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Abstract
The emergence of high-throughput technologies for measuring biological systems has introduced problems for data
interpretation that must be addressed for proper inference. First, analysis techniques need to be matched to the
biological system, reflecting in their mathematical structure the underlying behavior being studied. When this is
not done, mathematical techniques will generate answers, but the values and reliability estimates may not accurately
reflect the biology. Second, analysis approaches must address the vast excess in variables measured (e.g. transcript
levels of genes) over the number of samples (e.g. tumors, time points), known as the ‘large-p, small-n’ problem.
In large-p, small-n paradigms, standard statistical techniques generally fail, and computational learning algorithms
are prone to overfit the data. Here we review the emergence of techniques that match mathematical structure to
the biology, the use of integrated data and prior knowledge to guide statistical analysis, and the recent emergence
of analysis approaches utilizing simple biological models. We show that novel biological insights have been gained
using these techniques.
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INTRODUCTION
In the 1980s, sequencing technology advanced

rapidly leading to the creation of GenBank [1] and

the need for data analysis tools that permitted

researchers to compare large numbers of sequences

[2]. Until quite recently, sequence data has been

gathered with low error rates on stable genomes,

which simplifies analysis. The advent of microarrays

in biological research [3, 4] resulted in a new

dynamic type of data, where error levels were ini-

tially quite high and remain in the 5 – 10% range,

perhaps reflecting not technical variation but inher-

ent ‘biological’ noise. In fact, such biological noise

has now been shown to have significant phenotypic

consequences and to be an aspect driving some bio-

logical behaviors, such as cell death [5]. Dynamic

data with high error rates raised new issues for anal-

ysis, and we are only beginning to fully address the

difficulties of such analyses.

In addition, with the emergence of SNPchips,

microarrays focused on measurement of single

nucleotide polymorphisms (SNPs), statistical geneti-

cists raised a new issue that had been ignored by most

researchers focused on expression microarrays—the

problem of high dimensionality [6]. In essence the

problem is that standard statistical techniques, when

limited to relatively small numbers of samples,

lack power in the face of thousands or millions of

variables of potential interest. Genetic interactions,

where one SNP or allele influences the effect on

phenotype of another, lead to a further combinator-

ial explosion, essentially eliminating any hope of

making meaningful statistical statements on genetic

interactions from the data alone, even if millions of

individuals were to be included in a study.

Presently, high-throughput data is routinely

generated for genome sequences (next generation

sequencing), polymorphisms (SNPchips), transcripts

(expression microarrays), miRNAs (microRNA

arrays), proteins (mass spectrometry and protein

microarrays) and metabolites (mass spectrometry

and NMR). Genome-wide association studies
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(GWAS) have now identified �50 disease suscep-

tibility loci [7], and extremely large studies with

multiple institutional collaborators and diverse popu-

lations are being undertaken [8]. For proteomics,

the overwhelming complexity of the proteome

coupled to the dominance of a small set of high

abundance proteins in terms of total protein mass

creates unique problems for analysis. Early work

focused on 2D gel separation, which limited data

volume, however gel-free separation techniques

were developed leading to greatly increased

throughput [9]. In addition, antibody arrays, where

protein- and phosphoprotein-specific antibodies are

spotted onto a substrate have been developed [10],

permitting studies similar to expression microarrays

though more limited in coverage. With the devel-

opment of mass spectrometric methods [11], meta-

bolomic studies have become more common as well.

For all of these technologies, experiments involving

integration with other molecular data types have

been performed and are discussed below.

One path forward for the analysis of integrated

data was identified early in the development of statis-

tics by Bayes [12] and rediscovered and extended by

Laplace [13]. The standard Bayesian paradigm relies

on knowledge that is independent of but related to

the data to guide the potential inferences to those

that are most probable. This is summarized in Bayes’

equation,

p MjDð Þ ¼
p DjMð Þp Mð Þ

p Dð Þ
,

where the left-hand side is known as the posterior

distribution and represents the goal of the analysis,

the probability that the model (M) is correct given

the data (D). The right-hand side includes the prob-

ability that the data arises from the model (the like-

lihood), the probability of the model itself (the

prior), and the probability of the data itself (the evi-

dence or marginal likelihood of the data). The prior,

p Mð Þ, is the source of additional information that can

guide Bayesian statistical techniques to focus only or

primarily on model distributions that agree with

existing biological knowledge. The data and model

may in fact be complex, comprising multiple inter-

dependent models and integrated data sets, which

results in a more complex form of Bayes’ equation.

