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Abstract
Boundary-element methods (BEM) for solving integral equations numerically have been used in
many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a
more accurate implementation of BEM in the context of ions in aqueous solution near proteins,
but our results are applicable more generally. The ions that modulate protein function are often
within a few Angstroms of the protein, which leads to the significant accumulation of polarization
charge at the protein/solvent interface. Computing the induced charge accurately and quickly
poses a numerical challenge in solving a popular integral equation using BEM. In particular, the
accuracy of simulations can depend strongly on seemingly minor details of how the entries of the
BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into
flat tiles, the qualocation method of Tausch, Wang, and White (IEEE. Trans. Comput.-Aided Des.
20:1398, 2001) to compute the BEM matrix elements is always more accurate than the traditional
centroid collocation method. Qualocation is no more expensive to implement than collocation and
can save significant computional time by reducing the number of boundary elements needed to
discretize the dielectric interfaces.
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1. INTRODUCTION
Protein function almost always depends on the ions in the surrounding solution. In a very
real sense, ionic solutions are the liquid of life. Ions direct the biological function of cells
and tissues by interacting with proteins–acting as messengers that control channel proteins
in cell membranes, binding to proteins in membranes or in the cytoplasm, or directing
enzymes to perform chemical reactions when concentrations of messengers (often Ca2+)
reach threshold levels (see, for instance, [1]). Furthermore, gradients of ion concentrations—
usually Na+—are the energy supply for an enormous range of biological functions. These
dependencies motivate experimental studies of proteins that commonly employ many types
of ions over a wide range of concentrations, in some cases spanning as many as five orders
of magnitude. Theoretical studies of protein function must therefore be capable of rapidly
and accurately simulating proteins in a comparably wide range of ionic solutions.
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The ions that interact with proteins, enzymes, and channels can be within a few Angstroms
of the protein–solvent boundaries where dielectric properties change, so polarization charge
accumulates in significant amounts. The strong electric fields produced by these induced
charges are vital for accurate modeling of channel-protein selectivity [2, 3], and are likely to
be important for protein function in general [4]. Unfortunately, because biological systems
are often controlled by messengers at a concentration of ~ 10−7 M in ~ 55 M water, fully
atomistic simulations (that is, simulations that include explicit water molecules) require at
least 109 atoms to even approximately study these solutions—well beyond the reach of
typical molecular-modeling software, even on supercomputers. For this reason, ionic
solutions are often described using implicit solvent with explicit ions, using what is known
as the primitive model [5]. The primitive model of ionic solutions treats the solvent as a
homogeneous dielectric, with explicit, mobile point charges to model the ions. Such reduced
models of ionic solutions appear to be an important approach for investigating the
dependence of protein function on ionic conditions, and have been applied successfully to a
variety of problems (e.g., [6–8]). Dilute ionic solutions are also commonly studied using
Poisson–Boltzmann (PB) theory [9–22], with reasonable agreement for the energetics
between PB theory and primitive-model Monte-Carlo simulations, for sufficiently low
concentrations of monovalent salts [23–26].

Reduced models of proteins and ions often treat the electrostatic interactions using
macroscopic continuum theory, treating the protein interior as a homogeneous medium with
low dielectric constant, possibly with permanent (i.e., fixed) charges, and the solvent region
as a uniform high-dielectric medium with mobile ions. By solving Poisson’s equation with
spatially varying dielectric constant, one obtains the electrostatic potential throughout space
[27]. A wide range of numerical simulation methodologies, most often the finite-difference
and finite-element methods, have been proposed [9, 16, 28–30] to solve this elliptic partial-
differential equation (PDE).

