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Abstract
Psychiatric and neurodegenerative disorders, including intellectual disability (ID), autism
spectrum disorders (ASD), schizophrenia (SZ), and Alzheimer's disease (AD), pose an immense
burden to society. Symptoms of these disorders become manifest at different stages of life: early
childhood, adolescence, and late adulthood, respectively. Progress has been made in recent years
toward understanding the genetic substrates, cellular mechanisms, brain circuits, and
endophenotypes of these disorders. Multiple lines of evidence implicate excitatory and inhibitory
synaptic circuits in the cortex and hippocampus as key cellular substrates of pathogenesis in these
disorders. Excitatory/inhibitory balance – modulated largely by dopamine – critically regulates
cortical network function, neural network activity (i.e. gamma oscillations) and behaviors
associated with psychiatric disorders. Understanding the molecular underpinnings of synaptic
pathology and neuronal network activity may thus provide essential insight into the pathogenesis
of these disorders and can reveal novel drug targets to treat them. Here we discuss recent genetic,
neuropathological, and molecular studies that implicate alterations in excitatory and inhibitory
synaptic circuits in the pathogenesis of psychiatric disorders across the lifespan.
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Introduction
Abnormalities in synapses of excitatory and inhibitory neurons have emerged as key cellular
substrates in the pathogenesis of several psychiatric and neurodegenerative disorders
(Penzes et al. 2011). Indeed, disease-specific disruptions in synaptic morphology and
function accompany a large number of brain disorders, suggesting that such alterations may
serve as substrates for many psychiatric and neurological disorders, particularly those that
involve deficits in information processing. In support of this view, recent studies found
altered dendritic spine density on cortical pyramidal neurons in individuals with ID, ASD,
SZ and AD (Penzes et al. 2011). In addition, structural and functional changes in
GABAergic inhibitory circuits have been described in ASD and SZ (Chattopadhyaya and
Cristo 2012). Among these, dysfunction of inhibitory parvalbumin-positive (PV-positive)
basket cells is thought to play a major role in both ASD and SZ (Lewis and Gonzalez-
Burgos 2008; Gogolla et al. 2009). Alterations in GABAergic circuits in ASD are supported
by findings of significantly reduced GAD65 and GAD67 in the parietal cortex and
cerebellum (Fatemi et al. 2002; Yip et al. 2007) and alterations in GABAA and GABAB
receptors in post-mortem brains of autistic subjects (Collins et al. 2006; Fatemi et al. 2009;
Oblak et al. 2010), combined with reduced benzodiazepine binding to GABAA receptors
(Guptill et al. 2007). A reduction in multipolar interneuronal dendritic length and reduced
GAD67 levels occur in SZ and may underlie the dysfunction of inhibitory circuits in the
disease (Kalus et al. 2002; Lewis et al. 2005; Akbarian and Huang 2006).

Here we discuss synaptic alterations in ID, ASD, SZ, and psychosis in AD (AD+P). These
disorders become manifest at different stages across the life: ID and ASD in early childhood,
positive SZ symptoms in adolescence and young adulthood, and AD in late adulthood
(Figure 1). Although spine formation and elimination occur throughout a normal lifespan,
perinatal and postnatal net synapse proliferation is followed by a period of protracted net
synapse elimination that lasts throughout childhood and into adolescence in some brain
regions. This is followed by synapse maintenance in the adult brain that preserves circuitry
established earlier in life. Disruption of synapse morphogenesis and function during a
particular time during development, or in a particular brain region, may dictate the
subsequent neuropathological symptoms that arise. Thus, the timing of synapse pathology
can lead to disease-specific synaptic and cellular dysfunction, neuronal circuit alterations,
and ultimately cognitive and behavioral symptoms.

Consistent with the idea that synaptic circuits are common substrates of mental disorders, a
multitude of genetic studies over the past few years have implicated “neuroplasticity” genes
in the etiology of these disorders. Indeed, it is now widely accepted that rare (copy number
variants and point mutations) and common variants in genes that control the development
and plasticity of synapses and dendrites increase risk for mental disorders (Gilman et al.
2011; Gai et al. 2012; Guilmatre et al. 2009; Kirov et al. 2012).

Many psychiatric and neurological disorders are associated with disruptions of dendritic
spine numbers and morphology. In the mammalian forebrain, most glutamatergic excitatory
synapses occur on small protrusions on dendrites called dendritic spines (Figure 2). Changes
in spine morphology occur in synaptogenesis, maintenance, plasticity and elimination.
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During development, dynamic spines allow dendrites to actively participate in
synaptogenesis, thereby contributing to the establishment of connectivity within neuronal
circuits (Holtmaat and Svoboda 2009). Activity-dependent spine maintenance or elimination
contributes to the remodeling of neuronal circuits during postnatal development and
adolescence (Zuo et al. 2005; Alvarez and Sabatini 2007). Spines undergo experience-
dependent morphological changes in live animals (Holtmaat and Svoboda 2009; Alvarez and
Sabatini 2007) and spine morphology is intimately linked to human cognitive development
and function (Lewis and Gonzalez 2008). Spine dynamics are regulated by molecular
pathways that control cytoskeletal remodeling, trans-synaptic adhesion, receptor trafficking,
protein translation, ubiquitination, and gene expression (Penzes et al. 2008; Tada and Sheng
2006; Penzes and Jones 2008).