However, the modification of the posterior pro-

bability distribution by the prior remains the key

feature of any Bayesian approach. It is worth

noting that all data analysis makes assumptions

about the underlying model to be fit, such as linear

relationships in linear regression or mathematical

models of planetary motion in Newtonian or

Einsteinian mechanics. Bayesian methods specifically

modify these models by including prior information

on the distribution of the parameters in the form

of the prior.

MICROARRAYANALYSIS:
WHERE IT BEGAN
With microarrays biologists suddenly had data sets

comprising thousands of simultaneous measurements

of transcript levels. Early analysis methods, beyond

simple statistical tests between classes, were borrowed

from other fields, such as hierarchical clustering from

phylogenetics [14]. These methods, which were pri-

marily clustering approaches, introduced the concept

of ‘guilt by association’ (GBA), where similar expres-

sion profiles were taken to indicate similar function.

There has been ongoing debate about the validity of

GBA. One reason for differences in interpretation of

the validity probably lies in the thresholds applied

in different applications. In receiver operating char-

acteristic (ROC) analysis [15], clustering tends to

deviate from the expectation of random classification

only at high specificity (for example, see the results

for three clustering metrics compared to a gold stan-

dard in ref. [16]). This portion of the ROC curve

can be considered to contain the ‘low hanging fruit’,

where the genes showing the highest similarity across

all samples group together. This suggests that GBA

may work well for estimating gene-gene relation-

ships, such as shared gene ontology terms, when

expression profiles are highly similar, but that it

could fail as expression profiles become only mod-

erately similar (i.e. at the edges of clusters). One way

dissimilarity can arise between expression profiles of

genes sharing a function is for one of the genes to be

involved in a second biological function activated in

a different subset of samples.

The earliest methods to address biological knowl-

edge during analysis focused on two main issues that

clustering ignored—multiple-regulation of genes

due to gene reuse in different biological processes

and non-orthogonality of biological process activity

arising from the natural simultaneity of biological

behaviors. We modified our Bayesian Decomposi-

tion (BD) algorithm, a Markov chain Monte Carlo

algorithm for medical spectroscopic imaging [17], to

address these two issues in microarray studies [18].
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Kim and Tudor, and Brunet and colleagues indepen-

dently extended non-negative matrix factorization

(NMF), introduced by Lee and Seung for image

analysis [19], to microarray analysis [20,21]. Subse-

quently it was realized that sparseness is critical to

the capture of patterns strongly tied to biological

processes in such matrix factorization methods, and

Gao and Church provided a sparse NMF method

[22]. Fortuitously, sparseness was already a feature

of BD through its atomic prior [23], as its initial

use was in spectroscopy where peaks tend to be iso-

lated features on a noisy background. More recently,

Carvalho and colleagues introduced Bayesian Factor

Regression Modeling (BFRM), an additional

Markov chain Monte Carlo method for microarray

data analysis [24]. While BD identifies patterns that

provide a non-orthogonal basis for the data, BFRM

first isolates the mean behavior of a gene and then

performs an analysis that focuses on differences in

transcript levels between samples. BD is therefore

useful for systems modeling where projection

onto biological functions is desired, while BFRM

provides discrimination between samples in terms

of gene signatures, as is desired in biomarker

discovery [25].

While these methods address some of the under-

lying issues in the initial approaches to the analysis of

high-throughput data, they cannot alone overcome

the curse of dimensionality. It is conceivable and

perhaps likely that distinct distributions of genes

into patterns, especially as the patterns cannot gen-

erally be known a priori, can reproduce the measured

data. An example is shown in Figure 1, where a small

set of genes show cell cycle related behaviors,

and two different sets of patterns are shown

(Figure 1B and C), both of which can equally well

explain all the observed behavior. In this case,

we have purposely included no genes that appear

upregulated only in G1 phase, so that the difference

between the two sets of patterns is that one has a

pattern related only to G1 and the other a pattern

showing G1 and G2 simultaneously. Mathematically,

there is no way to choose between these two sets of

patterns, as each fit the data equally well and are

parsimonious. However, biologically we prefer G1

and G2 to be separate phases of the cell cycle, and

such a preference can be encoded in an algorithm as

a prior, reducing the probability of the solution

shown in Figure 1C. While this is an artificial and

highly simplified construct, it shows, at its most basic,

the idea of allowing biological knowledge to guide

analysis.

