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Neural Changes with Tactile Learning Reflect Decision-Level
Reweighting of Perceptual Readout
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Departments of 'Neurology, 2Rehabilitation Medicine, and *Psychology, Emory University, Atlanta, Georgia 30322, “Rehabilitation R&D Center of
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Despite considerable work, the neural basis of perceptual learning remains uncertain. For visual learning, although some studies sug-
gested that changes in early sensory representations are responsible, other studies point to decision-level reweighting of perceptual
readout. These competing possibilities have not been examined in other sensory systems, investigating which could help resolve the issue.
Here we report a study of human tactile microspatial learning in which participants achieved >six-fold decline in acuity threshold after
multiple training sessions. Functional magnetic resonance imaging was performed during performance of the tactile microspatial task
and a control, tactile temporal task. Effective connectivity between relevant brain regions was estimated using multivariate, autoregres-
sive models of hidden neuronal variables obtained by deconvolution of the hemodynamic response. Training-specific increases in
task-selective activation assessed using the task X session interaction and associated changes in effective connectivity primarily involved
subcortical and anterior neocortical regions implicated in motor and/or decision processes, rather than somatosensory cortical regions.
A control group of participants tested twice, without intervening training, exhibited neither threshold improvement nor increases in
task-selective activation. Our observations argue that neuroplasticity mediating perceptual learning occurs at the stage of perceptual
readout by decision networks. This is consonant with the growing shift away from strictly modular conceptualization of the brain toward
the idea that complex network interactions underlie even simple tasks. The convergence of our findings on tactile learning with recent

studies of visual learning reconciles earlier discrepancies in the literature on perceptual learning.

Introduction

Although perceptual learning has been studied for over a century,
its neural basis remains contentious. Early studies found visual
learning effects to be highly specific for stimulus features, such as
element orientation, retinal location, and spatial frequency
(Ramachandran and Braddick, 1973; Ramachandran, 1976;
Fiorentini and Berardi, 1980), leading to the idea that the under-
lying neural changes occur in primary visual cortex (V1). This is
supported by neurophysiological (Gilbert et al., 2009; Bao et al.,
2010) and functional magnetic resonance imaging (fMRI) stud-
ies (Schwartz et al., 2002; Furmanski et al., 2004; Yotsumoto et al.,
2008; Jehee et al., 2012). However, others emphasized changes in
higher-order visual areas (Yang and Maunsell, 2004; Raiguel et
al., 2006). The specificity of visual learning can be eliminated by
training at another retinal location on a different task (Xiao et al.,
2008) or mere exposure to a different orientation (Zhang et al.,
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2010). Further, evidence from psychophysical, neurophysiologi-
cal, and modeling studies favors an alternative hypothesis that the
relevant neural changes involve later, decision-level reweighting
of perceptual readout, rather than earlier stages of stimulus rep-
resentation (Petrov et al., 2005; Law and Gold, 2008; Bejjanki et
al., 2011; Huang et al., 2012).

Tactile learning has been less intensively studied, albeit for a
longer time, beginning with Volkmann in the 19th century
(Gibson, 1969). Many studies demonstrated transfer of learning
effects between fingers in various tactile tasks (Recanzone et al.,
1992a; Sathian and Zangaladze, 1997, 1998; Spengler et al., 1997;
Nagarajan et al., 1998; Offe et al., 2000; Kaas et al., 2013). These
findings fit with perceptual reweighting. However, sensory rep-
resentational plasticity in tactile learning is favored by the report
of a topographic gradient of transfer (Harris et al., 2001) and by
neurophysiological observations in somatosensory cortex
(Recanzone et al., 1992d; Harris et al., 1999).

As this brief survey indicates, the neural underpinnings of
perceptual learning remain uncertain. We therefore conducted
an fMRI study of human tactile learning, using a tactile microspa-
tial task used previously (Offe et al., 2000; Stilla et al., 2007, 2008).
Tactile acuity measured on this task correlated with the magni-
tude of activity in a posterior parietal cortical focus and the
weights of paths into this focus from somatosensory cortex and
the frontal eye field (FEF), suggesting interaction between sen-
sory input and an attentional signal (Stilla et al., 2007). The pari-
etal focus probably corresponds to the caudal intraparietal area
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(Shikata et al., 2008), and its role in the acuity task is compatible
with a decision-level process, as for the neighboring lateral intra-
parietal area (Sugrue et al., 2005; Law and Gold, 2008). In a sim-
ilar hyperacuity task, variation in the psychophysical threshold
between fingers correlated with the size of the finger’s cortical
representation (Duncan and Boynton, 2007). We sought here to
distinguish between two hypotheses: according to the sensory
representation hypothesis, learning-related activation and con-
nectivity changes should predominantly involve somatosensory
cortex, whereas the perceptual readout hypothesis favors changes
involving regions related to decision processes, for example, pre-
motor (Romo and de Lafuente, 2012) or posterior parietal cortex.

Materials and Methods

Participants. A total of 18 neurologically normal, right-handed volun-
teers participated. Ten of them (6 female, 4 male, mean age 21.9 years)
constituted the experimental group; the control group comprised the
other eight (4 female, 4 male, mean age 20.1 years). Handedness was
assessed by the high-validity subset of the Edinburgh handedness inven-
tory (Raczkowski et al., 1974). All procedures were approved by the
Institutional Review Board of Emory University.

Stimuli and tasks. The stimuli, stimulator, stimulation procedure, and
tasks have been described in earlier reports (Stilla et al., 2007, 2008). Briefly,
the stimulus was a linear three-dot array oriented along the long axis of the
fingerpad, applied to the immobilized finger with constant contact force,
using a computer-controlled pneumatic stimulator that was MRI-
compatible (Fig. 1a). The duration and sequence of stimulation were
controlled with Presentation software (Neurobehavioral Systems),
which also recorded responses. In the experimental stimulus array, the
central dot was offset to the left or right by 0.03—-1.94 mm (Fig. 1b). The
actual offset values (millimeters), as measured under a dissecting micro-
scope, were as follows: 1.94, 1.49, 1.19, 1.04, 0.8, 0.6, 0.5, 0.42, 0.3, 0.09,
0.06, and 0.03. The array was applied to the fingerpad for 1 s, and partic-
ipants were asked to determine whether the offset was to the left or right.
Psychophysical thresholds were expressed in terms of the offset corre-
sponding to 75% correct spatial discrimination, by linear interpolation
between values spanning this threshold, or when applicable, as the stim-
ulus offset value yielding 75% correct accuracy. In the control task, the
central dot of the stimulus array was not offset (Fig. 1¢) and stimulus
duration was varied from 0.7 to 1.3 s. Pairs of durations (mean 1 s),
differing by 0.2, 0.3, 0.4, or 0.6 s, were used (the corresponding duration
pairs (s) were thus 1.1/.9; 1.15/.85; 1.2/.8; and 1.3/0.7). Participants indi-
cated whether the contact duration was long or short. Participants were
never allowed to see the stimuli, and they kept their eyes closed during
stimulation.