In this mini-review we elaborate on recent findings presented by some of the authors at the
5th Special Neurochemistry Conference entitled “Synapses and dendritic spines in health and
disease” held in Buenos Aires, Argentina. We review genetic studies that address etiology,
postmortem neuropathological studies that reveal the pathophysiological outcome of the
disease process, and functional studies in model systems that investigate the underlying
neurobiological mechanisms. We propose that while these disorders have largely distinct
symptom profiles, they collectively share the common substrate of abnormal function of
synaptic circuits.

Synaptic dysfunction in ID and ASD
One of the most common neurodevelopmental disorders is ID. Patients affected by ID have
an intelligence quotient of 70 or below and often exhibit deficits in behaviour related to
adaptive functioning, which includes ASD. Over 25% of ID and ASD cases are caused by
genetic factors (Rauch et al. 2006; Pinto et al. 2010) and up to 60% have unknown
etiologies. Several single-genes causing syndromic or nonsyndromic ID have been identified
over the past 15 years. Most of these genes are located on the X chromosome and are
responsible for X-linked intellectual disabilities (XLID). Interestingly, more then 50% of the
ID-related proteins that are not transcription or chromatin-remodelling factors are clearly
present in the pre- or post-synaptic compartments and appear to be implicated in synaptic
functions by regulating actin cytoskeleton rearrangement, synaptic plasticity or synapse
formation (Ropers and Hamel 2005). In this review we will describe the molecular
mechanisms by which dysfunctions in some of these synaptic proteins – including Shank,
IL1RAPL1, oligophrenin-1 and TSPAN7 – contribute to ID and ASD.

SHANK3 haploinsufficiency is now considered to be the main cause of the neurobehavioral
symptoms of the Phelan-McDermid syndrome (PMS, also called 22q13.3 deletion
syndrome), although other genes may also be lost by the chromosomal deletion (Bonaglia et
al. 2001; Wilson et al. 2003; Durand et al. 2007; Delahaye et al. 2009). Indeed, a number of
de novo mutations in SHANK3 (Durand et al. 2007; Moessner et al. 2007; Gauthier et al.
2009), SHANK2 (Berkel et al. 2010), and in SHANK1 (Sato et al. 2012) have been
identified in individuals with ASD and ID. A number of knock out mice have been created
for the three SHANK genes. The first described mouse, lacking Shank1, has small dendritic
spines, weakened synaptic transmission, enhanced learning (Hung et al. 2008), and defects
in social communication (Wöhr et al. 2011). In addition, more recent studies show that mice
with heterozygous or homozygous disruption of Shank3 have self-injurious repetitive
grooming, deficits in social interaction, alterations in learning and memory formation, and
defects in synaptic transmission (Bozdagi et al. 2010; Peça et al. 2011; Wang et al. 2011).
The behavioral defects correlate with impaired basal synaptic transmission in CA3-CA1
connections, reduced GluR1 clusters and protein levels in the hippocampus, altered activity-
dependent AMPAR synaptic plasticity and major changes in striatal and cortico-striatal
synapses (Bozdagi et al. 2010; Peça et al. 2011; Wang et al. 2011). Shank3 knocked down in
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rodent neuronal cultures by RNA interference (shRNA) specifically reduced the expression
of mGluR5 receptors and also impaired DHPG-induced phosphorylation of ERK1/2 and
CREB (Verpelli et al. 2011). Finally, the Shank2 knockout mice, like their Shank3 knockout
counterparts, show abnormalities in behavior tests, impairment in social activities,
hyperactivity, and defects in synaptic transmission (Bockers et al. 2004; Schmeisser et al.
2012; Won et al. 2012). These studies demonstrate that mice with mutations in the SHANK
genes cause alterations in synaptic morphology and signalling, as well as changes in
behavior characteristics, indicating that they are good animal models for the study of ID and
ASD.

Most of the XLID are attributable to the Fragile X and Rett syndromes; however, mutations
of several other genes on the X chromosome have been found to strongly associate with ID,
with an estimated 50% of the XLID genes coding for synaptic proteins (Laumonnier et al.
2007). For instance, cognitive impairments ranging from nonsyndromic ID to ASD have
been found in patients with mutations in the interleukin-1 receptor accessory protein-like 1
gene (IL1RAPL1) (Carrie et al. 1999; Bhat et al. 2008; Piton et al. 2008; Franek et al. 2011).
The IL1RAPL1 protein is structurally formed by three extracellular Ig-like domains, a
transmembrane domain, and an intracellular Toll/IL-1R homology domain (TIR domain).
IL1RAPL1 binds postsynaptic density protein 95 (PSD-95) and regulates its
phosphorylation and synaptic association by activating the c-Jun terminal kinase (JNK)
(Pavlowsky et al. 2010). Instead the extracellular domain of IL1RAPL1 induces presynaptic
differentiation by binding the receptor tyrosine phosphatase δ (PTPδ), which is localized at
the presynaptic terminal, while the TIR domain binds to RhoGAP2 and regulates dendritic
spine formation (Valnegri et al. 2011b; Yoshida et al. 2011). All these findings suggest that
the IL1RAPL1 complex mediates trans-synaptic signalling that regulates excitatory synapse
formation and function.