INTEGRATEDDATA
Prior knowledge requires information from outside

the measured data, and this can come in two forms.

The first is knowledge gained in previous experi-

ments and codified in the literature or databases.

The second is data from different domains [e.g.

transcription factor (TF) binding from chromatin

immunoprecipitation on microarray (ChIP-chip)

experiments] that can be used to provide prior prob-

abilities for analysis (e.g. the probability that a gene is

transcribed depends on the transcript levels of other

genes with the same TF binding site).

However, it is also often useful to simply integrate

all data into a single data set for analysis. Daemen and

colleagues demonstrated that integrating global

microarray and targeted proteomics data together

Figure 1: An example of two mathematical solutions to matrix factorization. The 100 genes show regulation in
each of the four cell cycle phases (A). The logical set of patterns to explain the data show upregulation in each
cycle (B). However, in this artificial example, G2 is always coexpressed with G1, permitting another equally valid
mathematical solution (C). Prior knowledge can be used to inform an algorithm to prefer B over C.
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provided a more accurate signature for the response

to cetuximab in rectal cancer patients [26], even

though the proteins measured were not even

mapped to their corresponding genes but instead

served as independent data points. An approach

that links a gene to its encoded protein was intro-

duced by Wabnik and colleagues, who applied

rough sets to integrated data [27]. They integrated

gene ontology data, protein feature data derived

from amino acid sequence, and transcript data in a

supervised learning approach to generate rules that

predicted gene ontology annotations for proteins

of unknown function. English and Butte brought

together 49 obesity related data sets comprising

microarray, genetics, proteomics and knock-down

experiments in human, mouse, rat and worm,

which required linking of molecular types across

different species [28]. This improved discovery of

obesity related genes, as confirmed by ROC analysis

of gold-standard genes.

Kim and colleagues integrated array-CGH

(aCGH) and expression data in a study of prostate

cancer progression [29]. Here copy number altera-

tions in sets of patients were compared to expression

changes in the genes related to the identified aCGH

regions to rank genes related to progression.

Essentially this method looked for overlap in lists

of genes generated from analyses of different types

of data. Use of overlap in lists of genes can be done

using ChIP-chip data as well. Yu and colleagues

focused on the key oncogenic transcription factor

EZH2 in a study of prostate cancer [30]. This

study integrated transcript data from a focused cell

line study of EZH2 disregulation, Oncomine tumor

signatures, and PRC2 (polycomb repressor complex

containing EZH2) ChIP-chip data to identify candi-

date genes directly regulated by EZH2.

While studies like these are powerful, we expect

that statistical techniques that go beyond mere over-

lap of gene lists will increase power. In some ways,

the overlapping gene list approach is similar to GBA

in that the genes with the strongest signatures will be

found; here those signatures are coordinated changes

in different data domains (e.g. TF binding and

expression) rather than similarity of expression

profile. As we remain in the early days of systems

biology, such ‘low-powered’ approaches are likely to

continue to yield important discoveries, however,

reanalysis of the data with more statistical and

model-oriented approaches may provide further

insights. Carey and Gentleman introduced an

R/Bioconductor framework that integrates genomic

and transcriptomic data, and extensions should

permit application of the plethora of R tools to inte-

grated data [31]. Naturally, this structure permits

integrated data to be used as prior information

as well.

PRIOR KNOWLEDGE IN
MICROARRAYANALYSIS
Not surprisingly, microarray analysis, as the oldest

high-throughput technology in biology, has seen

the most activity in the use of prior information to

guide analysis. Part of the drive for the use of prior

information arose from attempts to reconstruct

genetic networks, or transcriptional regulatory net-

works (TRNs), from time series microarray data.

An early success using a Bayesian Network (BN) in

yeast [32] generated excitement in the field, but the

approach did not succeed in more complex organ-

isms. It was realized that for TRNs additional infor-

mation from TF binding could reduce the number of

genes that potentially were responding directly to the

expression of a TF, and in a seminal paper, Lee and

colleagues reproduced the regulatory network of

S. cerevisiae during the cell cycle using ChiP-chip

and expression arrays [33].