Two fMRI scan sessions were completed by all participants. Before each
scan session, participants’ psychophysical thresholds were assessed using the
method of constant stimuli, in 20-trial blocks beginning with the largest
offset and proceeding through successively smaller offsets until accuracy fell
to <75% correct. For the experimental (spatial) task, the acuity threshold
was determined, and an offset value was selected for use during scanning
with the goal of achieving close to 90% accuracy (i.e., suprathreshold but
below ceiling). The offset value was lower in the final than the initial session
because of perceptual learning; thus, scans were conducted with matched
performance. For the control (temporal) task, a similar procedure was used
to select a duration pair that would yield ~90% accuracy. Values of offset
and duration pairs used during scanning are given in Table 1 for each par-
ticipant. Scanning was performed immediately after determination of the
initial and final thresholds. No feedback regarding response accuracy was
provided during prescan threshold testing or during scanning.

Participants in the experimental group were trained on the spatial dis-
crimination task for a number of sessions after the initial scan session. Train-
ing began on the next weekday after the initial scan. Feedback on accuracy
was provided verbally after each training trial. As during threshold testing,
trials were presented in blocks of 20, with the offset value constant within a
block, and adjusted up or down based on performance. Stimuli bearing
different offsets were interchanged manually by an experimenter, out of
participants’ sight. Sessions lasted approximately an hour, with successive
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Figure 1. a, MRI-compatible pneumatic stimulator. Arrows indicate direction of airflow.
Disk on the top of the stimulator allowed 180° rotation of the stimulus to present leftward or
rightward offsets. b, Diagram of stimulus configurations in spatial task; central dot in array was
offset either to the right or left. ¢, Stimulus array for the temporal task used an array without
spatial offset [a— , Stilla et al. (2007), reprinted with permission]. d, e, Sample learning curves
from two representative participants in experimental group, showing spatial acuity threshold
(millimeters) at initial and final testing, and on intervening training days (TDx).
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Table 1. Stimulus parameters used and accuracy during scanning for individual
participants

Stimulus parameters Accuracy (%) during scanning

Initial  Initial Final  Final Initial Initial Final ~ Final

offset duration- offset duration-  offset duration offset duration
Participant (mm) pairs(s)  (mm) pairs (s) task  task task  task
E1 1.19 13/0.7 03 1.15/0.85 89 96 64 86
E2 1.94 1.15/0.85 042 1.15/0.85 77 86 79 79
E3 119 1.15/0.85 042 1.15/0.85 85 85 77 9%
E4 1.94 1.3/0.7 042 1.1/0.9 93 96 92 80
E5 149  1.15/0.85 0.8 1.1/0.9 60 9% 84 86
E6 0.8 1.1/0.9 0.03 1.1/0.9 89 89 72 89
E7 1.04 1.15/0.85 042 1.15/0.85 93 91 97 95
E8 1.49 1.1/0.9 042 1.1/0.9 94 89 82 87
E9 194  1.1/09 003  1.1/0.9 VAl 87 69 85
E10 149  12/08 003 12/08 72 9% 80 89
Mean —_ - —_ - 823 907 79.6  87.0
SEM —_ — —_- - 39 14 33 17
(4] 1.49 1.1/09 1.04 1.1/0.9 93 81 76 84
Q 194  1.1/09 0.8 1.1/0.9 95 86 53 58
(€] 194 12/08 119 1.15/085 61 80 81 85
“ 1.04  1.1/09 119  1.1/09 60 87 923 89
(&) 149 1.15/0.85 1.94 1.15/0.85 90 92 92 89
(6 1.94 1.2/0.8 030 1.2/0.8 87 90 62 88
a 1.94 1.15/0.85 119 1.15/0.85 87 89 85 79
(€] 119  1.15/0.85 1.19 1.15/0.85 80 87 85 79
Mean —_ — —_ - 81.7 865 784 813
SEM - = - — 52 16 54 39

sessions on separate days, typically consecutive except for weekends or when
occasional scheduling conflicts intervened. The number of blocks per session
varied somewhat across sessions and participants, the mean (= SEM) being
13.9 (* 0.7). Training continued until performance plateaued (i.e., the
threshold was stable across 2 or 3 sessions). The threshold was taken to
plateau if successive computed thresholds were identical (after rounding to
the nearest one-hundredth of a millimeter) or if the difference between suc-
cessive thresholds was =0.1 mm. This was usually achieved after 2 consecu-
tive sessions. For two subjects, these nearly identical thresholds were
separated by an intervening day when the threshold climbed by >0.1 mm. In
the case of one subject, a third session was run that in retrospect was unnec-
essary as a stable threshold had already been attained. The final threshold
determination and final scan were conducted on the next weekday after the
last training day. Four additional participants were dropped: three because
they failed to attain a mean accuracy of at least 60% correct on both tasks in
the initial scan session and the fourth because of failure to attain a stable
threshold despite 23 sessions of training. No data from these participants
were used. The control group was not trained between scan sessions.

Functional imaging. As described previously (Stilla etal., 2007, 2008), par-
ticipants lay supine in the scanner. The extended, supinated right arm was
comfortably supported by foam padding, which also minimized transfer of
gradient coil vibration. Headphones conveyed auditory cues and protected
hearing. Participants held a two-button fiber-optic response box in the left
hand and used the second or third digit to respond “right” or “left” during
the experimental task, or “long” or “short” during the control task.