An alternative viewpoint, the implementation details of which form the primary argument of
this paper, leads to the description of the problem via a boundary-integral equation rather
than a PDE [12, 31, 32]. The ion and protein charges create an electric field, which leads to
the development of an induced polarization charge at the dielectric boundaries. Efficient and
accurate computation of the polarization charge at these boundaries is an essential part of a
theory or simulation of these systems. Levitt introduced one of the first boundary-integral
equations for molecular electrostatics, in an analytical study of dielectric effects in ion-
channel proteins [33]. Jordan and collaborators later made significant advances in applying
this methodology and solving the integral equation, again analytically [34, 35]. These
studies employed particularly simple geometries, however, and generally speaking the
integral equation must be solved numerically. More recent studies of channel proteins have
employed boundary-element methods (BEM) for this purpose [3, 36, 37]. Interestingly, the
same integral equation has a long, apparently independent history in quantum chemistry
(e.g., Miertus et al. [38, 39]) where it is called the polarizable continuum model (PCM) for
ab initio calculations (see, for example, [40]). Shaw also derived this integral equation for
studying proteins [32], and Shaw and Zauhar established much of the early boundary-
element literature for simulating protein electrostatics [41–44].

Unfortunately, BEM are generally more challenging to implement than their PDE-
simulation counterparts such as the finite-difference and finite-element methods [9, 16, 17,
28]. Three challenges are quite well known [22]. First, the solute–solvent boundaries can be
extremely complicated if one uses an atomistically detailed boundary representation [45].
Second, it can be challenging to calculate the diagonal and near-diagonal entries of the BEM
matrix because these entries require the evaluation of singular or near-singular integrals (that
is, integrals whose value is well defined even though the integrand goes to infinity
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somewhere in the domain of integration, or in the near singular case that the integrand is
very sharply peaked). Third, it can be time and memory intensive to form the dense BEM
matrix, and even more time intensive to calculate its LU factorization. Fast methods for
BEM simulations, which employ matrix-sparsification techniques such as the fast-multipole
method [46, 47], alleviate this situation for many, but not all, investigations of proteins in
ionic solution [3, 26].

In the present paper, we consider a different challenge for BEM implementation. The
accuracy of simulations can depend very strongly on the details of how the entries of the
BEM matrix are calculated. As we demonstrate, the details of the matrix-entry computation,
which can seem relatively unimportant compared to the well-known challenges already
mentioned, can significantly degrade accuracy even when one uses more and more
expensive computational methods (i.e., higher-resolution simulations). Fortunately, the
challenge appears to have been largely resolved by the work of Tausch, Wang, and White
[48], who presented an alternative discretization, called qualocation, for the integral
formulation known as the apparent-surface-charge (ASC) method [32], which is also called
the induced-charge computation (ICC) [3]. Their study originated in an effort to develop a
purely second-kind integral-equation method for estimating parasitic capacitances between
conductors embedded in a homogeneous dielectric. Greengard and Lee have also analyzed
this integral-equation formulation [49]. The qualocation approach to discretization is equally
useful for the ICC in addressing the mixed-dielectric Poisson problem in protein
electrostatics [50, 51].

However, whereas the earlier work focused on the effect on the energetics due to permanent
charge in the protein, in the present paper we focus our attention on mobile ions in solution,
and the effect that discretization has on the energetics of these mobile ions. Our study is
directed in particular towards application of enormous biological importance [52, 53]—ions
in channels—and present two methods to solve the ICC integral-equation. Although both
methods, called collocation and qualocation, use comparably simple numerical integration
schemes, the qualocation approach introduced by Tausch et al. [48] is much better suited for
the ICC equation (Equation (1) below), offering reductions in computational time because
the dielectric boundary can be discretized using fewer elements. Our results suggest that the
qualocation approach is even more valuable for mobile charges in the high-dielectric solvent
than it is for permanent charges situated in low-dielectric regions.

The following section presents our mathematical model for continuum electrostatics, and
boundary-element methods as a means to numerically solve integral equation formulations
of the mathematical model. Section 3 illustrates the importance of using careful
discretization approaches, using the analytically solvable case of a charge in a dielectric
sphere, embedded in a homogeneous medium with a different dielectric constant. Section 4
summarizes the paper, discusses the implications of the numerical results, and highlights
areas for future work.