Ucar and colleagues extended this approach to

include nucleosome occupancy measurements in

order to refine the TF binding prediction to include

the concept of functional binding, where the TF is

not only bound but is active, which correlates with

nucleosome occupancy [34]. The FANTOM and

Riken consortiums used a different approach to

address the issue of active TFs in regulatory networks

[35]. Using deepCAGE sequencing of mRNA tran-

scripts coupled to TF binding site motifs from the

JASPAR [36] and TRANSFAC [37] databases, they

created a time series prediction of active TF binding

sites. These were then used to interpret expression

data and reproduce a TRN in time series data.

Alternatively, curated data on validated regulation

of genes by TFs in TRANSFAC can be used as

prior knowledge to enhance the statistical power of

Bayesian methods, as done by Kossenkov and col-

leagues with BD [38]. A similar approach based on

experiments that modify receptor signaling has been

used to generate summaries of transcript changes

downstream from these receptors [39].

Recently, BNs, which relate all gene pairs in

a graphical structure with an edge defining
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a probability of relationship, have returned to pop-

ularity. Djebbari and Quackenbush used literature

review and protein–protein interaction (PPI) data

to seed a BN with probabilities of gene–gene expres-

sion relationships [40]. This seeded BN served as a

prior structure that was then modified based on the

expression data, improving recovery of true gene–

gene interactions. In this work, the BN could

encode phenomenological relationships in addition

to direct interactions, which is discussed in detail

in the section on pathway-focused analysis below.

Ulitsky and Shamir used a similar approach in their

algorithm, CEZANNE, where they seeded a graphi-

cal model of gene-gene interactions from PPI data

[41]. The analysis then proceeded from the expres-

sion data and improved recovery of functional

modules.

Mani and colleagues took a different approach

to the use of prior information from network

or graphical relationships in their study of B cell

lymphomas [42]. Beginning with the curated B cell

interactome database, which provides a network of

probable interactions, they looked for changes in

mutual information between genes in terms of

lymphoma subtypes. They referred to these as gain

of correlation (GoC) and loss of correlation (LoC)

relationships, and they showed that these are

related to gain or loss of regulatory behaviors

that distinguish the different types of cancerous B

cells.

An interesting recent paper reversed the typical

information flow and used microarray data as prior

information for identification of proteins from

shotgun proteomics [43]. Ramakrishnan and collea-

gues identified proteins likely to be present in a

sample based on mRNA levels under similar exper-

imental conditions and used this information to

improve their ability to identify proteins from

MS/MS peaks.

Alternatively, one can set up a two-way informa-

tion flow between transcript and protein levels

during clustering. Rogers and colleagues used

coupled clustering, where the data itself was used

to adjust the strength of the coupling between tran-

script level and protein level driving the clustering

[44]. This approach led to recovery of clusters of

proteins and transcripts that were linked functionally.

Interestingly, the relationship between transcript and

protein clusters was rarely one-to-one, suggesting

that strong functional coupling between biological

processes is typical.

GENOME-WIDE ASSOCIATION
STUDIES
As noted in the Introduction section, statistical

geneticists were among the first to raise the alarm

over the inability of standard analytical methods to

address the large number of variables in high-

throughput studies. One of the primary platforms

leading to this concern was the SNPchip, capable

of measuring hundreds of thousands to millions of

genetic variants, which simply overwhelms the abil-

ity of traditional statistical tests to obtain significance

in any potential study sample size. Not surprisingly,

therefore, knowledge-based analysis methods are

beginning to appear to address the problem of iden-

tifying SNPs that will have an impact on disease or

treatment response.

One approach is to focus on the effects of SNPs

on gene expression. Huang and colleagues in two

studies identified SNPs associated with growth inhi-

bition by chemotherapeutic agents in cell lines

[45,46]. These SNPs were then linked to gene

expression changes in the HapMap cell lines, and

a statistical model identified SNPs associated with

gene expression changes that correlated with che-

motherapeutic response. This effectively nominated

candidate SNPs to explain differences in sensitivity to

chemotherapy through integration of expression and

genotype data.