Ablock design paradigm was used in which each functional run contained
12 stimulation blocks of 24 s (six of each condition) in pseudorandom order,
with each stimulation block comprising eight (3 s) trials. Thus, there were 48
trials of each condition per run. Each run began and ended with an 18 s rest
period, and 18 s rest intervals separated stimulation blocks. Verbal cues
immediately before active and rest blocks instructed participants which
block type followed. Four participants in the experimental group completed
2 runs per fMRI session, whereas the remaining 6 completed 4 runs in each
session (32 runs total). The 8-participant control group completed 4 runs per
session (32 runs total). Thus, the total number of runs was balanced across
groups, and the numbers of participants in each group were similar. Further,
each participant completed the same number of runs in both initial and final
sessions.

MR scans were performed on a 3 Tesla Siemens Trio whole-body
scanner (Siemens Medical Solutions), using a transmit/receive quadra-
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ture head coil. T2*-weighted functional images were acquired using a
single-shot gradient-recalled EPI sequence with blood oxygenation level-
dependent (BOLD) contrast. Twenty-one contiguous, axial slices of 5
mm thickness were acquired using the following parameters: repetition
time (TR) 1500 ms, echo time (TE) 30 ms, field of view (FOV) 220 mm,
flip angle (FA) 70 degrees, in-plane resolution 3.4 X 3.4 mm, in-plane
matrix 64 X 64. High-resolution anatomic images were acquired using a
3D-MPRAGE sequence (TR 2300 ms, TE 3.9 ms, inversion time 1100 ms,
FA 8 degrees) consisting of 176 sagittal slices of 1 mm thickness (FOV 256
mm, in-plane resolution 1 X1 mm, in-plane matrix 256 X 256).

Image processing and analysis. Image processing and analysis were per-
formed using BrainVoyager QX version 1.6.3 (Brain Innovation). Each
subject’s functional runs were real-time motion corrected using Siemens
3D-PACE (prospective acquisition motion correction; Siemens Medical
Solutions). Functional images were preprocessed using sinc interpola-
tion for slice scan time correction, trilinear-sinc interpolation for intra-
session alignment of functional volumes, and high-pass temporal
filtering of 3 cycles/run to remove low-frequency drifts in the data. The
hemodynamic response function (HRF) was modeled using the default
option in BrainVoyager, comprising a dual vy function, one for the re-
sponse (time to peak 5 s) and one for the undershoot (time to peak 15 s),
with a response undershoot ratio of 6. The boxcar function representing
the block design was convolved with this HRF. Anatomic 3D images were
processed, coregistered with the functional data, and transformed into
Talairach space (Talairach and Tournoux, 1988). Activations were local-
ized with the aid of a 3D sectional anatomy atlas (Duvernoy, 1999).

For group analysis, the transformed data were spatially smoothed with
an isotropic Gaussian kernel (full-width half-maximum 4 mm). Runs
were normalized to account for variability of absolute signal values be-
tween runs and individuals. Statistical analysis of group data used ran-
dom effects, general linear models in which the multiple runs were
combined within participants before group-level analyses. All analyses
were corrected for multiple comparisons (p < 0.05) using the Cluster
Threshold Estimator plugin implemented in BrainVoyager QX.

Effective connectivity analyses. Directional causal influence from time se-
ries A to time series B can be inferred if past values of time series A help
predict the present and future values of time series B (Granger, 1969). Based
on this idea, the approach known as Granger causality analysis was intro-
duced to characterize predictive relationships between BOLD time series
(Roebroeck et al., 2005; Abler et al., 2006). Prior studies from our group
elaborated this approach, implementing multivariate, autoregressive
(MVAR) models to assess directed interactions between multiple nodes
while factoring out influences mediated indirectly in the set of regions se-
lected (Stilla et al., 2007, 2008; Deshpande et al., 2008, 2009; Sathian et al.,
2011). Spatial variability of the BOLD response arising from vascular sources
can confound Granger causality obtained from raw fMRI time series (David
et al., 2008; Deshpande et al., 2010b). Hemodynamic deconvolution re-
moves the intersubject and interregional variability of the HRF (Handwerker
et al., 2004) as well as the smoothing effect of the HRF, thus increasing
effective temporal resolution of the signal. Therefore, here we applied our
MVAR approach to hidden neuronal variables obtained after hemodynamic
deconvolution (Havlicek etal., 2011) of the BOLD time series extracted from
selected regions of interest (ROIs). As in previous reports (Deshpande et al.,
2010c¢; Sathian et al., 2011), instantaneous correlations were factored out.
Also, to obtain condition-specific connectivity values without having to slice
the time series corresponding to specific conditions, we allowed the MVAR
model coefficients to vary as a function of time. The boxcar function repre-
senting the experimental block design was used to extract connectivity values
corresponding to the spatial and temporal tasks. The resulting dynamic
Granger causality path weights were populated into different samples, com-
prising spatial and temporal conditions for both initial and final sessions,
and ¢ tests were performed to assess condition-specific modulation of con-
nectivity; specifically, path weights that were greater in the spatial compared
with the temporal condition and either greater in the final than the initial
session or greater in the initial than the final session. Details of the approach
follow.

Let k fMRI time series be represented as X(t) = [x,(t) x,(t) ... x.(t)].
The dynamic state-space model used was as follows:
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where 7 is the neuronal state variable, u is the exogenous input, 6 is the
parameter variable, and f is the function that links the current neuronal
state to the previous neuronal states, exogenous inputs, and parameters.
The subscript T indicates continuous time, the superscript k indicates the
number of time series in the model; g, v, and w are the zero mean
Gaussian-state noise vectors. The observation equation, which links the
state to observation variables, is as follows:

x(0) = g@) + roy,

where g is the measurement function that links the state variables to measure-
ment variables, ¢ is discrete time, and r is the measurement noise. The inputs to
the model are exogenous inputs 1, which is the experimental boxcar function,
and x, (). As shown before, the cubature Kalman filter performs very efficient
joint estimation of underlying neuronal state variables and parameters (Havlicek
etal., 2011). Because the state-space model is in continuous time, Havlicek et al.
(2011) showed that the time step used in its estimation and discretization can be
one-tenth of the TR (or even less) while still yielding optimal results. Using such
neuronal variables with high temporal resolution in an MVAR model enables
effective connectivity analysis. The estimated neuronal state variables 1,(f) were
input into the MVAR as follows:

my(t) 0 a,,(0) a,(0) (1)
1,(t) a(0) 0 a,(0) 1,(t)
. = . . 0 X
”k.(t) akl’(o) akZ.(O) ces 0 ”k'(t)
ay(n) ap(n) ay(n) m(t —n)
p | ay(n) axp(n) ay(n) ny(t — n)
+ > - ) . X
- akl.(n) akz.(n) akk.(n) n(t - n)
e (1)
e(t)
+ -
ekit)

where p is the order of the model determined by the Akaike/Bayesian
information criterion (Deshpande et al., 2009), a is the model coeffi-
cients, and e is the model error. Note that a(0) represents the instanta-
neous influences between time series whereas a(n), n = 1. k represents
the causal influences between time series. By modeling both instanta-
neous and causal terms in a single model, the effect of instantaneous
correlation on causality was minimized (Deshpande et al., 2010a). The
MVAR model was made dynamic by allowing the model coefficients to
vary as a function of time as given below:

