthermore, the emer-
gence of this adaptive mutation in mammalian cells and mice was
shown to be dependent on the origin of the viral nucleoprotein
(123). Whereas NP of avian origin provoked the appearance of
E627K, NP of a human-derived H5N1 virus did not (123). These
data indicate a strong correlation between NP and PB2 in host
adaptation and the occurrence of adaptive mutations in either
protein. However, there is also a deviating interpretation propos-
ing that the reduced binding between PB2 and NP is an indirect
observation and is a consequence of the restricted avian influenza
virus RNA replication rather than of an alteration in NP-PB2
binding affinity (2).

The interaction of the viral polymerase with host cellular fac-
tors also seems to be affected by the species-specific amino acid at
PB2 627. Structural investigations of the PB2 627 domain revealed
that the change from glutamate to lysine alters the electrostatic
surface potential of this domain. Interestingly, a change in shape
and surface potential is also seen for the SR polymorphism at
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positions 590 and 591 in PB2, which is suggested to compensate
for the lack of PB2-E627K in the 2009 pandemic HIN1 virus (4, 8,
9, 124). The change in surface potential is hypothesized to influ-
ence the interaction with cellular factors, such as a-importins (32,
125-127). Furthermore, in the case of the PB2-binding DEAD box
RNA helicase DDX17/p72, the human form of the protein has
been shown to stimulate mRNA and vRNA synthesis of human-
adapted H5N1 polymerases (PB2-627K) but not their avian
precursor, while chicken DDX17 supports growth of avian but
not human-adapted H5N1 virus (128). However, it remains
to be shown whether the species-specific activity of DDX17 is a
determining factor driving human adaptation of avian H5N1 vi-
ruses.

Nonetheless, the precise function during species transmission
of the PB2 C terminus, which harbors most of the identified adap-
tive mutations (Fig. 4), remains largely unknown. Strong homol-
ogy to the cellular RNA-binding clamp-loader complex and in-
creased RNA-binding activity of the recombinant PB2 C-terminal
domain harboring the human 627K signature suggest a role in
RNA binding (32). However, decreased binding to the viral pro-
moter and a decrease in primed in vitro polymerase activity assays
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was observed with full-length PB2 627K (129, 130), leaving the
role of the 627 domain in RNA binding unresolved.

Several other important polymerase activity-enhancing muta-
tions are found in the PB2 C-terminal domain (2,7, 9, 14, 18, 118)
(Fig. 4). The adaptive mutation PB2-701N is located in the well-
defined importin alpha-binding domain and can partially com-
pensate for the lack of PB2-627K in avian viruses (118). The mu-
tation could be shown to influence the interaction with various
importin alpha isoforms, which are responsible for the nuclear
import of PB2 as well as of other viral proteins (125, 126). Muta-
tion to PB2-701N causes avian viruses to switch dependency from
importin alpha 3 to importin alpha 7, which increases viral repli-
cation and pathogenicity in mice (126, 131). On the molecular
level, recent data suggest that PB2-701N, together with PB2-714R,
increases the cap-binding efficiency of the PB2 subunit but de-
creases primed in vitro polymerase activity, an effect also observed
with PB2-627K (132). Adaptive mutations in the N terminus of
PB2 include exchanges at positions PB2-158G, -199S, -253N,
-256G, and -271A (1-6). However, mechanistic insights into the
effects of these mutations on polymerase activity and enhanced
replication of avian influenza viruses in mammals are not yet
available.

In the PA subunit, adaptive mutations seem to cluster in the
endonuclease-containing N terminus (39) (Fig. 4). This region
overlaps with the newly identified frameshift product PA-X that
modulates host response to infection (40). However, it is not clear
whether such N-terminal adaptive mutations impact PA-X func-
tion. Interestingly, the N terminus of PA is also associated with
viral genome promoter binding (41, 133) and regulation of cRNA/
VRNA synthesis (134), although it remains to be shown whether
these mutations might affect the RNA-binding feature of PA.
While additional mutations were identified at various positions in
PA, including 336M, 5528, and 615N (3, 11, 14, 16-18), in PB1
only mutations at positions 473 and 598 were shown to increase
polymerase activity of avian polymerases in mammalian cells (15).

Although the mutation PB2-E627K has been shown to effi-
ciently adapt the polymerase of avian viruses to human cells, only
40% of H5N1 influenza viruses isolated to date from humans have
acquired this mutation (13/01/14 NCBI database) (135), indicat-
ing that other mechanisms of adaptation to humans might have
evolved. The lack of PB2-E627K can be partially compensated by
mutations at other positions in the polymerase subunits, but none
of these mutations has a comparable potency to increase polymer-
ase activity (11, 13), and it is conceivable that mutations in other
viral factors are required to overcome species barriers.

ADAPTIVE MUTATIONS IN THE VIRAL NUCLEOPROTEIN

To date, few adaptive mutations in NP have been identified as
required for the efficient growth of avian influenza viruses in
mammalian hosts (Fig. 4). These include N319K, which enhances
viral replication in mammalian cells (14, 136) by affecting inter-
action of NP with host importin-a isoforms (126, 131). Although
several other NP mutations were obtained by adaptation of hu-
man influenza A virus strains to mice or guinea pigs (137-140), it
remains to be shown whether these mutations are also required
for avian strains to efficiently replicate in mammalian cells. Mul-
tiple potentially adaptive mutations in NP were identified in silico
by sequence comparisons of avian and human influenza A viruses
(Fig. 4). Some of these adaptive mutations (G16D, L283P, F313Y,

7204 jviasm.org

Q357K) are required to escape from restriction by the interferon-
stimulated human MxA protein (50).

