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Dengue viruses are the most common arthropod-transmitted viral infection, with an estimated 390 million human infections
annually and �3.6 billion people at risk. Currently, there are no approved vaccines or therapeutics available to control the global
dengue virus disease burden. In this study, we demonstrate the binding, neutralizing activity, and therapeutic capacity of a novel
bispecific dual-affinity retargeting molecule (DART) that limits infection of all four serotypes of dengue virus.

Dengue virus (DENV) is a mosquito-transmitted, enveloped,
positive-sense RNA virus and member of the Flavivirus genus

of the Flaviviridae family. Infection by four closely related but
serologically distinct viruses (DENV serotype 1 [DENV-1],
DENV-2, DENV-3, and DENV-4) causes dengue fever (DF), an
acute self-limiting yet severe febrile illness, or dengue hemor-
rhagic fever and shock syndrome (DHF/DSS), a potentially fatal
vascular leakage syndrome. While primary infection is believed to
confer long-term immunity against strains of the homologous
DENV serotype, epidemiological studies suggest that secondary
infection with a heterologous DENV serotype can enhance the risk
of DHF/DSS due to preexisting and nonneutralizing, cross-reac-
tive antibodies (1, 2) and/or T cells (3–5). A requirement for pro-
tection against all four serotypes has limited the development of
vaccines and antibody-based therapies against DENV.

Most neutralizing antibodies against DENV recognize the
structural E protein (reviewed in reference 6), which is divided
into three domains. Several epitopes that elicit serotype-specific
protective responses in mice and humans have been identified,
with the most potently inhibitory monoclonal antibodies (MAbs)
mapping to the lateral ridge of domain III (DIII) (7–9) and the
hinge region between domain I (DI) and domain II (DII) (10, 11),
respectively. Many neutralizing subcomplex- and complex-spe-
cific MAbs, which recognize several or all DENV serotypes, bind
to an epitope on the A strand of DIII (7, 12–15). Finally, cross-
reactive MAbs that bind to multiple flaviviruses map generally to
the conserved fusion loop in DII (DII-FL) and neutralize most
DENV serotypes, albeit with reduced potency relative to that of
type-specific antibodies. Nonetheless, passive transfer of at least
some DII-FL and DIII-A-strand MAbs had therapeutic activity in
vivo in mouse models of DENV-2 infection (16–18), especially
when the Fc region was modified to eliminate the capacity for
antibody-dependent enhancement of infection (ADE) in myeloid
cells expressing Fc-� receptors (Fc�R).

We hypothesized that a viable antibody treatment against
DENV would need to neutralize infection of all four DENV sero-
types, lack enhancing activity, and target two epitopes to prevent
emergence of resistance or a single epitope in which escape mu-
tants showed reduced fitness. We chose to target two spatially
distinct epitopes on the surface of the DENV virion using a novel
platform, antibody variable-region-based bispecific dual-affinity
retargeting molecules (DARTs). For our DART, we selected E60, a

cross-reactive MAb that binds the DII-FL (19), neutralizes DENV
efficiently (17), and protects in vivo (17), and 4E11, a complex-
specific MAb that binds the A-strand epitope on DIII, neutralizes
all four DENV serotypes, and also demonstrates therapeutic effi-
cacy in vivo (18, 20–23).