2. THEORY
2.1. Continuum Electrostatic Model

We describe the interior of a protein molecule as a dielectric with uniform low permittivity
ε1 and the exterior solvent region as a dielectric with uniform high permittivity ε2. The
boundary β separating these two regions is impenetrable to ions or water. At β both the
electrostatic potential and the normal flux are continuous. The system contains only a set of
discrete point charges with values independent of the electric field, the ith of which has
value qi and is located at ri; we refer to such charges as fixed charges. There are no
continuous densities of charge that exist independent of the electric field, and the only
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charge that depends on the electric field is the polarization charge induced on the boundary
β. This mixed-dielectric problem can be transformed into a boundary-integral equation that
is known variously as the induced-charge computation (ICC) method, the apparent-surface-
charge (ASC) formulation, and the polarizable-continuum model (PCM) [3, 32, 33, 38, 54,
55]. We call it the ICC method and write the electrostatic integral equation as

(1)

where s is a point on β, h(s) is the induced charge at the dielectric boundary, ε(rk) is the
dielectric constant at the point rk, n(s) denotes the outward normal (that is, pointing outward
from the protein into the interior of the pore) at s,

(2)

and

(3)

with

(4)

for sufficiently small δ. The integrals in Equation (1) are taken to be the Cauchy principal
value integrals [50, 54]. Having solved for the distribution of induced charge on the
boundary, the electrostatic reaction potential induced at a point r0 by the surface charge
density on the boundary β is

(5)

2.2. Boundary-Element Methods
The boundary-element method is a numerical technique for finding approximate solutions to
boundary integral equations such as Equation (1). Introductions to boundary-element
methods may be found in several texts on integral equations [31, 56, 57] as well as in the
literature [58]. One can define a representation of the unknown induced surface charge h(s)
as a weighted sum of basis functions defined on the boundary β, or on an approximation to
the boundary, β̂. For general surfaces, it is typically easiest to define a surface
approximation and then use basis functions that are easily defined on the approximate
surface. Here, we approximate the surface β as a set of N planar triangles β1, β2, … βN and
define piecewise-constant basis functions χ1(s), …, χN (s) such that χi(s) = 1 if s is on βi
and 0 otherwise. The approximate solution ĥ(s) is then represented as the weighted
combination
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(6)

where the weights hi are yet to be determined.

Boundary-element methods ensure that the chosen approximate solution is, in some sense,
as close as possible to the exact solution by forcing the residual

(7)

to satisfy a set of N linear constraints, giving a matrix equation Ah = b in which the matrix
A is square with dimension N. In Equation (7), f(s) is the right-hand side of Equation (1), the
identity operator is denoted by , ε̂(s) = Δε(s)/ε̄(s), and the normal electric-field operator is
denoted by . The entries of the BEM matrix A and the right-hand side vector b are defined
in part by the kinds of constraints imposed to form the matrix equation.

Galerkin boundary-element methods force the residual to be orthogonal to the basis
functions. Thus, for piecewise constant basis functions, the N Galerkin conditions are
defined by

(8)

where βi denotes the ith panel, and substituting the residual definition from Eq. (7) into Eq.
(8), we have, for each boundary element i,

(9)

Because χj(s) = 0 if s ∈ βj, j ≠ i, we can expand the first term and write

(10)

Expanding the integral operator (s; s′) gives

(11)

The BEM matrix entries thus take the form

(12)

where δij is the Kronecker delta function. The right-hand side entries are defined by
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(13)

2.3. The Centroid-Collocation Discretization
Analytical expressions for the double integrals in Equation (12) exist only for very
specialized geometries [59]. Thus, the matrix entries in a Galerkin method must generally be
calculated numerically, and are expensive to compute. However, the centroid-collocation
discretization is much faster, and in many cases is accurate enough. In centroid collocation,
one forces the residual to be zero at the boundary-element centroids—in other words,
Equation (7) is forced to be exactly satisfied at those points [31]. The collocation approach
is therefore suitable when the residual varies slowly over each boundary element. The right-
hand side vector b in the collocation discretization of the ICC has entries

(14)

and the matrix A has entries

(15)

If one-point quadrature is used to approximate the integrals over βi in Equations (12) and
(13), one obtains a row-scaled version of the centroid-collocation linear system. This can be
seen by comparing the matrix entries in Equations (12) and (15) and the right-hand-side
entries in Equations (13) and (14); the row-scaling factors are the boundary-element areas
defined by

(16)

Thus, Galerkin boundary-element methods reduce to the centroid collocation method when
one uses one-point quadrature to approximate the integrals over βi. In the simplest view,
therefore, centroid collocation is a one-point approximation to the Galerkin method.