Protein structure and promoter structure provide

additional points of leverage for prior knowledge in

a SNP-based study. While it is now clear that non-

coding and non-regulatory regions of the genome

have impacts on disease in ways not fully understood,

it seems reasonable that a SNP that changes an amino

acid or disrupts of TF binding site may be more

likely to impact disease. Lee and Shatkay determined

SNP location in terms of exons, splice sites, TF

binding sites, microRNAs and amino acids that

have post-translational modification sites to score

the likely SNP effect [47]. Carter and colleagues

focused on differentiating driver mutations from

passenger mutations within missense mutations

occurring in cancer [48]. This work, based on

random forest classification trained on known

driver and passenger mutations, showed excellent

area under the ROC curve (AUC ¼ 0.91) and pre-

dicted 8% of mutations identified in a recent

glioblastoma study are driver mutations [49]. Other

drivers of protein function are protein interaction

domains. Chen and Jeong created a random forest

classifier based on protein physicochemical features,
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amino acid composition, and amino acid substitution

rates to predict protein interaction sites [50].

To date, these protein-focused methods have

been used to study SNPs that have been ranked in

statistical tests. Now that these methods exist, the

logical next step will be to apply them during statis-

tical analysis, allowing them to create prior distribu-

tions based on the probability that a mutation may

be deleterious. Methods for utilizing such prior

knowledge have been created for expression-QTL

(eQTL), where microarray data and genotype data

are integrated to improve QTL studies. For instance,

Degnan and colleagues recently demonstrated the

use of microarray data as a phenotypic measure

to focus on SNPs that might drive expression

changes [51].

THE EMERGENCEOF PATHWAY-
FOCUSEDANALYSIS
Throughout the last decade there has been a growing

realization that it may be more useful to focus on

pathways rather than on individual genes. This has

been strongly validated recently for signaling path-

ways in glioblastoma multiforme [49], where the

PI3K, RAS and P53 pathways are almost always

modified, but in each individual tumor different

genes in these pathways can be affected. This was

further validated in a larger data set by the Cancer

Genome Atlas Research Network [52]. These studies

followed earlier work showing that there were lim-

ited numbers of driver mutations in breast and color-

ectal cancer, but that the driver mutations shared

functional assignments [53]. This pathway-centric

view of disease provides an impetus for the develop-

ment of integrated analysis methods to discover drug

targets [54].

In biological studies, the term ‘pathway’ is not

highly specific. It can describe a specific set of met-

abolic reactions, the enzymes (i.e. proteins) involved,

and the small molecules generated. This ‘metabolic’

pathway is a well-defined set of molecular entities

and each molecular modification and component is

believed to be included in the pathway description.

Alternatively, ‘pathway’ can refer to a set of protein–

protein interactions that lead to conformational

changes in proteins and transduce a signal through

the cell, known as a ‘signaling’ pathway, where

some steps and components remain unknown.

However, ‘pathway’ often describes a series of

changes, in which many intermediate events remain

unknown, such as in TRNs where many cellular

reactions may be ignored, or genetic pathways in

which ‘downstream’ and ‘upstream’ are defined by

epistasis in deletion experiments. Genetic networks

can involve multiple types of molecular networks,

including signaling and transcriptional, as both types

of pathways can lead to changes in phenotypes.

Data analysis has utilized these different pathway

definitions to link data together. Both the connec-

tivity map [55] and molecular concepts analysis [56]

treated pathways as conceptual links that integrated

gene expression signatures with other data types. The

connectivity map identified correlations between

changes in gene expression and small molecules,

then related these to possible disease states, linking

targets of small molecules to disease. Molecular con-

cepts analysis added pathways and gene ontology

functions and generated networks linking genes,

drugs, pathways, transcription factor binding sites

and expression changes.

Since many of our insights into biological path-

ways come from model organisms, it is not surprising

that we have detailed phylogenetic and orthological

information for human pathways in organisms from

yeast to mouse. Liu and colleagues leveraged this

orthology by comparing mouse lung development

at 10 stages to human lung cancer staging [57].

Using principal component analysis, they identified

signatures in the mouse transcript data and through

the use of orthologs were able to project human

tumor transcript data onto these. The results pre-

dicted outcome, suggesting lung cancer develop-

ment mirrored certain aspects of natural lung

development. Alexeyenko and Sonnhammer fully

exploited the use of orthologs and data integration

in FunCoup [58], a Bayesian framework that inte-

grates microarray, miRNA target prediction, local-

ization, protein–protein interactions (PPI), protein

expression, phylogenetic profiling, TF binding site

and protein domain data from plant through

human. A Naı̈ve Bayes Network (NBN) trained

on known interactions is used to predict novel net-

works. By holding out data on one organism, they

demonstrated its ability to recover known networks

from orthologous data alone.