The amino acid sequence of the variable light (VL) and heavy
(VH) regions of E60 was determined after isolation of RNA from
the parent mouse hybridoma cells. The VL and VH sequences of
the 4E11 antibody have been published (21). The complementar-
ity-determining regions (CDRs) of E60 and 4E11 were cloned into
the pCI-neo vector with a human IgG signal sequence and �1
constant region, expressed in CHO-S cells, and purified from su-
pernatants by serial protein A affinity and size exclusion (Super-
dex 200) chromatography steps to generate purified recombinant
E60 and 4E11 MAbs (data not shown). We also produced and
expressed E60 and 4E11 as a DART, which consists of two protein
chains that dimerize to form two antibody-derived antigen-bind-
ing sites (Fv). The first DART chain was constructed by juxtapos-
ing the mouse VL1 domain of E60 with the mouse VH2 domain of
4E11 and contains the human constant domains CH1, CH2, and
CH3. A short Gly-Ser linker (GGGSGGGG) between the two do-
mains prevents intramolecular association of the VL1-VH2 pair
but does not affect assembly of the constant region. The second
DART chain is the complement of the first, containing the VL2 of
4E11 and VH1 of E60 followed by the constant domain of the light
chain, CL� (Fig. 1A). Assembly of a DART requires het-
erodimerization, which is facilitated by the length of the linker and
allows the development of a single protein that is bispecific and
bivalent (Fig. 1B).

While a DART recapitulates the antigen-binding pattern of the
parent MAbs, its serum half-life is shorter (S. Johnson, unpub-
lished data). To circumvent this limitation, the DART constructs
were engineered with the human IgG constant regions (CH1,
CH2, and CH3); thus, two DART molecules join into a single
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FIG 1 Structure and function of Ig-DART. Antibody Fv regions are antigen-binding sites resulting from heterodimerization of the light and heavy chain variable
domains (VL and VH). (A) Schematic representation of the linear sequences that assemble into an Ig-DART. (B) A representation of the bispecific, bivalent
structure reconstituted by two Fv regions by encoding mismatched VL and VH domains on each of two complementary polypeptide chains. Upon het-
erodimerization of these chains, both Fvs are assembled and can bind their respective antigens. (C) The Ig-DART structure in the figure is bispecific and
tetravalent. The Ig region is engineered with a point mutation (corresponding to N297Q in the intact MAb) to eliminate Fc�R binding and prevent ADE in vivo.
However, binding to neonatal Fc receptor is preserved, which confers an extended half-life in serum. (D) Size exclusion chromatography profile of the Ig-DART
after affinity purification. (E) SDS-PAGE gel of the purified Ig-DART (lane 1) and protein ladder (lane 2, NuPAGE MES ladder) run under reduced, denaturing
conditions. (F) Avidity measurements of Ig-DART where anti-human IgG was immobilized on a sensor chip to capture the Ig-DART and soluble dimeric DENV
E ectodomain protein was made to flow over the chip at decreasing concentrations (100, 50, 25, 12.5, and 6.25 nM). A single representative sensogram is shown
for each antibody. The raw data at each concentration are shown in color, and the fit for each curve is in black. A 1:1 simple/mass-transport limited model was
used for fitting of kinetics parameters.
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complex to form a chimeric bispecific and tetravalent Ig-DART
(Fig. 1C). The Ig-DART was isolated after serial protein A affinity
and size exclusion (Superdex 200) chromatography steps (Fig.
1D), which resulted in a purified preparation (Fig. 1E), with a
minor degradation product. The chimeric Ig-DART contains the
variable chains from mice and the constant chain domains 1, 2,
and 3 from human IgG1. This complex forms a structure similar
to a MAb and can bind neonatal Fc receptors, which confers an
extended half-life in vivo. The constant heavy domains also can
interact with Fc�R on immune effector cells and the complement
component C1q in solution. However, our Ig-DARTs and MAbs
were engineered with a point mutation, N297Q, which abrogates
binding to the Fc�R and eliminates the potential of ADE and
enhanced DENV disease (17, 24, 25). To determine if the Ig-
DART had binding properties similar to those of the parent re-
combinant MAbs, kinetic measurements were obtained using an
Attana quartz crystal microbalance. The association (ka) and dis-
sociation (kd) rates of E60, 4E11, and the Ig-DART binding to
recombinant DENV E proteins were determined (Table 1 and Fig.
1F). As DENV E proteins form dimers in solution (26), kinetic
binding analysis to bivalent MAbs or tetravalent Ig-DARTs re-
flects avidity (Kapp) rather than monovalent affinity measure-
ments.