2.4. The Qualocation Discretization
The collocation and Galerkin approaches are not without their drawbacks. The Galerkin
method requires a great deal of numerical integration and is therefore usually much slower;
on the other hand, the relatively inexpensive centroid-collocation approach can be inaccurate
when the residual varies quickly over the boundary elements. Tausch et al. noted this
inaccuracy for the ICC formulation, and suggested an alternate approach called qualocation
that retains the speed advantages of the collocation approach and the accuracy of Galerkin
methods [48].

In qualocation, one reverses the order of the double integrals in Equation (12) to obtain
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(17)

so that the new outer integral can approximated using one-point quadrature as

(18)

The new BEM matrix equation is Bh = d, where

(19)

and

(20)

3. TESTING THE COLLOCATION AND QUALOCATION METHODS
We simulate the analytically solvable problem of a single charge situated in a spherical
dielectric [3, 60] (Figure 1). The sphere, which is centered at the origin, has radius 5 Å and
dielectric constant ε1. A single discrete +1e point charge is located inside the sphere at x =
0, y = 0, z = 4Å. The dielectric constant outside the sphere is ε2 ≪ ε1. Although this
situation seems reversed from the conditions described in Section 2.1, it serves as a
prototype for an ion inside a confined space, such as inside the pore of a channel protein. For
simplicity, we assume that the low-dielectric region extends to infinity [3].

We represent the spherical surface of the high dielectric body approximately using planar
triangle boundary elements and take the dielectric constants to be ε1 = 80 and ε2 = 2. The
analytical reaction potential [60] along the z axis is plotted in Figure 2(a). Also plotted are
reaction potentials calculated numerically, using the collocation and qualocation
discretizations of the ICC integral equation. As more boundary elements are used, both types
of discretizations approach the analytical solution. For any given number of boundary
elements, the qualocation discretization produces much more accurate electrostatic
potentials than does the collocation approach. Similarly, for a desired accuracy, many more
panels are required if one employs the collocation discretization instead of qualocation. For
simulations reported in this paper, discretizations were generated using the widely used
program MSMS [61], which can generate the solvent-excluded surface [62], although other
definitions have been proposed recently (see, for example, Ref. 63).

In Figure 2(b) are plotted the errors (in kcal/mol/e) between the computed reaction potentials
and the analytical solution. Note that the vertical axes in Figure 2(b) are logarithmic,
whereas those in Figure 2(a) are linear. The data in Figure 2(b) allow an approximate
comparison to the recent MIBPB (Matched-Interface-and-Boundary for Poisson–
Boltzmann) method introduced by Wei and collaborators [20, 64–66], a finite-difference
method that employs a sophisticated approach to mitigate grid-based inaccuracies. Geng et
al. have reported calculations for a single +1 e charge inside a low-dielectric sphere of radius
2 Å, embedded in a high dielectric medium. If the charge is situated 1 Å from the surface of
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the sphere, the MIBPB method produces surface potentials accurate to approximately 1.5E-2
kcal/mol/e. In the problem reported here (with a 5-Å sphere and the ratios of the dielectric
constants reversed), the collocation methods in the present problem are accurate to
approximately 5E-2 kcal/mol/e, and the qualocation methods are in error about 2E-3 kcal/
mol/e, or an order of magnitude better in accuracy. Note that the BEM error metrics are
taken where the z axis intersects the sphere, whereas the reported MIBPB errors are the
maximum error in surface potential over the whole dielectric boundary; however, the
symmetry about the z axis suggests that the maximum error in the surface potential should
be located where the axis intersects the sphere. These details suggest that the MIBPB and
the BEM methods thus provide comparable accuracy for these discretizations. However, a
much more detailed comparison of the MIBPB and qualocation BEM methods is outside the
scope of the present work, and a subject of ongoing research.