Some forms of XLID are caused by mutations or deletions in the synaptic RhoGTPase-
activating protein oligophrenin-1 (Nadif Kasri and Van Aelst 2008), indicating that
signalling involving member A of the Ras homologue gene family (RhoA) is involved in ID.
Oligophrenin-1 is a negative regulator of RhoA, Rac and Cdc42, and also interacts with the
postsynaptic adaptor protein Homer (Govek et al. 2004). Knockdown of oligophrenin-1 in
CA1 pyramidal neurons significantly reduces spine length and this effect is mimicked by a
constitutively active form of RhoA and can be rescued by the presence of constitutively
dominant negative RhoA, which leads to an inhibition of the RhoA effector Rho-kinase
(ROCK1) (Govek et al. 2004). Considering the important role of ROCK1 in actin
remodelling, these results strongly suggest that RhoA regulates the actin cytoskeleton of
spines, possibly through effects on the LIM kinase, myosin light chain (MLC), or MLC
phosphatase (Govek et al. 2004; Nadif Kasri and Van Aelst 2008). A new role of
oligophrenin-1 in regulating the activity of the circadian clock protein Rev-erbα has also
recently been shown, suggesting that the etiology of intellectual disability could be related to
the interaction between synaptic activity and circadian oscillators (Valnegri et al. 2011a).
Very recently, Powell et al. showed that oligophrenin-1-deficient mice have changes in the
number of vesicles in the readily releasable pool and also have altered availability of
secretory vesicles (Powell et al. 2012). Thus, alterations in oligophrenin-1 expression result
in multiple deficits of synaptic activity and plasticity that depend on oligophrenin-1 being
expressed in both the pre- and postsynaptic terminals.

TSPAN7 is directly associated with cognitive defects in humans because several alterations
to its gene (TM4SF2) – TM4SF2 inactivation by an X:2 balanced translocation, a premature
stop codon TGA (gly218-to-ter), (Zemni et al. 2000) and a 2-bp deletion (564delGT)
resulting in a premature stop codon at position 192 (Abidi et al. 2002) – are directly
associated with non-syndromic intellectual disability. The gly218-to-ter nonsense mutation
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and the 2-bp deletion may predict a truncated TSPAN7 lacking cytoplasmic C-terminal tail
and the fourth transmembrane domain. TSPAN7 promotes filopodia and dendritic spine
formation in cultured hippocampal neurons, and is required for spine stability and normal
synaptic transmission. TSPAN7 directly interacts with the PDZ domain of protein
interacting with C kinase 1 (PICK1), and associates with AMPAR subunit GluA2 and β1-
integrin. Interestingly TSPAN7 regulates AMPA receptor trafficking by modulating the
PICK1 and GluA2/3 association. These findings identify TSPAN7 as a key player in the
morphological and functional maturation of glutamatergic synapses; possibly explaining
why its deletion is strongly associated with ID in humans (Bassani et al. 2012).

In conclusion, several genetic and functional studies demonstrate that mutations associated
with intellectual disabilities occur in molecules that play an essential role in regulating brain
synapse formation and plasticity.

Abnormalities of spiny synapses in schizophrenia
Schizophrenia is a complex developmental psychiatric disorder generally characterized by
positive (i.e., hallucinations, disorganized thoughts, delusions) and negative (i.e., diminished
affect, social withdrawal) symptoms, and deficits in executive and cognitive functions
(Harrison and Weinberger 2005; Owen and O'Donovan 2005). Schizophrenia affects
approximately 0.5-1% of the population. Positive symptoms (i.e. hallucinations, delusions)
typically emerge in late adolescence or early adulthood, while negative symptoms (i.e.
impaired social interactions, low affect) and deficits in cognitive function can be observed
earlier in development. Disturbances in glutamate, GABA and dopamine neurotransmission
have been implicated in the observed functional ‘dysconnectivity’ in neural circuits
observed in schizophrenia (Kantrowitz and Javitt 2010; Bergeron and Coyle 2012; Seeman
2009).

As synapses are the basic units of neural circuits and are intimately involved in
neurotransmitter signal transduction, dendritic spine dysfunction may play an important
etiological role in schizophrenia. Indeed, structural MRI studies have consistently shown
gray matter reductions in schizophrenic patients. Among the ultrastructural changes thought
to directly contribute to the lower gray matter are reductions in spine density (Selemon and
Goldman-Rakic 1999). Several postmortem studies have examined spine density in brain
regions with pronounced gray matter loss. Spine loss has been reported in the dorsolateral
prefrontal cortex (DLPFC), particularly in layer 3 neurons (Glantz and Lewis 2000).
Schizophrenia patients also show a profound reduction in spine density on pyramidal
neurons in the superior temporal gyrus (STG), particularly in the primary auditory cortex
(Sweet et al. 2009), which could potentially be associated with auditory hallucinations
(Barta et al. 1990). Several studies have shown reductions in hippocampal volume in
schizophrenia (Steen et al. 2006). Within the hippocampus, reduced spine density on
subicular dendrites, reduced CA3 spine density (Law et al. 2004; Kolomeets et al. 2005), as
well as reduced spine size (Kolomeets et al. 2005) have been reported. A lower density of
synaptic contacts formed by individual mossy fiber tracts on CA3 pyramidal neurons
(Kolomeets et al. 2007) has also been reported.