The binding characteristics of E60 for purified E proteins cor-
responding to all four DENV serotypes were similar, with a range
in avidity (Kapp) of 2.8 � 10�9 M for DENV-4 to 1.8 � 10�9 M for
DENV-2 (Table 1). The recombinant 4E11 had similar avidities
for DENV-1 and DENV-2 (1.3 � 10�9 M and 2.1 � 10�9 M,
respectively) but reduced avidity for DENV-3 (4.2 � 10�8 M) and
DENV-4 (7.4 � 10�8 M), as reported previously (21). The Ig-
DART had greater avidity for isolated E protein than for either E60
or 4E11 for all serotypes with Kapp values of 7.8 � 10�10 M
(DENV-1), 8.8 � 10�10 M (DENV-2), 1.1 � 10�9 M (DENV-3),
and 1.5 � 10�9 M (DENV-4) (Fig. 1D and Table 1).

We next investigated the neutralization potential of the Ig-
DART and compared it to the individual or combinations of pa-
rental recombinant 4E11 and E60 MAbs using a focus reduction
neutralization test (FRNT) on Vero cells. Representative viruses

from all four DENV serotypes included DENV-1 (strain Western
Pacific-74), DENV-2 (strain New Guinea C [NGC]), DENV-3
(strain UNC3043), and DENV-4 (strain 1036). The 4E11 MAb
efficiently neutralized DENV-1 (50% effective concentration
[EC50] of 72 ng/ml) and DENV-2 (EC50 of 71 ng/ml) but neutral-
ized DENV-3 less well (EC50 of 523 ng/ml) and DENV-4 not at all
(EC50 of �5,000 ng/ml) at 37°C (Fig. 2A and Table 2). The E60
MAb neutralized all four DENV serotypes to various degrees at
37°C: DENV-1, EC50 of 538 ng/ml; DENV-2, EC50 of 607 ng/ml;
DENV-3, EC50 of 1,308 ng/ml; and DENV-4, EC50 of 2,773 ng/ml.
The neutralization potential of the combination of 4E11 and E60
MAbs or the Ig-DART was similar to the best of the two individual
MAbs for DENV-1 and DENV-2 and somewhat improved for
DENV-3 and DENV-4 (Table 2).

Neutralization of flaviviruses by some classes of MAbs is mod-
ulated by time and temperature of preincubation, due to the ef-
fects on epitope accessibility on the virion (27). We evaluated the
ability of E60 and Ig-DART to neutralize several DENV-4 strains
at 37°C for 1 and 3 h as well as at 40°C for 1 h. Multiple virus strains
were tested because variation in neutralization potency even in
sequence-conserved epitopes has been observed across genotypes
within a serotype due to differential accessibility on the virion
surface (28, 29). DENV-4 strains, particularly, show differences in
neutralization by some MAbs when the preincubation conditions
are varied, although others, including 4E11, showed no apprecia-
ble effect (S. Sukulpolvi-Petty, J. Brien, and M. Diamond, unpub-
lished results). At 37°C, E60 neutralized DENV-4 strain p75-514
(sylvatic genotype, EC50 of 261 ng/ml) most efficiently, followed
by strains TVP-986 (genotype 2, EC50 of 908 ng/ml), TVP-376
(genotype 2, EC50 of 1,186 ng/ml), and 1036 (genotype 2, EC50 of
2,773 ng/ml) (Fig. 2B and Table 3). Increasing the time of preincu-
bation enhanced the neutralizing activity of E60 or the Ig-DART for
DENV-4 strains 1036 (4- to 5-fold, P � 0.0001) and TVP-986 (15- to
27-fold, P � 0.0001). However, the most significant improvement in
neutralization for E60 and the Ig-DART occurred under 40°C prein-
cubation conditions with increased inhibition of strains TVP-986 (9-
to 10-fold, P � 0.0001), TVP-376 (24- to 40-fold, P � 0.0001), and
1036 (33- to 70-fold, P � 0.0001).