() 0 a15(0, 1) a1 (0, 1) (1)
ny(t) ax (0, 1) 0 a(0, 1) 1,(t)

. = . . 0 . X
ni() 00,0 ap0, ) ... 0 ni(1)
all(”) 1 ap(n, t) alk(”> 1) n(t — ”)
p | an(n, 1) ax(n, t) axy(n, 1) ny(t — n)

+ > ) ) ) X
- akl(;'l) t) ﬂkz(.”) t) ﬂkk(;?x t) n(t - n)
e, (1)
ex(1)
+ . .

ekit)
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Table 2. Threshold values for tactile spatial task in experimental and control
participants

Initial Final Threshold

threshold threshold change No. of
Participant (mm) (mm) (mm) sessions
E1 1.2 0.1 1.1 6
E2 1.49 0.24 1.25 8
E3 1.04 03 0.74 6
E4 1.27 0.07 1.2 7
E5 1.14 0.5 0.64 14
E6 0.64 0.22 0.42 10
E7 0.84 0.08 0.76 4
E8 1.14 0.03 n 15
E9 1.19 0.08 1 5
E10 13 0.08 1.22 16
Mean (experimental) 1.13 0.17 0.96 9.10
SEM 0.08 0.05 0.10 1.47
(4] 1.04 1.04 0 —
Q 0.80 1.34 —0.54 —
(&} 11 1.12 —0.02 —
4 0.63 117 —0.54 —
(& 1.00 1.64 —0.64 —
6 1.19 03 0.89 —
@ 1.01 1.19 —0.18 —
(8 1.1 1.19 —0.09 —
Mean (control) 0.98 1.12 —0.14 —
SEM 0.07 0.14 0.18 —

The model coefficients a;(n,t) were taken as the state vector of a Kalman
filter and adaptively estimated (Arnold et al., 1998). Dynamic Granger
causality (DGC) was then obtained as follows:

P
DGCy(1) = X, [az(n, 1)].

n=1

Results

Psychophysical

Threshold changes

Individual results are shown in Table 2, and sample learning
curves are shown in Figure 1. The initial threshold for the exper-
imental group was 1.13 = 0.08 mm (mean = SEM), whereas the
final threshold was 0.17 = 0.05 mm, achieved after 9.1 = 1.5
sessions. This more than six-fold threshold decline (0.96 * 0.1
mm) marks a considerable degree of perceptual learning.
Whereas the mean initial threshold was close to the acuity limit at
the index finger (Van Boven and Johnson, 1994; Sathian and
Zangaladze, 1996; Vega-Bermudez and Johnson, 2001), the mean
final threshold was far below the acuity limit and thus represents
hyperacuity (Westheimer, 1977). A control group of eight partic-
ipants was also tested twice a few days apart, without intervening
training. This group had an initial threshold 0of 0.98 = 0.07 and a
final threshold of 1.12 = 0.14 (i.e., these participants as a group
did not demonstrate perceptual learning).

Accuracy data during scans

Table 1 shows individual accuracy for each participant in both
tasks and scan sessions. For the experimental group, mean accu-
racies on the spatial and temporal task were 82.3 = 3.9% and
90.7 * 1.4%, respectively, in the initial scan session and 79.6 =
3.3% and 87 = 1.7%, respectively, in the final scan session. For
the control group, mean accuracies on the spatial and temporal
task were 81.7 = 5.2% and 86.5 = 1.6%, respectively, in the initial
scan session and 78.4 * 5.4% and 81.3 & 3.9%, respectively, in
the final scan session. A repeated-measures ANOVA with factors
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Table 3. Regions showing significant increases in activation for the experimental
(spatial) task relative to the control (temporal) task in the final session relative to
the initial session (i.e., a significant task X session interaction) in experimental
group

Region X y z tmax
R pre-SMA 5 23 44 6

R anterior insula 28 14 3 55
R putamen 23 4 6 3.6
R anterior thalamus 9 -10 8 47

L anterior thalamus -1 -7 13 73

L putamen =21 -8 12 4.6

L anterior insula -30 17 16 3.1

R superior cerebellum 23 —55 -3 4

L superior cerebellum =5 —47 -19 29

X, ¥, and z, Talairach coordinates of center of gravity; tmax, peak t value of interaction contrast; R, right; L, left.

of group (experimental, control), task (spatial, temporal), and
session (initial, final) showed that the main effects of group
(F1,16) = 0.68,p = 0.42) and session (F(; ;4 = 0.4, p = 0.54) were
insignificant. Although the main effect of task (F, ;¢ = 10.46,
p = 0.005) was significant, critically, the task X session interac-
tion (F; ;) = 0.28, p = 0.6) was not (i.e., the accuracy differences
between tasks were consistent across sessions).

Imaging

Activation changes across sessions in whole-brain analysis

To isolate effects for the tactile spatial task attributable to training
for the experimental group, we examined the interaction between
task and session using a whole-brain analysis. This allowed us to
control for any nonspecific effects arising from BOLD signal vari-
ability between scan sessions, resulting from global signal varia-
tion or random noise (Raemakers et al., 2012) or priming effects
from simply repeating the scan session. Importantly, the absence
of a significant task X session interaction for the accuracy data
obtained during scanning in both groups (see above) rules out
the possibility that task-specific activation changes are attribut-
able to psychophysical variables. The control group was studied
to provide another level of control. As expected, the interaction
analysis in this group showed no significant increases in task-
selective activation over time that were specific for the spatial task
(t(;y < 2.35,p > 0.05). They did demonstrate the opposite inter-
action effect in a few regions, mostly in parietal cortex, but these
tended to be largely changes in negative-going BOLD signal (i.e.,
deactivations).