As noted for microarray analysis, BNs are popular

as they permit probabilistic links between nodes

(in that case, genes). For BNs, the networks are

often conceptual, allowing diverse data to be

linked, with a node representing expression of a

gene connected to a node representing a protein
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by an edge with a defined probability (e.g. a gene’s

expression to an upstream signaling protein that

drives its expression indirectly). As these ‘pathways’

in a BN are abstractions, they do not necessarily

represent direct molecular interactions, although a

BN can be limited to direct molecular interactions

if desired. One very successful use of an NBN was

the creation of a genome-wide functional network

for the mouse, MouseNET, by Guan and colleagues

[59]. This network integrated PPI including homol-

ogous interactions, phenotype and disease data from

MGI and OMIM, phylogenetic profiles, functional

relationship predictions, and tissue specific expression

data. Importantly, because NBNs assume indepen-

dence, Guan and colleagues tested data for such

independence, allowing them to exclude data that

was effectively derivative to avoid skewing statistics.

A number of studies have relied on PPI data,

where the pathway is a representation of direct

molecular interactions, to guide analysis of micro-

array data in human disease. The concept in these

studies is that PPI networks provide a logical point to

increase the probability of coordinated expression

a priori. Unlike the studies in glioblastoma, where

different genes show aberrations within a pathway,

the target here is coordinated changes in genes linked

together through PPI. This could represent the result

of coordinated regulation by biological processes that

have been disregulated, affecting a full pathway, or

feedback where variation in one component leads

to variations in linked molecules. Chuang and col-

leagues identified statistically significant transcript

differences between breast cancer metastatic states

and identified subnetworks in PPI data with coordi-

nated expression changes [60], using permutation

testing for significance estimation. The analysis

recovered a number of key pathways, including the

P53, SMAD4, ERBB2, RAS and MYC pathways.

Liu and colleagues performed a similar analysis in

type 2 diabetes, relying on the number of samples

showing a subnetwork to be coordinately changed

instead of permutation tests for ranking subnetworks

[61]. The analysis recovered insulin signaling and

nuclear receptor networks as consistently differen-

tially expressed as expected.

Heiser and colleagues applied a different approach

for identifying the networks driving disease using

breast cancer cell line data [62]. They established

an initial signaling network model based on prior

pathway knowledge. Initial states involved cell line

status information, such as mutation status in

key proteins. This initial network than evolved

based on the data and sets of rules on binary states,

such as [if kinase HRAS is active, kinase BRAF

is active]. Working from mutation status, copy

number variation, protein levels, and microarray

data, they identified key nodes that were context

dependent, suggesting potential personalized treat-

ment targets.

ANALYSISUSING BIOLOGICAL
MODELS
The last study suggests a transition from prior infor-

mation through linking (e.g. protein isoform to gene

as in PPI subnetworks) to a view of a complex

system. A systems view allows more detailed model-

ing, including relationships such as a protein isoform

being related not only to the gene encoding it but

also to a different protein isoform or a set of genes

through a transcription factor. The relationships are

more definite than in a general BN, as they now

involve both probabilities of interaction but also

definitive rules. Bidaut and colleagues used knowl-

edge of TF factor regulation to interpret results of

BD analysis of the Rosetta compendium of yeast

deletion mutants [63], identifying transcriptional

signatures related to MAPK signaling [64]. Chang

and colleagues utilized a pathway model to identify

core sets of genes showing transcriptional responses

to changes in signaling, enlarged this set with

BFRM, and then identified these signatures in

tumor samples [65].

Enlarging this approach to include metabolite

levels, metabolic pathways, and expression has led

to a substantial novel insight. Sreekumar and collea-

gues utilized prior knowledge on gene expression

and TF binding in prostate cancer to identify a

change in a key metabolite associated with prostate

cancer progression [66]. Sarcosine was one of many

metabolites to show substantial changes in levels

during prostate cancer progression, however it is

produced by the enzyme GNMT, a methyl transfer-

ase with an androgen receptor binding site upstream.

As androgen is known to play an important role in

prostate cancer aggressiveness, this allowed predic-

tion that sarcosine might serve as a marker of aggres-

siveness and potentially even be a driver of such
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aggressiveness, which was validated in cell line

studies. This has led to a follow-up study of sarcosine

as a biomarker for prostate cancer detection.