3.1. Different Dielectric Ratios
It is well-known that the ICC integral equation becomes increasingly ill-conditioned as the
ratio ε1/ε2 becomes large. In this limit, the interior dielectric becomes a conductor, and the
problem represents a naïve second-kind formulation of the capacitance problem [56]. As the
dielectric ratio goes to infinity, the integral equation is actually singular; that is, in this case
no solution exists in general, and if a solution does exist, then there exist infinitely many
solutions [31, 67]. The large ratio case (ε1 > ε2 ≫ 1) describes many biological problems
involving the movement of ions in solution. Most of biology occurs in salt solutions
(physiological salines like Ringer or Tyrode solutions) that are good conductors, with
resistivity approximately 50 Ohm-cm. On the other hand, lipid membranes are among the
most perfect insulators known, with specific resistances commonly reaching 1 gigohm-cm2.
Proteins are (to first order) insulating objects, and almost all proteins have large
hydrophobic regions that are very good insulators. The ill-conditioned case in the spherical
test problem is thus an important case for biology and must be studied in some detail. The
test problem of Boda et al. [3], which was designed to be in this domain, has ε1/ε2 = 40, and
therefore the integral equation retains some of the ill-conditioning of the singular case.

The condition number κ of a matrix A, defined as the ratio of the largest singular value of A
to its smallest singular value, is sometimes used to imply that a particular computational
approach is accurate. Such an argument is at best incomplete, and at worst misleading.
Although it is true that a large condition number implies an inaccurate simulation, it is not
necessarily true that a small condition number implies an accurate simulation; in other
words, reasonable conditioning is a necessary, but by no means sufficient, condition for a
calculation to be accurate. To demonstrate this fact, in Figure 3 we plot the condition
number of the qualocation and collocation BEM matrices as the ratio of dielectric constants
varies from 10−3 to 103. The condition number of the qualocation matrix grows rapidly as
the ratio increases beyond one, which indicates that the qualocation BEM captures the ill-
conditioning of the physical problem; that is, as the physical problem approaches the
singular capacitance problem, the qualocation method is increasingly ill-conditioned. In
contrast, the condition number of the collocation matrix does not change significantly.
Clearly, the fact that the collocation matrix exhibits better conditioning does not imply that
the collocation problem is easier to solve, or that collocation BEM is more accurate. For the
present case, the lower condition number merely reflects the fact that the collocation
discretization generates a low-accuracy representation of the badly conditioned problem.

We note that the dielectric ratio of interest in this test case is relevant for ion channels, ion-
binding proteins, and enzymes that have pores or deep narrow clefts crucial to their
biological function. Other proteins are different and have an enclosed volume that is the
protein (with low dielectric constant) where the exterior region is the higher dielectric
solvent [9, 10, 68].
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3.2. Higher-Order Approximations to the Galerkin Method
We now compare the speed of the collocation and qualocation methods, and present a fast
approximation to the qualocation method. As discussed in Section 2, the collocation and
qualocation methods can both be interpreted as one-point approximations to a Galerkin
BEM [48]. Higher-order collocation-like and the qualocation-like approximations can also
be employed [51], and in the limit of infinitely-high-order approximations the methods
generate identical solutions. It is instructive to see the effects on accuracy of using different
approximations. To illustrate these effects, we have used the same test geometry as before
(see Figure 1), and solved BEM problems using 3-point, 10-point, and 18-point
approximations to the integrals that are approximated with midpoint quadrature in the
collocation and qualocation methods (Equations (15) and (20)). Figure 4 contains plots of
the reaction potentials calculated using these methods. In the Figure, the results from using
successively higher-order quadrature rules are plotted using progressively larger symbols.
All of the approximations that use qualocation-like discretizations generate nearly identical
potentials, which indicates that the one-point approximation employed in qualocation is
already very accurate. Consequently, the qualocation results in Figure 4 are almost
indistinguishable. However, as can be seen in the Figure, the collocation-like methods
generate quite different potentials. Unfortunately, although it is possible to assess
theoretically the accuracy of a particular integral as the order of the numerical integration
scheme is increased, it is not straightforward to analyze the accuracy of computed solvation
free energies in a similarly rigorous manner.