The experimental group exhibited significant increases in ac-
tivation for the spatial task relative to the control (temporal) task
in the final session relative to the initial session (i.e., a significant
task X session interaction) in a number of regions (Table 3; Fig.
2). These regions passed a priori voxelwise thresholds (#4, >2.25;
p < 0.05) and survived cluster correction for multiple compari-
sons (cluster threshold 489 anatomic, 1X1X1 mm, voxels). Only
three of these regions were neocortical: the right presupplemen-
tary motor area (pre-SMA) and the anterior insula bilaterally.
The others were bilateral subcortical regions: the putamen, ante-
rior thalamus, and superior cerebellum. The anterior thalamic
activation spanned multiple nuclei, including the probable loca-
tions of the ventral anterior (VA), ventrolateral (VL), and medi-
odorsal (MD) nuclei. Notably, somatosensory and posterior
parietal cortical activation changes were conspicuous by their
absence. Figure 2 shows BOLD signal time courses from the right
pre-SMA and the left anterior thalamic activation sites. These
clearly show the relative increase of spatial task-selective activa-
tion in the final session compared with the initial session. Similar
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profiles were observed at the other sites of Table 3. The opposite
interaction effect, again comprising changes in deactivation, was
observed in other regions, chiefly in occipital and parietal cortex.

We also investigated whether there were any brain regions
whose task-specific activation changes (from the 3 values of the
task X session interaction effect) correlated with threshold
changes across participants. Only one region showed a significant
(p <0.05, corresponding to r) > 0.65, cluster-corrected thresh-
old 516 anatomic voxels) correlation (r = 0.85): it was located in
the right rostral anterior cingulate cortex and demonstrated, on
average, a greater negative BOLD response in the spatial task
compared with the temporal task in both sessions (Fig. 3). The
positive correlation indicates a tendency for greater threshold
decline to be associated with a smaller negative BOLD response
over time for the spatial task relative to the temporal task.

Activations common across sessions

We also examined activations for the spatial task (relative to the
temporal task) common to both initial and final sessions for the
experimental group (Table 4), using a conjunction analysis across
sessions (voxelwise thresholds: 5, > 2.25; p < 0.05; cluster-
corrected for multiple comparisons: cluster threshold 1353 ana-
tomic voxels). This analysis revealed common sites bilaterally in
the postcentral sulcus (PCS), anterior intraparietal sulcus (aIPS),
posterior intraparietal sulcus (pIPS), and FEF. Also found were
sites on the left in the ventral intraparietal sulcus (VIPS), posterior
insula, ventral premotor cortex (PMv), anterior thalamus (MD
nucleus overlapping with the site in Table 3 showing the interac-
tion effect), and posterior thalamus [ventral posterolateral (VPL)
nucleus]. Of note, the VPL nucleus is the thalamic somatosensory
nucleus receiving inputs from the contralateral body surface, in-
cluding the stimulation site. The PCS corresponds to Brodma-
nn’s area 2, the most posterior field of primary somatosensory
cortex (S1) (Grefkes et al., 2001), and the posterior insular site lies
in the somatosensory field known as OP3, which is thought to be
the human homolog of the macaque ventral somatosensory area
(Eickhoff et al., 2007). The sites along the intraparietal sulcus
(IPS) correspond to the probable human homologs of the ante-
rior intraparietal area (corresponding to our alPS) and caudal
intraparietal area (our pIPS), and to the region termed IPS1 (our
vIPS) (Swisher et al., 2007; Shikata et al., 2008). Inspection of the
BOLD signal time courses from these regions confirmed the ab-
sence of the key interaction effect between task and session, as
illustrated in Figure 2 for the left PCS. Thus, these regions, which
included somatosensory thalamic and cortical regions, can be
taken to be involved in task performance in both sessions, with no
evidence for a role in tactile learning.

ROI analyses of S1

We conducted additional ROI analyses of S1 in case our whole-
brain interaction analysis had missed somatosensory cortical
plasticity because of imperfect interindividual alignment. First,
we created bilateral postcentral gyrus (PCG) ROIs using group
data from the experimental group and the contrast of spatial
task > baseline in either the initial or final session [false discovery
rate (FDR), q < 0.01, £9) >4.21, p < 0.002]. The rationale for this
contrast was to identify PCG voxels responsive during the tactile
spatial task in either session. These group PCG ROIs were applied
to the Talairach-normalized anatomical images from each indi-
vidual participant. We examined these images and confirmed
that the ROIs were in the PCG in each individual subject. We then
tested the interaction contrast in these ROIs using a random-
effects analysis. The effect was not significant in either the left
(toy = 0.23; p = 0.82) or right (t4) = —0.06; p = 0.95) PCG.
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We also similarly applied the group
PCS ROIs from the conjunction analysis
to each individual subject. The ROIs fell in
the left PCS for 9 of 10 participants (being
in the PCG for the remaining one) and in
the right PCS for 8 of 10 (being adjacent to
the PCS in the remaining two partici-
pants: in the PCG for one and in the su-
pramarginal gyrus for the other). We then
tested the interaction contrast in these
ROIs using a random-effects analysis. The
effect was not significant in either the left
(toy = 0.4; p = 0.69) or right (¢, = 0.25;
p = 0.81) PCS.

Because there was some variability be-
tween individuals in the position of the
group ROI on the PCG, we created
individual-specific PCG ROIs, again
using the contrast of spatial task > base-
line in either the initial or final session.
These ROIs are displayed in Figure 4. We
tested the interaction contrast in these
ROIs using a random-effects analysis.
Here, too, the effect was not significant in
either the left (¢4, = 0.31; p = 0.76) or
right (o, = —0.01; p = 0.99) PCG.