While limited in scope, this last study shows the

potential of knowledge-based analysis, even when

only a very limited biological model can be created.

While biological systems are so complex that an

overarching theory remains in the distant future,

limited models that encompass adequate complexity

to allow deep insight are now possible due to the vast

gathering of information that began with Mendel

and continues to accelerate. Importantly, biological

systems are highly non-linear with highly intercon-

nected subsystems, which guarantees that non-

mathematical models will fail to capture all reliable

predictions [67]. Integrating the prior knowledge

with appropriate non-linear models should greatly

reduce the risk of overlooking valuable insights

into the processes underlying disease and treatment.

CONCLUSION
The last decade has seen rapid advances in the use

of biological knowledge to guide analysis. At its

simplest, this has been through integration of data

from different molecular domains; for instance

recognizing that a gene encodes a specific protein,

thus allowing data from microarrays and PPI net-

works to be analyzed together. The integration has

become more powerful with increasing numbers

of data types, which now include pathway models,

disease phenotypes, genetic aberrations, protein

structural information, and gene expression data.

The statistical power is greatest when we can formal-

ize our knowledge, as in a Bayesian framework, and

is most predictive when we can create a full mathe-

matical model permitting simulation and hypothesis

generation.

Integration of data for analysis often requires

retrieval of data from a variety of databases and

knowledge-bases. Unfortunately, this is not a trivial

matter in most cases, as the knowledge-bases often

use incompatible standards making automated retrie-

val of information extremely difficult. A number of

efforts aim to improve this through use of controlled

vocabularies and ontologies, including the cancer

biomedical informatics grid (caBIG�) initiative [68]

and the open biological ontologies effort [69]. For

medical data, the situation is somewhat better, with

the unified medical language system well established

[70], although not always incorporated into existing

systems. While critical to the use of knowledge as

prior information for analysis, a review of the issues

and technologies for data retrieval is beyond the

scope of this work.

Two often overlooked issues play a critical role

in knowledge-based analysis—data provenance and

covariance within high-throughput data. Data

provenance is crucial to encoding the probability of

prior knowledge, which relies on knowing when

multiple sources of evidence are independent.

Unfortunately, through data sharing between data-

bases and limited traceability of information, it is

often impossible to verify independence. This affects

our ability to assign prior probabilities. Covariance

within data is equally problematic. Most statistical

techniques assume independence, and as biological

processes naturally lead to correlations in measure-

ments of biological entities, such as transcripts, the

statistics can become highly skewed. These two

problems both lead to the same result—an incorrect

statistical estimate of differences or similarities within

a biological system. One must keep both these issues

in mind when performing analyses using knowledge

from databases or high-throughput data, and, as

was done for MouseNET, performing tests of data

independence can often be useful.

Looking forward, the goal for knowledge-based

analysis should be the creation of a full mathematical

models of biological processes. Looking back, we can

note that one of the greatest achievements of the last

century, our ability to model quantum processes,

led to technologies unthinkable in 1910, including

instantaneous worldwide communications, medical

imaging and laser treatments. It is important to

remember that quantum theory did not emerge

instantly with Newton’s brilliance. Instead, simpler

models were first created and tested against experi-

mental data. The models were refined over hundreds

of years, until deep insights suitable to the develop-

ment of new areas of engineering emerged.

However, none of these developments would have

been possible with a purely phenomenological, non-

mathematical approach to physics. Biology will

require an equivalent evolution in mathematical

methods, from the development of specialized data

analysis techniques to test biological hypotheses to

the creation of models suitable for mathematical

exploration.
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Key Points

� Biological systems are complex, and themathematical structure
of statistical and computational analysis techniques should be
matched to the underlying biological structure.

� High-throughput data platforms generate thousands to millions
of simultaneous measurements while sample sizes remain
limited, leading to the ‘curse of dimensionality’, which limits the
power of statistical and computational learning approaches.

� Leveraging existing biological knowledge from decades of tradi-
tional research and integrating data from different molecular
domains can increase the power of mathematical methods,
if they are designed to exploit this information.

� Bayesian statistics provides a proven and well-developed frame-
work for inclusion of existing knowledge through the use of
prior distributions.

� The greatest insights have arisen from the analysis of data in light
of models of the biological process being studied, even though
thesemodels remain extremely limited.
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