Risk for schizophrenia is associated with a combined effect of multiple susceptibility genes
and environmental interactions during development (Stefansson et al 2003; Lewis and Levitt
2002; Meyer and Feldon 2009; Rapoport et al. 2005; Arango et al. 2008). Genetic linkage
and genome wide association studies have not identified a clear link between
neurotransmitter-associated genes (i.e., for biosynthetic or metabolizing enzymes, receptors)
and the etiology of schizophrenia (Harrison and Weinberger 2005). Instead, genetic studies
have identified haplotypes and single nucleotide polymorphisms (SNPs) associated with
genes regulating neuronal migration, synaptic structure and plasticity (Harrison and
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Weinberger 2005), and more recently, genome-wide association studies have identified
genes encoding proteins regulating neuronal excitability as potential risk factors for
cognitive deficits and numerous psychiatric disorders (Weissflog et al. 2012; Franke et al.
2009; Casamassima et al. 2010; Bhat et al. 2012; Meier et al. 2012). Here we will
summarize recent findings on some of the most prominent ones and explore their roles in
spine dynamics.

A large number of genetic linkage and association studies have suggested that the NRG1
and ERBB4 genes may be risk factors for schizophrenia (Stefansson et al. 2002; Munafo et
al. 2008; Munafo et al. 2006; Hall et al. 2006; Silberberg et al. 2006; Law et al. 2007; Tan et
al. 2010; Nicodemus et al. 2010) and its endophenotypes (Greenwood et al. 2012;
Greenwood et al. 2011). These genes also regulate several biological processes altered in
schizophrenia (Buonanno and Fischbach 2001; Mei and Xiong 2008; Buonanno 2010).
While many genes have been associated with a risk for schizophrenia and regulate biological
process similar to NRG1 and ErbB4, few show the same degree of biological plausibility
and reproducible association with the disease. In particular, a functional NRG1 SNP
associated with schizophrenia (Walss-Bass et al. 2006) that substitutes a valine in the NRG1
(type III) transmembrane domain necessary for gamma-secretase-dependent cleavage (Chen
et al. 2010) constitutes an important “at risk” variant for the disorder. In addition, a second
NRG1 polymorphism (SNP8NRG243177) within the original HAPICE “at risk” Icelandic
haplotype (Stefansson et al. 2002), a large region of DNA that is hyper-variant in
schizophrenia and associated with transcriptional regulation of type III NRG1 (Weickert et
al. 2012), is highly associated with risk for developing psychotic symptoms, decreased
premorbid IQ and activation of frontal and temporal lobes (Hall et al. 2006). Moreover,
studies that have evaluated 94 candidate genes for schizophrenia and ten quantitative
endophenotypes, such as pre-pulse inhibition, P50 suppression and the Wisconsin Card
Scoring Test, identified NRG1 and ERBB4 as schizophrenia susceptibility genes
(Greenwood et al. 2012; Greenwood et al. 2011).

Both NRG1 and ErbB4 regulate synaptic structure and function. ErbB4 is expressed in
interneurons, and potentially less abundantly, in cortical pyramidal cells and spines of
excitatory neurons (see below). Long-term NRG1 treatment increases pyramidal neuronal
spine density and the preponderance of spines with mature phenotypes (Barros et al. 2009).
ErbB4 overexpression increases spine density, area, and excitatory synaptic transmission (Li
et al. 2007). Conversely, erbB4 knockdown reduces spine density and size (Li et al. 2007).
Mice deficient in NRG1 type III show reductions in spine density in hippocampal neurons
(Chen et al. 2008). Mice lacking erbB2 and erbB4 in the CNS show reduced spine density in
both the hippocampus and cortex (Barros et al. 2009). In both these mice, spine
morphological deficits co-occur with schizophrenia-related behavioral phenotypes.

The initial link of the disrupted in schizophrenia 1 (DISC1) gene to schizophrenia was
identified in a Scottish pedigree with a disruption of the DISC1 open reading frame.
Polymorphisms and frame shift mutations of DISC1 have been linked to schizophrenia in
other lineages (Schumacher et al. 2009). As DISC1 has been associated with several
psychiatric disorders, including bipolar disorder, depression, and autism, it seems likely that
it constitutes a general psychiatric vulnerability gene. DISC1 is highly abundant in spines
(Kirkpatrick et al. 2006). In cortical neurons, long-term knockdown reduces spine area
(Hayashi-Takagi et al. 2010), whereas its short-term knockdown increases spine density and
size. The effects of DISC1 mutations in mice on spine density reflect brain region and
developmentally influenced effects. Namely, spine numbers in dentate gyrus granule cells
are reduced in a mouse model of disease-associated chromosomal translocation (Kvajo et al.
2008), and dendrite complexity is reduced by early postnatal expression of DISC1 C-
terminus in mice (Li et al. 2007). Spine density in cortical pyramidal neurons was increased
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by prenatal expression of mutant DISC1, while combined prenatal and postnatal expression
increased spine density in hippocampal granule cells (Ayhan et al. 2011).