Based on these ROI analyses, we con-
clude that there were no significant
training-specific changes in the magni-
tude of the spatial task-selective BOLD
signal in S1.

initial

Connectivity changes across sessions

We selected ROIs showing activity specific
for the spatial task relative to the temporal
task in each scan session, including both
regions showing a significant task X ses-
sion interaction and those showing com-
mon activation across sessions without
significant interaction effects. The ratio-
nale for this is that the most relevant
changes in connectivity resulting from
training are likely to involve regions
whose activation changes significantly as a
result of training (from the interaction
analysis), and possibly also regions active
both before and after training but without significant training-
related changes (from the conjunction analysis). The ROIs were
defined at the group level and restricted to cubes of 5 mm side
centered on the activation hotspots, as in prior studies (Stilla et
al., 2007, 2008; Deshpande et al., 2008, 2010c). Because the ROIs
were drawn from the interaction or conjunction analysis, they all
passed voxelwise thresholds of p < 0.05 and the respective
cluster-size threshold. As described in Materials and Methods,
effective connectivity between these ROIs was estimated and
thence paths specific for the spatial task relative to the temporal
task (f(5142) > 3.64, p < 0.05, Bonferroni-corrected for multiple
comparisons) were identified. Among these spatial task-specific
paths, significant increases and decreases in path weights from
the initial to final session (#(¢,4,, >1.65, p < 0.05) were computed
(Table 5). This approach did not rely on computing the task X
session interaction as was done for activations; instead, the ap-
proach used in the effective connectivity analyses ensured a focus
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a, Activations on task X session interaction displayed on coronal slices. Talairach y-planes are given below each slice.
Color t-scale on right. b, ¢, BOLD signal time courses (averaged over participants) from selected sites in initial (b) and final () scan
sessions. alns, Anterior insula; Put, putamen; aTh, anterior thalamic region.

on paths relevant to the spatial task. As in prior studies (Stilla et
al., 2007, 2008; Deshpande et al., 2008, 2009, 2010c¢; Bianchi et al.,
2013), fixed-effects analyses were used on time series concate-
nated across participants. Paths showing significantly increased
weights are shown in Figure 54, whereas those showing signifi-
cantly decreased weights are shown in Figure 5b.

Task-specific increases in connectivity emanated from a lim-
ited number of sources. Of 21 such paths, 15 originated from
subcortical sources: the anterior thalamus bilaterally (8 paths
from the right and 5 from the left) and the left putamen (2 paths).
Notably, these subcortical sources all showed a task X session
interaction on the activation analysis. The remaining 6 paths de-
rived from neocortical sources that, in the activation analyses,
were active in the spatial task in both sessions on the conjunction
analysis, without a task X session interaction: right PCS, left FEF,
and left pIPS, with 4 of these stemming from the left FEF and one
each from the other two. Thus, only one of these paths originated
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Figure 3.  BOLD signal time courses from the right anterior cingulate (ACC) focus showing
correlation between magnitudes of task-specific activation changes and threshold changes
across sessions.

in somatosensory cortex, and one in posterior parietal cortex.
The targets of these paths were more distributed, including loci
identified on both the interaction and conjunction analyses, with
only 4 of 19 ROIs failing to receive input that was significantly
increased with training: these were loci in the left putamen, PMv
and FEF, and the right anterior insula.

Task-specific decreases in connectivity were sparser, being
limited to 10 paths of which all had neocortical sources. Only one
of 6 sources of these paths emerged from the interaction analysis
of activations; the rest came from the conjunction analysis. The
right PCS was the source of 3 of these paths, the remainder being
distributed across prefrontal and posterior parietal cortex.
Among targets, 3 were in somatosensory cortex: 2 in the right
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Table 4. Regions showing activations for the spatial task (relative to the temporal
task) common to both initial and final sessions for the experimental group, froma
conjunction analysis across sessions

Region X y z tmax
L FEF —26 -1 55 5.9
R FEF 29 -9 51 5.1
LPCS —54 =27 33 6.4
LalPS =35 —41 4 5.4
LpIPS =15 —64 50 2.9
LIPS -23 —65 39 2.9
RpIPS 14 —66 46 4.1
RalPS 40 -39 38 6
RPCS 57 —24 34 5.6
L PMv —49 0 31 3.7
L posterior insula —34 -8 14 4.5
L VPL thalamus —12 —24 n 4.7
L MD thalamus =5 —18 12 2.9

X, y, and z, Talairach coordinates of center of gravity; tmax, peak ¢ value of interaction contrast; R, right; L, left.

Figure4. Locations of individual ROIs on the postcentral gyrus, overlaid on individual ana-
tomicimages in the axial plane (corresponding Talairach z-value given below each image).

PCS and one in the left posterior insula; 4 were in the IPS; one in
the right anterior insula; and only two had a subcortical target,
both in the right anterior thalamus. Three of 10 targets showed a
task X session interaction effect on the activation analysis,
whereas the remaining 7 were identified only on the conjunction
analysis.

Thus, overall, training tended to increase the spatial task-
specific weights of paths originating subcortically and showing a
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Table 5. Spatial condition-specific paths whose weights changed after training”

Initial  Final
path path Final — initial
Source Target weight weight pathweight  tvalue p
Final > initial
RaTh RalPs 021 034 013 182 0.03
LaTh 010 037 027 400 31X10°°
LpIPS 009 035 026 365 13x10°*
LalPS —004 043 047 710 71X10°"
Lplns 009 050 041 592 17%X10°°
Lalns —002 027 029 438 60x10°°
R FEF 006 021 015 221 001
RPCS 015 028 0.3 186 0.03
LaTh RaTh 042 067 025 372 10x10°*
LpTh 013 057 044 625 21x107"°
LviPS 009 065 056 811 29x10°®
Rpre-SMA 022 072 050 704 11Xx10°"7
RPCS 027 065 038 539 37x10°°®
LPut R Put 042 067 025 195 0.03
RaTh 012 057 045 284 0.002
LplPS RpIPS —028 016 044 6.16 3.8x107"°
L FEF RpIPS —0.07 042 049 752 32x107™
LpTh —005 039 044 663 19x10 "
LplPS —002 070 072 1030 51x10°%
Lalns 014 041 027 411 20X10°°
RPCS LPCS 003 020 017 218 0015
Initial > final
RpIPS RPCS 040 019 —021 298 0.0014
LpIPS RalPS 025 009 —0.16 232 001
LalPS Lplns 102 058 —0.44 667 13x10°"
Ralns 100 052 —048 688 33x10° "
R FEF RaTh 053 030 —023 3.07  0.0011
Rpre-SMA  LalPS 062 021 —041 562 97x10°°
RPCS 061 020 —041 588 22X10°°
RPCS RplPS 050 020 —030 407 23x10°°
RaTh 021 —0.19 —0.40 611 54x107"°
LplPS 045 —033 —0.78 1087 13X 1077