It must be emphasized that in the present work, the BEM matrices are formed explicitly and
therefore the time required to compute the BEM matrices is directly proportional to the
number of points used in the integral approximation. Also, for the planar triangles we have
used to approximate the surface, the boundary-element integrals in Equations (15) and (20)
can be computed analytically and require nearly identical computational work [69, 70]. As a
result, essentially the same amount of time is required to compute the basic (1-point)
collocation and qualocation matrices. The 3-point collocation-like method requires three
times the amount of work to compute the 1-point collocation matrix, and the 10-point
qualocation-like method requires ten times the amount of work required for the 1-point
qualocation matrix. We note that if instead of forming the BEM matrix explicitly, one
employs a fast algorithm such as the fast-multipole method (FMM) [46, 71] or the FFTSVD
[22, 72] method, the higher-order quadrature approaches will not give rise to such a precise
correspondence with computational cost.

3.3. Interactions between Multiple Charges
Proteins contain many permanent (i.e., fixed) charges, usually on acid and basic side chains.
Ionic solutions contain a multitude of permanent charges, on the order of 1023 per liter
(dm3). We therefore examine how the method of BEM discretization changes calculations of
the interactions between multiple charges. We have studied two systems using the geometry
of Figure 1 with additional charges. In the first test case, two charges are present in the
solvent (that is, inside the high-dielectric sphere). One +1e charge is located at (0, 0, 4) as
before and the other charge, also +1e, is located at (−4, 0, 0). Figure 5 contains plots of the
reaction potentials along the z axis, calculated using the collocation and qualocation
discretizations. In the second test case, a +1e charge at (0, 0, 4) is balanced across the sphere
boundary by a −1e charge inside the protein at (0, 0, 6). Figure 6 contains plots of the
reaction potentials for this test geometry. It is clear that in both test cases the qualocation
method offers much better accuracy than collocation. In both Figure 5 and Figure 6, higher-
resolution calculations (those with larger numbers of boundary elements, as denoted in the
legend by N) are denoted by larger symbols. The improved accuracy of the qualocation
method results in the qualocation curves lying nearly on top of one another. Note, however,
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that in Figure 6 the lowest-resolution calculation differs significantly even for the
qualocation method in the proximity of the charge in the high-dielectric region.

3.4. Accelerated Qualocation
We now address the efficiency of simulations of ionic solutions—that is, of problems with
many charges in the solvent. It can be seen from Equations (13) and (14), which are the
expressions for the right-hand-side (RHS) vectors associated with the qualocation and
collocation methods, that the qualocation method requires more computational work to form
the RHS, than the collocation method. The collocation method requires only the calculation
of the potential at the centroid of each boundary element; the qualocation method requires
integration of the potential over each boundary element. We therefore turn to situations in
which calculation of the RHS takes significant time.

An example of such a scenario can be found in the use of Monte-Carlo (MC) and some
molecular-dynamics (MD) methods to study the electrostatic interactions between
biomolecules and ionic solutions [3, 26, 73–85]. In such calculations, the protein is usually
treated as a rigid dielectric body and ions are treated as point charges in the high-dielectric
solvent. Each MC step entails moving an ion to a random location, and accepting or
rejecting the move depending on the resulting change in energy; at each step one must solve
the electrostatic problem. Typically, hundreds of millions or billions of steps are used [83].
In these MC simulations, the right-hand side of the BEM problem is different at each step
while the BEM matrix remains the same. As a result, even when the matrix is decomposed
once via LU factorization (at a cost that grows cubically with the number of unknowns), the
time associated with calculating all of the right-hand sides can represent a substantial portion
of the total. This situation contrasts with most BEM simulations, in which calculation of the
matrix entries, compression of the BEM matrix [46], or LU factorization represent the
dominant computational cost, and the time required for calculating the right-hand side is
insignificant.