While DISC1 mRNA levels seem unaffected in schizophrenia patients (Dean et al. 2007;
Lipska et al. 2006), the expression of DISC1 interacting proteins was reduced in patients
carrying high-risk DISC1 SNPs (Lipska et al. 2006), suggesting that DISC1 function might
be affected in schizophrenia. Disruption of DISC1's ability to scaffold proteins in spines
would be expected to have deleterious consequences on spine morphogenesis. Indeed,
DISC1 is known to interact with several well-established regulators of spine morphogenesis,
most prominently the RacGEF kalirin-7 (Millar et al. 2003). Recently kalirin-7, via
activation of its downstream effector Rac1, was found to directly regulate the effects of
DISC1 on spine morphology (Hayashi-Takagi et al. 2010). Interestingly, the expression of
kalirin mRNA was reduced in the DLPFC of patients with schizophrenia, irrespective of
antipsychotic treatment (Hill et al. 2006). This suggests a potential role for small GTPase
pathways in spine pathology in schizophrenia. Indeed, the expression of Cdc42 mRNA was
also reduced in postmortem schizophrenic DLPFC (Hill et al. 2006; Ide et al. 2010). Loss of
kalirin and Cdc42 strongly correlates with spine loss in layer 3 PFC neurons (Hill et al.
2006). Because of kalirin's important synaptic functions, its interactions with DISC1 and its
reduced expression in schizophrenia, recent studies have examined how kalirin loss impacts
spines and behavior. Interestingly, kalirin KO mice show severe reductions in spine density
and dendrite complexity in the frontal cortex, as well as schizophrenia-related impairments
in working memory, sociability, and prepulse inhibition (Cahill et al. 2009; Xie et al. 2010).
Remarkably, both spine loss and behavioral dysfunction emerged during adolescence and
were absent in juvenile KO mice (Cahill et al. 2009). This is interesting given the onset of
schizophrenia symptoms in adolescence in humans, and points to a tight association between
the onset of spine loss and the onset of behavioral impairments in these animals.

The 22q11.2 microdeletion syndrome is the most common CNV associated with
schizophrenia, accounting for 1-2% of cases (Stark et al. 2008). Primary hippocampal
neurons from mice engineered to carry hemizygous deletion of the 1.3-Mb orthologous
chromosomal region (Df(16)A+/-) showed reduced spine density and sizes (Mukai et al.
2008). Interestingly, loss of either of two genes within this region (ZDHHC8 and Dgcr8)
was sufficient to impair spine and dendrite morphology (Stark et al. 2008; Mukai et al.
2008). ZDHHC8 is a palmitoyl transferase which palmitoylates PSD-95; its loss results in
reduced spine density and simpler dendrites, and its replacement into Df(16)A+/- neurons
rescued spine and dendrite deficiency (Mukai et al. 2008). Dgcr8 is involved in miRNA
processing, and its loss results in smaller spines and simpler dendrites (Stark et al. 2008).
Mice modeling the 22q11.2 microdeletion syndrome (Df(16)A+/-) showed reduced
hippocampal spine density and sizes (Mukai et al. 2008). Mice deficient in individual genes
within this region (ZDHHC8 and Dgcr8) showed simplified dendritic trees and reduced
spine density (Mukai et al. 2008), or smaller spines (Stark et al. 2008), respectively.

Abnormalities in inhibitory circuits in SZ
The synchronization of neuronal network activity in the human cortex and hippocampus at
gamma frequencies (30-80 Hz) is important for cognition, learning and memory (Engel and
Singer 2001) and is altered in schizophrenia (Herrmann and Demiralp 2005; Spencer 2009;
Gonzalez-Burgos and Lewis 2008). Gamma oscillations emerge from the synchronized
firing of interconnected excitatory glutamatergic and primarily inhibitory fast-spiking
GABAergic PV+ interneurons (Cobb et al. 1995), and their power (i.e. amplitude) is
modulated by the E/I balance at distinct synaptic sites in the circuit and the intrinsic
excitable properties of the neurons (Bartos et al. 2007). Event-related gamma oscillation
power is reduced in subjects diagnosed with schizophrenia (Kwon et al. 1999; Wilson et al.
2008), and the regional reaction time phase-lock of oscillations is correlated with either
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positive or negative symptoms (Spencer et al. 2004). Importantly, GABAergic fast-spiking
interneurons and levels of the GABA biosynthetic enzyme GAD67 are reduced in PV+
interneurons in postmortem brains from affected individuals, suggesting that specific neural
circuits may be associated with schizophrenia (Akbarian et al. 1995; Woo et al. 1998; Woo
et al. 2004) also see (Gonzalez-Burgos and Lewis 2008). Altered functionality of PV+
basket cell GABAergic interneurons, which provide perisomatic inhibition to pyramidal
neurons, may account for the observed reduction in neural network oscillations that are
important for working memory (Gonzalez-Burgos and Lewis 2012; Spencer 2009).