TABLE 1 Binding avidity of recombinant MAb and Ig-DARTs to DENV E proteinsa

Virus Variable 4E11 E60 Ig-DART

DENV-1 ka (M�1 s�1) 2.6E�06 	 5.4E�02 4.0E�06 	 8.1E�01 2.3E�06 	 1.0E�03
kd (s�1) 1.6E�03 	 2.1E�06 4.0E�03 	 3.0E�06 9.1E�04 	 9.9E�07
Kapp (M) 1.3E�09 	 1.2E�12 2.0E�09 	 2.0E�12 7.8E�10 	 1.0E�12

DENV-2 ka (M�1 s�1) 4.1E�06 	 9.1E�02 4.4E�06 	 6.3E�02 3.2E�06 	 1.0E�03
kd (s�1) 4.3E�03 	 2.0E�06 3.9E�03 	 4.1E�07 1.4E�03 	 6.0E�07
Kapp (M) 2.1E�09 	 1.0E�12 1.8E�09 	 3.2E�13 8.8E�10 	 5.0E�13

DENV-3 ka (M�1 s�1) 2.0E�05 	 5.4E�03 3.3E�06 	 2.0E�03 3.2E�06 	 4.0E�04
kd (s�1) 4.2E�03 	 5.0E�06 3.4E�03 	 5.0E�06 1.6E�03 	 9.2E�05
Kapp (M) 4.3E�08 	 9.2E�10 2.1E�09 	 3.0E�12 1.1E�09 	 5.1E�11

DENV-4 ka (M�1 s�1) 5.9E�04 	 3.0E�03 2.7E�06 	 8.9E�02 2.8E�06 	 5.7E�02
kd (s�1) 1.8E�03 	 4.2E�05 3.8E�03 	 1.0E�05 2.0E�03 	 2.2E�05
Kapp (M) 7.4E�08 	 2.2E�09 2.8E�09 	 1.0E�11 1.5E�09 	 2.1E�11

a Avidity measurements were performed on an Attana biosensor. Anti-human IgG was immobilized on a sensor chip, and equal molar amounts of 4E11 N297Q, E60 N297Q, or Ig-DART
(4E11 plus E60) were bound to the chip. Soluble DENV-1 (strain 2543-63), DENV-2 (16681), DENV-3 (Phil 9609), and DENV-4 (Thailand 1984) E proteins were produced in CHO-S cells,
purified by affinity chromatography, and made to flow over the chip at decreasing concentrations (100, 50, 25, 12.5, and 6.25 nM). The table values represent the means of two independent
experiments with standard deviations shown. A 1:1 simple/mass-transport limited model was used for fitting and calculation of kinetics parameters.
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FIG 2 Ig-DART and MAb-mediated neutralization of DENV. (A) FRNT curves for one representative strain of each DENV serotype (DENV-1, Western
Pacific-74; DENV-2, NGC; DENV-3, UNC3043; and DENV-4, 1036). Virus and antibody were incubated at 37°C for 1 h prior to infection with 100 focus-
forming units (FFU) of each virus. The data are the means of three independent experiments completed in triplicate. EC50 values are shown in Table 2. (B) FRNT
curves of four different DENV-4 strains after preincubation at 40°C for 1 h. The virus strains represent DENV-4 genotype 2 and a sylvatic strain. The data are the
means of three independent experiments completed in triplicate. EC50 values are shown in Table 2.