The boundary-element integrals required for forming the qualocation RHS can be accurately
approximated for the same computational cost required for the collocation RHS, if it is
known a priori that charges will not be too close to the boundary elements. To demonstrate
this, we simulated the test geometry with a single point charge, using analytical integration
methods to evaluate the integrals associated with the qualocation RHS, and also using one-
point quadrature. Figure 7 is a plot of the calculated reaction potentials using the two
methods for forming the RHS; thus, the plot associated with the qualocation method is the
same as in Figure 2. The one-point RHS method incurs approximately 1% error relative to
the analytical integration method; in general, however, the accuracy depends on the details
of the problem.

The improved accuracy of the qualocation method can allow a reduction in the number of
boundary elements used for simulation, once one prescribes the desired level of accuracy.
To estimate the magnitude of the time savings, we computed the time required to solve
matrix problems with dimensions equal to the BEM problems studied here and in Boda et al.
[3]. Using MATLAB [86] we solved 1000 linear systems for each problem and measured
the time required to repeatedly apply the dense L and U factors to solve the systems. For
dense nonsingular systems, the solve time is essentially independent of the entries of the L
and U factors themselves. The qualocation simulation of a 356-variable problem was
accurate to within approximately two percent, and 1000 linear solves required 0.939
seconds. The 1470-variable qualocation problem required 17.995 seconds and was accurate
to about one percent. For problems of dimensions employed by Boda et al., the time
required for the 512-variable problem (two-percent accuracy) was 2.004 seconds, and
36.821 seconds were required for the 2048-variable problem, reaching one-percent accuracy.
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Thus, for this level of accuracy and simulating problems of these dimensions, the
qualocation method is approximately twice as fast for repeated matrix solves using the L and
U factors. This improvement is not expected for all levels of accuracy, however.
Qualocation’s performance advantage appears to grow as higher accuracy is demanded [50].

4. DISCUSSION
We have presented the collocation and qualocation approaches to solving the ICC boundary-
integral equation for electrostatic analysis of channel proteins. Our results illustrate that
computation of the electric field, which is of central importance in the ICC equation, needs
to be performed carefully. Though both collocation and qualocation use a simple form of
numerical integration, midpoint quadrature, the qualocation method of provides significantly
better accuracy. As demonstrated by Tausch et al., the improvement can be attributed to the
simple fact that the electric potential due to a dipole distribution varies more slowly than
does the normal electric field due to a monopole distribution [48]. This improvement in
accuracy allows a reduction in computation time because the dielectric boundaries can be
discretized using fewer boundary elements. Our calculations have employed a simple model
geometry that possesses an analytical solution while retaining important characteristics of
interactions between ions and channel proteins; other recent work has compared qualocation
and collocation methods for simulating atomistically detailed proteins [87].

Our results suggest that the accuracy advantage of the qualocation method is most important
when permanent charges lie in the region of high dielectric, e.g., when ions like Na+, K+,
Ca++ or Cl− are inside channels or near active sites of proteins, balancing the fixed (i.e.,
permanent) charge of the side chains of the protein. This result is in keeping with the
analysis of Greengard and Lee [49]. Protein enzymes and channels are characterized
experimentally by measurements with a variety of ions and concentrations. Simulations
designed to reproduce these types of experiments will therefore benefit particularly from the
qualocation method.

The qualocation and collocation methods we have presented take advantage of special
properties of planar boundary elements with straight edges. Analytical methods can be used
to rapidly evaluate the resulting integrals [69, 70] while accounting for singularities exactly.
Clearly, flat boundary elements describe the curved surfaces of ions and proteins less well
than curved boundary elements [3, 45, 88]. For computations in which memory is a limiting
factor, curved elements do offer improved accuracy [88]. However, the integrals associated
with curved boundary elements usually require much more time than the integrals associated
with flat elements [88], and require considerably more complex implementation [89]. These
competing influences on simulation time and accuracy make it difficult to predict a priori
whether a planar- or curved-element approach will be preferable for a given simulation.