Determining the cellular and subcellular localization of ErbB4 and its function at pre- and
post-synaptic sites is critically important for understanding the role of this signaling pathway
in modulating E/I balance and neuronal network activity. ErbB4 mRNA expression patterns
have long been known to correspond to GABAergic neurons in the neocortex and
hippocampus (Lai and Lemke 1991; Steiner et al. 1999; Gerecke et al. 2001; Fox and
Kornblum 2005; Thompson M. et al. 2007), and unlikely to be expressed in glutamatergic
neurons as demonstrated by single-cell PCR from electrophysiologically identified neurons
(Vullhorst et al. 2009). Recently, using highly specific polyclonal and monoclonal
antibodies, ErbB4 receptor protein was detected in the somato-dendritic region of distinct
GABAergic neuronal subtypes in the hippocampus (Fisahn et al. 2009; Yau et al. 2003) and
the neocortex of rodents and primates (Neddens et al. 2011; Neddens and Buonanno 2011).
Of importance, ErbB4 is expressed in approximately 50% hippocampal (Fisahn et al. 2009)
and nearly all neocortical PV+ fast-spiking GABAergic interneurons (Neddens and
Buonanno 2011). The receptor is also expressed in cholecystokinin (CCK)-positive
GABAergic basket cells, another interneuron subtype that contributes to gamma oscillations
(Tukker et al. 2007).

Soma targeting basket and axoaxonic AIS targeting chandelier GABAergic interneurons,
respectively, can regulate E/I balance and neuronal network activity by regulating the
excitability and firing frequency of glutamatergic pyramidal neurons. In contrast to the
consistent observation that ErbB4 is expressed in the somatodendritic compartment of
interneurons, its presence at presynaptic GABAergic terminals has been more controversial.
Activation of ErbB4 by exogenously added NRG1 was reported to promote depolarization-
dependent release of GABA purportedly by activation of presynaptic ErbB4 receptors on
terminals of basket cells innervating prefrontal cortical pyramidal neurons (Wen et al. 2010);
a similar conclusion was reached after analysis of mini inhibitory postsynaptic potentials
(mIPSCs) from chandelier GABAergic neurons onto pyramidal neocortical neurons (Fazzari
et al. 2010). However, as discussed in more detail below, studies using two highly
characterized monoclonal antibodies raised against the extracellular and intracellular
domains of ErbB4 (Vullhorst et al. 2009) failed to detect immunoreactivity for the receptor
at GABAergic presynaptic terminals innervating either the soma or axon initial segment of
pyramidal neurons in the hippocampus or frontal cortex of rodents and primates (Neddens et
al. 2011; Neddens and Buonanno 2011). The reasons for these disparate findings may result
from the use of commercial polyclonal antisera (Wen et al. 2010; Fazzari et al. 2010) vs.
non-commercial monoclonal antibodies (Vullhorst et al. 2009; Neddens and Buonanno
2011; Neddens and Buonanno 2009) or possibly from fixation and unmasking techniques
that expose limited amounts of epitope.

An important observation that potentially associates schizophrenia at-risk genes with altered
network activity, is the recent demonstration that perfusion of acute hippocampal slices with
1nM NRG1 dramatically increases the power (amplitude) of kainate-induced gamma
oscillations (Fisahn et al. 2009). This effect of is blocked by the pan-specific ErbB receptor
antagonist PD158780 and totally absent in acute slices prepared from ErbB4 knockout mice.
Of importance, the endogenous power of kainate-induced gamma oscillations in slices
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prepared from ErbB4 null mice was reduced by 60% and coincided with a loss of
approximately 50% of hippocampal PV+ GABAergic interneurons (Fisahn et al. 2009).

While some have focused on the potential role of presynaptic ErbB4 receptors on PV+
GABAergic interneurons for regulation of network activity and behavior (Wen et al. 2010;
Fazzari et al. 2010), based on studies using monoclonal ErbB4 antibodies and electron
microscopy analysis, a hypothesis favored by others (Buonanno 2010; Neddens and
Buonanno 2009) is that postsynaptic ErbB4 receptors expressed on dendrites of PV+
GABAergic interneurons, which receive glutamatergic inputs and exhibit the highest levels
of ErbB4 immunoreactivity, are a major site for modulation of E/I balance and neuronal
network activity. Consistent with the latter hypothesis, targeted ablation of either the AMPA
receptor GluR1 or GluR4 subunit at glutamatergic postsynaptic sites of GABAergic
interneurons results in the reduction of kainite-induced gamma oscillation power (Fuchs et
al. 2007) that are similar to those in ErbB4 null mice (Fisahn et al. 2009). In addition,
ablation of the obligatory NMDA receptor NR1 subunit at glutamatergic synapses in
approximately 50% of cortical and hippocampal GABAergic interneurons reduces neuronal
synchrony and elicits “schizophrenia-like” behaviors in mutant mice (Belforte et al. 2010).
Interestingly, mice with either full mutation of ErbB4 or targeted ablation in PV+
interneurons exhibit several behavioral deficits associated with rodent models for
schizophrenia (Wen et al. 2010; Shamir et al. 2012). Therefore, regulation of glutamatergic
transmission at excitatory synapses on inhibitory neurons is a major site for modulation of
neuronal network activity and, as discussed below, NRG/ErbB4 signaling may be a major
regulator at glutamatergic synapses driving GABAergic basket cells.