TABLE 2 Neutralizing activity of MAbs and Ig-DART against DENV serotypesa

Serotype and strain

EC50, ng/ml (CI)

4E11 E60 4E11 � E60 Ig-DART

DENV-1, Western Pacific-74 72 (60–87) 538 (356–812) 41 (31–54) 68 (38–119)
DENV-2, NGC 71 (43–118) 607 (391–941) 51 (41–64) 54 (38–75)
DENV-3, UNC3043 523 (213–1,284) 1,308 (599–2,857) 125 (89–175) 213 (94–481)
DENV-4, 1036 �5,000 2,773 (1,683–4,570) 2,452 (1,813–3,316) 1,790 (1,257–2,550)
a Neutralizing activity was determined by focus reduction neutralization test (FRNT) on Vero cells after increasing concentrations of purified MAbs or Ig-DARTs (maximum of
5,000 ng/ml) were incubated at 37°C with 100 focus-forming units (FFU) of the indicated DENV strains. The data were derived from three independent experiments performed in
triplicate. The EC50 was calculated by nonlinear regression analysis and is expressed as ng/ml of antibody. Confidence intervals (CIs) for each value are listed in parentheses.
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To begin to determine the physiological significance of these
findings, we compared the therapeutic potential of the Ig-DART
to that of its parent recombinant MAbs in a DENV-2 model of
polyclonal antibody-enhanced disease (17); for these studies, all
therapeutic MAbs and Ig-DARTs contained amino acid substitu-
tions (e.g., N297Q) that abolished Fc�R binding. A single dose of
the individual MAbs 4E11 (20 
g, P � 0.0004) and E60 (20 
g,
P � 0.0001) or a combination of the individual MAbs (4E11 plus
E60, 10 
g each, P � 0.0008) administered 48 h after infection
protected against lethal disease compared to a control Ig-DART
specific for smallpox (Fig. 3A) or isotype control MAbs (reference
17 and data not shown). Equimolar amounts of the Ig-DART (25

g, P � 0.0001) also protected against lethal DENV infection.
Postexposure treatment with a single dose of Ig-DART (25 
g,
P � 0.007) or a molar equivalent combination of the individual
MAbs (4E11 plus E60, 10 
g each, P � 0.007) also reduced viral
titer in the serum 36 h later, as determined by focus-forming assay

(Fig. 3B). To further compare the therapeutic capacity of a tradi-
tional 4E11-plus-E60 MAb cocktail to that of the Ig-DART, we
tested limiting doses. MAb combination treatment (4E11 plus
E60) at 5 
g each (P � 0.006) and 2.5 
g each (P � 0.02) was
equivalent in protective capacity to Ig-DART treatment at 12 
g
(P � 0.006) and 6 
g (P � 0.03), when administered 48 h after
infection (Fig. 3C).

In summary, we show as a proof of principle that a bispecific
dual-affinity retargeting molecule (Ig-DART) targeting two spa-
tially distinct cross-reactive and complex-specific epitopes on DII
and DIII of the DENV E protein can retain its neutralizing activity
in vitro and therapeutic activity in vivo. The Ig-DART, which was
engineered to lack Fc�R binding capacity, performed as well as did
the combination of two parent MAbs of identical specificities.
Although we observed improved avidity of the tetravalent Ig-
DART for the isolated recombinant DENV E protein, this did not
translate into greater inhibitory activity in vitro and in vivo, possi-

TABLE 3 Neutralizing activity of E60 and Ig-DART against DENV-4 at different times and temperaturesa

DENV-4 strain
(genotype)

EC50, ng/ml (CI)