The generation of appropriate surface discretizations, whether using planar or curved
elements, is another factor that complicates the analysis of the merits of these two simulation
approaches. It can be difficult to find curved-element discretizations of the complex surfaces
often used to model molecules and proteins in solution [12, 45, 88, 90, 91], even if the
boundary can be described analytically [62, 92, 93]. In contrast, there exist numerous
algorithms for calculating planar-element representations of these surfaces (see, for instance,
[61, 92, 94]), and efficient and robust implementations are widely available [95, 96].

However, a case may certainly be made for curved-element BEM when a dielectric
boundary remains unchanged throughout a Monte Carlo simulation, as in several recent
investigations [3, 24, 26, 73]), and the boundary can be easily described by a few thousand
curved elements (such that dense-matrix memory limitations are not an issue). Under these
circumstances, the overall MC calculation is not necessarily dominated by the O(n3) cost to
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form the LU factors (a computation that is performed only once), but rather by the O(n2)
cost of applying the factors at each MC step. Efficient methods for MC simulations with
larger memory requirements are a subject of ongoing work. Preconditioned Krylov-subspace
iterative methods such as GMRES [97], used in combination with algorithms that rapidly
approximate matrix–vector multiplication, such as the fast-multipole method [46, 47]
represent a promising approach [21, 22, 71, 98–101].
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Figure 1.
The geometry of the model problem. A dielectric sphere of radius 5 Å, centered at the
origin, with dielectric constant ε1 is embedded in a homogeneous dielectric medium of
dielectric constant ε2. A single discrete point charge of value +1e is located at (0, 0, 4Å).
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Figure 2.
Reaction potentials, and errors relative to an analytical solution, calculated along the z axis
using the centroid-collocation and qualocation discretizations, for a sphere of radius 5 Å and
dielectric constant 80 embedded in an infinite medium of dielectric constant 2, with a single
+1e charge located at (0, 0, 4 Å). (a) Computed and analytical reaction potentials.
Electrostatic potentials are in kcal/mol/e. (b) Error between computed reaction potentials
and analytical solution, in kcal/mol/e.
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Figure 3.
Condition numbers of the qualocation and centroid-collocation matrices, for the same
problem geometry as in Figure 2 with the 356-element surface discretization, as the
dielectric ratio ε2/ε1 varies. The dielectric constants were 1/1000, 2/80, 4/20, 6/4, 20/4, 80/2
(the same constants used by Boda et al. [3]), and 1000/1.
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Figure 4.
Accuracy of calculated reaction potentials when higher-order quadrature methods are
employed to approximate the Galerkin integrals, using qualocation-like and collocation-like
discretizations. The problem geometry is the same as used in Figure 2. The qualocation
results, denoted by solid lines with circles of varying sizes, are nearly indistinguishable.
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Figure 5.
Accuracy of centroid-collocation and qualocation methods for problems with multiple
charges in the high-dielectric region. The problem geometry is the same as used in Figure 2,
with an extra +1e charge placed at (−4 Å, 0, 0). The qualocation results, denoted by solid
lines with circles of varying sizes, are nearly indistinguishable.
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Figure 6.
Accuracy of centroid-collocation and qualocation methods for problems with charges in
both the high- and low-dielectric regions. The problem geometry is the same as used in
Figure 2, with an additional −1e charge placed in the low-dielectric region at (0, 0, 6 Å). The
qualocation results, denoted by solid lines with circles of varying sizes, are nearly
indistinguishable except in the immediate vicinity of the charge in the high-dielectric region.
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Figure 7.
Accuracy of reaction potentials calculated when using exact and one-point-quadrature
approaches to forming the entries of the right-hand-side in the qualocation method.
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