The C-terminal tail of ErbB4 interacts directly with the MAGUK family of postsynaptic
proteins including PSD-95 (Garcia et al. 2000; Huang et al. 2000) and accumulates at
synaptic puncta on inhibitory neurons (Vullhorst et al. 2009; Fisahn et al. 2009; Longart et
al. 2007). Ultrastructural analysis in CA1 interneurons using immunoelectron microscopy
revealed abundant ErbB4 expression at, and adjacent to, glutamatergic postsynaptic sites
(Vullhorst et al. 2009). By contrast, there is no evidence for presynaptic expression in
cultured GAD67-positive hippocampal interneurons and in CA1 basket cell terminals
(Vullhorst et al. 2009; Fisahn et al. 2009; Longart et al. 2007). The localization of ErbB4 at
excitatory synapses on GABAergic neurons, but not excitatory neurons, identifies these
synapses as a primary target of NRG signaling in the hippocampus and indicates that ErbB4
serves as a selective marker for PSDs on GABAergic neurons (Vullhorst et al. 2009). Taken
together, these findings strongly support a role for postsynaptic somatodendritic ErbB4
receptors on PV+ GABAergic interneurons in modulating glutamatergic drive onto these
cells for regulating gamma oscillation power and “schizophrenia-like” behaviors observed in
ErbB4 mutant mice (Buonanno 2010; Vullhorst et al. 2009; Neddens and Buonanno 2009).

Because ErbB4 is expressed in the somatodendritic region of GABAergic interneurons, it
was important to investigate if receptor activation acutely regulates the intrinsic excitability
and firing properties of ErbB4-positive interneurons. Interneuron output is shaped by the
modulation of action potential (AP) waveform and firing rates. Voltage-gated potassium
(Kv) and sodium (Nav) channels modulate several aspects of neuronal excitability including
AP waveform, duration and firing frequency (Lawrence et al. 2006; Yu et al. 2006; Bean
2007; Milescu et al. 2010). Therefore, regulation of these currents affects AP threshold and
neuronal excitability (Matzner and Devor 1992) that can modulate E/I balance and network
activity. Two recent studies reported on the effects of NRG/ErbB4 signaling on the intrinsic
properties of identified GABAergic interneurons in acute cortical slices from adult mice (Li
et al. 2012) and in dissociated hippocampal cultured neurons (Janssen et al. 2012). Li et al.
found that acute NRG1 application in cortical slices increased the intrinsic excitability of PV
+ interneurons, presumably ErbB4-positive neurons because most cortical PV neurons
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express the receptor (see (Neddens and Buonanno 2011)), by decreasing AP threshold via
Kv1.1 channel blockade; effects on Nav currents were not analyzed (Li et al. 2012). On the
other hand, by recording from pharmacologically isolated and labeled ErbB4-positive
interneurons in dissociated hippocampal cultures, Janssen et al. demonstrated that NRG1
reduces the excitability of dissociated ErbB4+ interneurons, depolarizes the AP threshold,
and decreases maximum Nav channel somatic current. These effects observed only in
GABAergic ErbB4-expressing neurons, but not glutamatergic neurons, were totally blocked
by the ErbB blocker PD158780. In these experimental conditions no effects of acute NRG1
treatment were observed on macroscopic K+ current or AP duration (Janssen et al. 2012).
The apparent discrepancies between these studies may be due to several experimental
differences, such as: a) the study by Li et al. was conducted in slices where NRG1-mediated
release of dopamine (see below; (Kwon et al. 2008)) or other neuromodulators may affect
Kv channels and increase excitability (Govindaiah et al. 2010), while the study by Janssen et
al. used dissociated hippocampal cultures that are devoid of afferents; b) The study by Li et
al. was restricted to PV+ neurons, whereas the other study recorded from identified ErbB4-
positive interneurons that encompass a heterogeneous population of GABAergic neurons
(Neddens and Buonanno 2009); and c) the two studies used interneurons of different ages
and from distinct brain structures. Additional studies will be necessary to determine if the
acute effects of NRG1 on increasing adult interneuron excitability by reducing Kv1.1 result
from an intrinsic effect of ErbB4 activation in PV+ GABAergic neurons or from indirect
effects of NRG1 produced by augmenting extracellular dopamine (Kwon et al. 2008) and
activating D4Rs on this interneuron population (see below, (Andersson et al. 2012)).

Dopamine effects are mediated by D1-type (D1R and D5R) and D2-type (D2R, D3R and
D4R) receptors that are positively and negatively coupled to adenylate cyclase, respectively.
Most antipsychotics used to date target D2-types receptors. Because mice with reduced
levels of NRG1, ErbB4 and NMDA receptor subunits share several “schizophrenia-like”
behavioral abnormalities that are reversed or ameliorated by the antipsychotic clozapine
(Stefansson et al. 2002; Shamir et al. 2012; Mohn et al. 1999), a possible functional link
between NRG1/ErbB signaling and dopamine neurotransmission was investigated. Delivery
of NRG1 by reverse-microdialysis in freely moving rats causes a dramatic and rapid
accumulation of dopamine and its metabolites in the dorsal hippocampus, and this increase
is blocked by PD158780 (Kwon et al. 2008). NRG1-induced increases in dopamine can
reverse synaptic potentiation in the hippocampus through activation of D4Rs. Consistent
with these findings, the effects of NRG1 on synaptic potentiation are blocked by the D4R-
specific antagonist (PD168077) and clozapine, an antipsychotic that preferentially targets
D4Rs, and are absent in D4R knockout mice (Kwon et al. 2008). While ErbB4 transcripts
are expressed in the ventral tegmental area (Steiner et al. 1999; Gerecke et al. 2001), which
sends afferent dopaminergic projections to the hippocampus (Gasbarri et al. 1994; Gasbarri
et al. 1997), ErbB4 immunoreactivity was undetectable on dopaminergic axons (Kwon et al.
2008) but can be detected on the cell bodies of mesocortical- and nigrostriatal-projecting
TH-positive neurons (Neddens and Buonanno, unpublished). Therefore, the possibility that
ErbB4 is present at low levels on dopaminergic axons cannot be excluded presently;
alternatively, NRG1 could promote dopamine release in the hippocampus by acting
indirectly via GABAergic neurons.