37°C, 1 h 37°C, 3 h 40°C, 1 h

E60 Ig-DART E60 Ig-DART E60 Ig-DART

1036 (2) 2,773 (1,683–4,570) 1,790 (1,257–2,550) 624 (430–904) 349 (262–464) 39 (29–52) 54 (43–68)
TVP-376 (2) 1,186 (858–1,641) 721 (473–1,098) 89 (77–103) 74 (65–85) 21 (15–30) 30 (18–47)
TVP-986 (2) 908 (567–1,454) 1,045 (643–1,699) 58 (42–81) 39 (31–48) 11 (8–17) 106 (46–243)
p75-514 (sylvatic) 261 (156–438) 147 (99–220) 47 (32–69) 33 (21–51) 38 (18–80) 40 (28–58)
a E60 and Ig-DART neutralization assays were performed after preincubation at the indicated temperatures and times. EC50 values were determined by FRNT on Vero cells.
Increasing concentrations of MAbs or Ig-DART (maximum of 5,000 ng/ml) were mixed with 100 focus-forming units (FFU) of the indicated DENV-4 strains for either 1 or 3 h at
37°C or 1 h at 40°C. The data were derived from three independent experiments performed in triplicate. The EC50 was calculated by nonlinear regression analysis and is expressed
as ng/ml of antibody. Confidence intervals (CIs) for each value are listed in parentheses.

FIG 3 Therapeutic efficacy of MAb and Ig-DART against DENV-2 in an ADE disease model. The ADE model of DENV-2 infection with polyclonal mouse serum
containing heterologous DENV-1-enhancing antibodies was performed as described previously (17). (A) AG129 mice were passively administered 12.5 
l of
anti-DENV-1 polyclonal sera via the intraperitoneal route, and 24 h later, mice were infected with 2 � 105 PFU of DENV-2 strain D2S10 via an intravenous route.
Forty-eight hours after infection, mice were treated with equimolar amounts of individual MAbs (20 
g, n � 6 to 10), combinations of MAbs (10 
g plus 10 
g,
n � 6), or a single Ig-DART (25 
g, n � 8), and mortality was monitored. All MAbs and Ig-DARTs contained the N297Q mutation, which prevents ADE in vivo.
The control is an Ig-DART specific for two poxvirus envelope proteins (Johnson, unpublished). Kaplan-Meier survival curves for all experiments are shown. The
results reflect at least two independent experiments for each group, and the Ig-DART control was performed in every experiment. (B) Viral titers in the serum
were evaluated 36 h after treatment by a focus-forming assay (31) after passive transfer of single Ig-DART control (25 
g, n � 7), Ig-DART (25 
g, n � 7), or
combinations of MAbs (10 
g plus 10 
g, n � 7) using an experimental protocol identical to that for the experiment shown in panel A. The results are pooled
from three independent experiments. (C) Dose-limiting studies with a combination of 4E11 plus E60 (5 
g plus 5 
g, n � 3, or 2.5 
g plus 2.5 
g, n � 6) or
Ig-DART (12.5 
g, n � 3, or 6.25 
g, n � 7) were performed at 48 h after infection. Kaplan-Meier survival curves for all experiments are shown. The results reflect
one experiment for the intermediate dose of 4E11 plus E60 (5 
g each) and Ig-DART (12.5 
g) and two independent experiments for each group at the lowest
dose. Protection by individual antibodies (4E11 or E60) has been established previously (18). The Ig-DART control was performed in every experiment. Asterisks
indicate differences that are statistically significant by the log rank (A and C) or Mann-Whitney (B) test (*, P � 0.05; **, P � 0.001; ***, P � 0.0001). All mouse
studies were approved and performed according to the guidelines of the Washington University School of Medicine and the University of California, Berkeley,
Animal Safety Committees.
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bly because the quasi-icosahedral structure of the DENV virion
(30) precludes binding geometries necessary for simultaneous
recognition of adjacent epitopes. Nonetheless, the Ig-DART has
advantages over traditional MAb combination therapy; as a single
manufactured and purified product, it will have reduced cost of
goods and regulatory requirements. In comparison, an antibody
cocktail requires independent manufacturing and approval processes
for each component antibody as well as the combinations. Future
studies are planned to define the optimal pair of cross-reactive anti-
bodies to engineer into the Ig-DART against DENV, ideally with ad-
ditive or synergistic interactions; to expand testing to other DENV
serotypes in vivo as models become available; and to test the platform
with other viruses in which the rapid emergence of resistance with
antibody monotherapy would be anticipated.
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