NEP: A NEW ADAPTIVE FACTOR

Recent work suggests that NEP is required for the adaptation of
some avian H5NI1 viruses, specifically those lacking the PB2
E627K mutation (11). Single mutations in NEP from human
H5N1 isolates (Fig. 4) were found to be sufficient for NEP to
stimulate viral RNA synthesis from avian polymerases in human
cells to overcome polymerase restriction and, in conclusion, facil-
itate adaptation to the new host (11).

The adaptive mutations found in H5N1 human isolates are
situated in both the N terminus (M 161 and Y41C) and the C ter-
minus (E75G) of NEP (Fig. 4). Interestingly, the C terminus of
NEP alone is sufficient to regulate viral polymerase activity (89,
93). This suggests that the N terminus may act as a regulatory
domain whose tertiary conformation relative to that of the C-ter-
minal domain determines the protein’s cofactor activity. Adaptive
mutations may thus affect the interaction between the N-terminal
and C-terminal domains, thereby increasing the polymerase ac-
tivity-enhancing property of NEP through conformational
changes. However, further investigations are required to substan-
tiate this hypothesis.

MUTATIONS IN THE NONCODING REGIONS (NCRs)

Although naturally occurring adaptive mutations in the noncod-
ing regions of the viral genomes are not known, artificial intro-
duction of cRNA promoter-like bases into the 3’-end vRNA pro-
moter, especially at positions 3 (G* A), 5 (U * C), and 8 (C x U),
referred to as the up-promoter, is also able to rescue the restricted
avian polymerase activity in the polymerase reconstitution assay
in human cells (2, 83, 141-144).

As expected, during viral infection with recombinant viruses
bearing the up-promoter mutations in either the PA- or PB1-
encoding segment, segment-specific increases in cRNA and
mRNA synthesis were observed (145). However, despite elevated
PA or PBI protein expression, these viruses were attenuated (145)
and might explain why this strategy to increase polymerase activ-
ity is not observed in natural isolates.

It was shown that the up-promoter mutations lead to increased
base pairing in the promoter (141). This might positively influ-
ence polymerase activity by changing the promoter structure. Al-
ternatively, the nature of the nucleotides might be the important
factor for increased RNA replication, as was suggested by an ex-
tensive promoter study (142).

Despite extensive studies on the promoter regions (first and
last 12 to 13 nucleotides of the viral genome), very little is known
about the impact of mutations in the remaining noncoding re-
gions (NCRs) downstream of the polymerase-binding site (146).
Besides their involvement in packaging (147, 148), few studies
addressed the regulatory role of these NCRs in translation, mRNA
transcription, and RNA replication. Intriguingly, these studies in-
dicated a strong impact of the NCRs on genome replication (149—
152), but further detailed analyses are needed to demonstrate a
possible involvement of the NCRs in adaptation processes.

CONCLUDING REMARKS

A contribution of the polymerase complex, and particularly the
PB2 subunit, in host adaptation to mammals has been known
since the 1970s (153). Interestingly, a comparable pattern of adap-
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tive mutations in PB2 was found not only in mammals but also in
different flightless bird species (Ratitae), including ostrich, emu,
and rhea. These include the mutations PB2-591K, -627K, and
-701N (154, 155), suggesting related adaptive mechanisms occur-
ring in these species after infection with avian influenza A viruses.

However, the number of adaptive mutations arising in the
polymerase subunits also indicates a certain flexibility to over-
come the restricted polymerase activity of avian viruses after spe-
cies transmission and might explain the appearance of multiple
compensatory mutations in influenza A virus strains, which have
not adopted the human-like PB2-E627K mutation, to successfully
replicate in human cells (11, 14, 18).

The ability of each of PB2-627K, NEP, and the artificial up-
promoter to almost completely rescue the defect of an avian influ-
enza virus polymerase in mammalian cells raises the hypothesis of
a functional linkage of these three strategies, especially consider-
ing that adaptive mutations in NEP were observed only in human
H5N1 isolates harboring PB2-627E (11). Interestingly, in all three
cases, viral genome replication is boosted (2, 11, 89, 145), which
corresponds to a potential defect in producing sufficient quanti-
ties of VRNA. To date, the exact defect of the avian polymerase in
producing insufficient amounts of vVRNA has not been known but
could involve different steps in viral replication such as insuffi-
cient or inappropriate encapsidation of VRNA and/or cRNA, se-
quence errors introduced into noncoding regions during replica-
tion of VRNA, reduced promoter clearance by altered secondary
structures, or localization of the RNP to an inappropriate cellular
compartment. Furthermore, it remains to be shown whether host-
specific factors contribute to this defect.

Increasing evidence indicates that NEP plays a highly versatile
role during influenza virus infection, being involved in early and
late phases of viral infection. It seems intriguing that a low-molec-
ular-mass (14.8-kDa) protein such as NEP can harbor interaction
sites for at least five different viral and cellular proteins (PB1, PB2,
M1, CRM1, F1Fo-ATPase). These different interactions must be
tightly regulated by as-yet-unknown mechanisms that could in-
volve phosphorylation (156) and sumoylation (157) of NEP.

Clearly, further work is required to elucidate mechanistical in-
sights into the adaptation of the avian influenza virus polymerase
in mammals. The fact that the viral polymerase adapts in different
bird species, but also that the polymerase PB2 and PA genes of the
2009 pandemic were of avian origin and partially adapted to hu-
mans in swine, highlights the necessity of investigating the role of
different animal species in the adaptation process of avian influ-
enza A virus to humans. Unraveling the precise function of NEP in
viral replication and transcription processes might further help to
elucidate the defect of the avian influenza virus polymerase in
mammals, which would substantially increase our knowledge
about influenza virus host adaptation.
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