“Positive path weights indicate that BOLD signal changes in the source and target ROl were in the same direction,
whereas negative path weights indicate that BOLD signal changes were in opposite directions in the source and
target ROls.

task X session interaction effect on the activation analyses but
decrease the spatial task-specific weights of paths from neocorti-
cal foci that were spatially selective in both sessions but showed
no interaction effect. Furthermore, somatosensory cortical areas
were involved in a minority of paths whose task-specific weights
changed after training: They contributed one of 21 sources and 4
of 21 targets for paths showing increased weights after training,
with only one of 4 such paths being between two somatosensory
cortical areas. Among paths showing decreased weights after
training, one of 10 sources and 3 of 10 targets were in somatosen-
sory cortex, with none of 6 such paths being between two somato-
sensory cortical areas. It is interesting that the S1 paths mostly
involved the right PCS, ipsilateral to the stimulus. This may re-
flect right hemisphere specialization for some aspects of tactile
processing, in accord with some earlier studies (Zhang et al.,
2004; Stilla et al., 2007; Stilla and Sathian, 2008), although more
work is required to assess this possibility.

Discussion

Most earlier studies of perceptual learning lacked a control task to
factor out nonspecific processes, and also focused on particular
neocortical areas. Similar to a previous study of visual learning
(Schiltzetal., 1999), the present study included a control task and
used the task X session interaction to isolate training-specific
changes, unconfounded by extraneous variability of the BOLD
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Figure 5.  Spatial condition-specific paths whose weights increased (a) or decreased (b)
significantly frominitial to final session. Absolute magnitude of change in path weight is shown,
color-scale at right. Put, Putamen; aTh, anterior thalamus; pTh, posterior thalamus; alns, ante-
rior insula; plns, posterior insula. ROIs identified on the task XX session interaction analysis of
activations are shown in pink (increased spatial selectivity with training); those identified on
the conjunction analysis of activations are shown in blue (spatially selective in both sessions,
without training-associated change).

signal. This is a good model for rehabilitative studies (Hampstead
et al., 2011, 2012). Moreover, running a control group in the
present study assured that the changes observed could be reliably
attributed to training effects, and the whole-brain analysis per-
mitted the possibility of finding distributed neural changes. Par-
ticipants in the experimental group demonstrated perceptual
learning in the tactile hyperacuity range resulting from training.
Whereas these participants experienced >six-fold decline in spa-
tial threshold, a comparable control group tested twice without
intervening training exhibited no perceptual learning.

Our task was adapted from a visual version (Westheimer,
1977). Visual learning on a related hyperacuity task was specific
for stimulus position and orientation (Crist et al., 1997). As re-
viewed in the Introduction, many studies implicated V1 as the
locus of neural plasticity underlying visual learning (Schoups et
al., 2001; Schwartz et al., 2002; Furmanski et al., 2004; Yotsumoto
etal., 2008; Gilbert et al., 2009; Bao et al., 2010; Jehee et al., 2012),
whereas other studies showed plasticity of representations in ex-
trastriate visual (Zohary et al., 1994; Tovee et al., 1996; Raiguel et
al., 2006), somatosensory (Recanzone et al., 1992b,c,d; Harris et
al., 1999), and auditory (Recanzone et al., 1993; Alain et al., 2007;
van Wassenhove and Nagarajan, 2007) cortex. However, others
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found that pertinent changes were modest in visual cortical areas
(Ghose et al., 2002; Yang and Maunsell, 2004), were not confined
to early visual areas (Song et al., 2002; Ding et al., 2003; Mayhew
et al., 2012), or affected the decision stage rather than sensory
representations (Law and Gold, 2008). These neurophysiological
studies, along with psychophysical and modeling studies (Petrov
et al., 2005; Bejjanki et al., 2011; Huang et al., 2012), favor an
alternative hypothesis: that perceptual learning depends on plas-
ticity of perceptual readout by decision processes. Moreover, vi-
sual learning often transfers outside the training conditions
(Ghose et al., 2002; Song et al., 2002; Ding et al., 2003) or can be
easily induced to do so (Xiao et al., 2008; Zhang et al., 2010).
Thus, visual and tactile learning may not be very different in
specificity, unlike earlier views (Sathian, 2005).

Lack of evidence for sensory representational plasticity
Spatially selective somatosensory cortical responses in the PCS
and OP3 (corresponding to Brodmann’s area 2 of S1 and the
ventral somatosensory area, respectively) were present in both
initial and final scan sessions, without a significant task X session
interaction. Tactile hyperacuity probably depends on spatial
shifts in the profile of active slowly adapting type I, and possibly
rapidly adapting, afferent populations (Wheat et al., 1995;
Sathian and Zangaladze, 1998). Thus, learning on our tactile hy-
peracuity task can be expected to be associated with resolution of
smaller spatial shifts in the corresponding peripheral neural pop-
ulations. If S1 representations are similar to peripheral represen-
tations, an increase in the magnitude of spatial task selectivity
would not be expected with learning. However, stimulus repre-
sentations undergo transformation in S1 from peripheral repre-
sentations that are isomorphic with stimuli (Phillips et al., 1988;
Salinas et al., 2000). Such transformed representations might
show learning-related changes that could be reflected in BOLD
signal changes: we did not, however, find any such changes on
either whole-brain or ROI analyses, at least in our relatively small
sample size of 10 participants. Consistent with our findings, a
recent study of perceptual learning in visual orientation discrim-
ination found no changes in BOLD signal magnitude in early
visual cortex but reported subtler visual cortical plasticity using a
signal detection analysis of orientation-selective voxel responses
(Jehee et al., 2012). Thus, other fMRI methods (e.g., based on
multivoxel pattern analysis, or fine-grained analysis of digit
maps; Duncan and Boynton, 2007) might demonstrate somato-
sensory cortical plasticity in our task, as might methods using
alternative modalities, such as electrophysiology. Indeed, so-
matosensory cortical plasticity occurs in other tasks (see above),
and changes in both sensory representations and decision pro-
cesses may be relevant (Bejjanki et al., 2011; Mayhew et al., 2012).

Task X session interactions were also absent in the FEF and
IPS regions that were spatially selective in both sessions, impli-
cating these regions in processes related to task performance
(Stilla et al., 2007) but not in perceptual learning of our task. Few
perceptual learning studies have investigated connectivity
changes (Schwartz et al., 2002; Mukai et al., 2007; Lewis et al.,
2009; Powers et al., 2012). Under the sensory representation hy-
pothesis, connectivity changes would be expected to focus on
somatosensory cortex. Contrary to this prediction, somatosen-
sory cortical areas were involved in relatively few paths displaying
training-induced changes in task-specific weights. Although our
activation and connectivity findings cannot exclude a role for
sensory representational changes, they do indicate that such
changes are much less prominent than those in extrasensory
regions.
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Evidence favoring reweighting of perceptual readout
Importantly, we found task-specific interactions resulting from
greater spatially selective activations, after training on the spatial
task, only in areas implicated in motor and/or decision processes.
The human anterior insula exhibits decision-related, effector-
independent signals in a random-dot motion direction discrim-
ination task (Liu and Pleskac, 2011). The pre-SMA is part of
medial premotor cortex, which is an important node in the
decision-process network associated with vibrotactile detection
and discrimination in macaques (Romo and de Lafuente, 2012).
Further, the human pre-SMA and other parts of medial prefron-
tal cortex are involved in decision-making (Goni et al., 2011).
Similarly, the putamen is another motor structure that plays a
role in human decision processes (Balleine et al., 2007; Kithn et
al., 2011) and specifically in decision processes related to tactile
discrimination in macaques (Merchant et al., 1997). Its involve-
ment in tactile learning may relate to its function in automatiza-
tion during motor learning (Costa, 2007). The cerebellum is also
a motor structure implicated in decision-making (Guggisberg et
al., 2008). Of the thalamic nuclei in the region displaying a sig-
nificant interaction effect, VA and VL are motor nuclei connected
with motor cortical regions, the basal ganglia, and the cerebellum
(Saper etal., 2000), whereas the MD nucleus connects to prefron-
tal cortex (Jakab et al., 2012).

The emergence of decisions in sensory tasks depends on a
distributed neural network, with progression from responses re-
flecting sensory encoding in sensory areas to decision output in
subcortical nuclei and in premotor, prefrontal, and parietal cor-
tical areas (Sugrue et al., 2005; Romo and de Lafuente, 2012).
Although more work is needed to define the function of each of
these brain regions in decision processes across various tasks, the
activations found in the present study support the hypothesis that
decision-level reweighting of perceptual readout underlies per-
ceptual learning (i.e., decision processes become more sensitive
to smaller sensory signals). Additionally, the only region whose
task-specific BOLD signal changes were found to correlate with
psychophysical changes in discrimination threshold across par-
ticipants was a rostral anterior cingulate cortical focus. This re-
gion is also implicated in decision processes (Litt et al., 2011; Zhu
et al., 2012), although our focus exhibited a greater negative
BOLD response for the spatial than the temporal task, with
greater threshold change correlating with a decrease of this neg-
ative response. Negative BOLD responses reflect decreased cere-
bral blood flow at the cortical surface with a paradoxically
increased cerebral blood volume in mid-layers; although the un-
derlying physiology is incompletely understood, activity of inhib-
itory neurons is a possibility (Goense et al., 2012). If so, greater
decrease in activity of such inhibitory neurons may be correlated
with greater threshold change, but this is speculative at this point.

Further evidence for decision-level changes comes from our
novel multivariate analysis of effective connectivity, based on cal-
culated neuronal responses after hemodynamic deconvolution.
Although perceptual reweighting has been modeled before
(Petrov et al., 2005; Law and Gold, 2009; Bejjanki et al., 2011;
Huang et al., 2012), it has not been evaluated empirically using
studies of connectivity. The majority of paths displaying task-
specific increases or decreases in weight after training involved
posterior parietal, prefrontal, or subcortical regions implicated in
motor and/or decision processes. Most paths whose weights in-
creased after training had subcortical sources whose spatial task
selectivity increased with training, whereas most paths decreasing
in weight after training originated in neocortical loci that were
spatially selective but whose selectivity did not change with train-
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ing. This is consistent with increasing involvement of subcortical
systems during automatization of task-specific processes in tac-
tile learning (present study) as in motor learning (Doyon and
Benali, 2005).

Also, all but one of the 10 plastic paths involving somatosen-
sory cortex connected to one of the motor/decision regions.
Some paths showing decreased weight after training linked a so-
matosensory cortical region and IPS sites implicated in visual
attention. Because studies of visual learning reported changes in
connectivity between visual cortical regions and frontoparietal
attentional control centers (Mukai et al., 2007; Lewis et al., 2009),
the observed neuroplasticity could relate to attentional processes.
However, a detailed study found no evidence for tactile attention-
selective responses in these frontoparietal regions (Burton et al.,
2008). Other studies did find equivalent responses for tactile and
visual spatial attention in IPS regions near our alPS sites
(Macaluso et al., 2002, 2003). However, in the present study,
these alPS regions did not show significant task-specific changes
in connectivity with somatosensory cortical regions, nor did they
show significant task-specific changes in activation between ses-
sions. Hence, it appears more likely that the plastic connections
between somatosensory and dorsal parietal regions found here
represent decision-level changes. Thus, our effective connectivity
data argue for the reweighting of perceptual readout by decision
processes as a key mechanism mediating tactile spatial learning.
This is consistent with a growing body of literature on visual
learning (Petrov et al., 2005; Law and Gold, 2008; Bejjanki et al.,
2011; Huang et al., 2012).

In conclusion, perceptual learning on a tactile hyperacuity
task was associated with prominent activation and connectivity
changes in subcortical and anterior neocortical regions involved
in motor and/or decision processes. Importantly, these neuro-
plastic changes were specific for the trained spatial task relative to
the control temporal task. Moreover, the activation changes were
absent in a control group of participants tested twice without
intervening training; this group also did not manifest perceptual
learning. Together, these findings provide strong support for the
hypothesis that the critical neuroplasticity mediating perceptual
learning involves perceptual readout by decision networks. This
hypothesis is consonant with the growing shift away from strictly
modular models of the brain toward conceptions embodying
complex network interactions underlying even simple tasks
(Sporns, 2011). The convergence of our findings on tactile learn-
ing with an expanding body of literature on visual learning rec-
onciles discrepancies in the earlier literature on perceptual
learning.
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