Surprisingly little is known about the effects of dopamine on gamma oscillation activity in
the hippocampus and PFC, although it has long been appreciated that dopamine modulates
attention, cognitive salience and working memory (Winterer and Weinberger 2004), and that
its levels are altered in schizophrenia (see Furth et al., under review). The rodent frontal
cortex and hippocampus receive sparse dopaminergic innervation from the VTA that
regulates synaptic transmission, plasticity and working memory (Lisman et al. 2008;
Andersson et al. 2012; Jay 2003; Lisman and Grace 2005). Based on the aforementioned
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studies showing that NRG/ErbB4 signaling increases extracellular DA levels and regulates
hippocampal synaptic plasticity via D4Rs (Kwon et al. 2008), and that targeted ablation of
ErbB4 in PV+ GABAergic interneurons results in “schizophrenia like” behaviors similar to
those observed in null ErbB4 mice (Shamir et al. 2012), the effects of dopamine on kainate-
induced gamma oscillations in hippocampal slices were investigated (Andersson et al.
2012).

Interestingly, the selective activation of D4Rs, but not of D1/D5Rs and D2/D3Rs, increases
gamma oscillation power, and this effect is blocked by a highly specific D4R antagonist
(L-745,870). Consistent with the effects of D4R on gamma rhythms, receptor mRNA and
protein are expressed in GAD67-positive GABAergic interneurons, but not in glutamatergic
hippocampal neurons, and dopamine D4 and ErbB4 receptors are coexpressed in 71% of PV
+ basket cells. Of importance, we found that D4R activation is essential for the effects of
NRG-1 on gamma oscillation power as the selective D4R anatagonist, as wells as the D4R-
preferring atypical antipsychotic clozapine, dramatically reduced the NRG-1-induced
increase in gamma oscillation power (Andersson et al. 2012). This study provides a novel
link between D4R and ErbB4 signaling on gamma oscillation power, and the coexpression
of both receptors in PV+ GABAergic basket cells, suggests a cellular mechanism that may
be compromised in different psychiatric disorders affecting cognitive control. These findings
suggest potential benefits of D4R modulators for targeting cognitive deficits as the 7-repeat
D4R functional variant in humans (DRD4-7R) is associated with alterations in attention,
working memory and gamma band activity (Demiralp et al. 2007) and with ADHD (DiMaio
et al. 2003).

In summary, the colocalization of D4R and ErbB4 receptors on PV+ interneurons, activity
of which is critically important for regulating E/I balance and cognitive functions (Yizhar et
al. 2011), perhaps by optimizing “signal-to-noise” ratio of cortical microcircuits (see
(Winterer and Weinberger 2004) and Furth et al., in review), makes these receptor systems
attractive novel targets for modulating network activities that underlie cognition. These
studies identify PV+ GABAergic interneurons as a potential novel cellular target for
modulating gamma oscillations and related cognitive functions deficient in psychiatric
disorders, and suggest that NRG/ErbB4 and dopamine signaling pathways (and potentially
other schizophrenia liability genes) may converge in these cells to modulate the activity of
microcircuits altered in psychiatric disorders.

Psychosis in Alzheimer Disease and Excess Vulnerability of Cerebral Cortical Synapses
Synapse pathology in AD has been extensively reviewed in the recent literature. However,
psychosis occurring in AD has received much less attention. In a review of 55 studies
comprising of 9,749 subjects, the median prevalence of psychosis in subjects with AD (AD
+Psychosis, AD+P) was 41% (Ropacki and Jeste 2005). Interestingly, AD+P patients
consistently showed faster cognitive decline compared to AD without psychosis (AD-P)
patients (Ropacki and Jeste 2005). Nine of nine studies found a significant association
between a greater rate of cognitive decline and the presence of AD+P. Recent studies have
continued to support the relationship between more rapid cognitive decline and AD+P
(Emanuel et al. 2011; Sweet et al. 2012).

Several lines of evidence indicate that psychosis in AD has a specific neurobiology. Perhaps
the most compelling is evidence that AD+P risk is transmitted in families (Sweet et al.
2002a), now replicated in two additional cohorts (Hollingworth et al. 2007; Sweet et al.
2010). The heritability of psychosis within AD is estimated as 61% (Bacanu et al. 2005).
There are two important implications of these findings. First, and most direct, is that the risk
for AD+P is likely to be influenced by genetic variation. Second, is that AD+P results from
a distinctive underlying neurobiology. That is, AD+P cannot be seen as arising solely as a
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non-specific consequence of AD progression. Nor can it arise solely due to a serendipitous
accumulation of neurodegenerative lesions in vulnerable “psychosis” brain regions. AD+P
has a genetic architecture most consistent with disease modification rather than an
independent syndrome. That is, genes which increase the risk for AD itself are found
equivalently in AD+P and AD without psychosis, while additional genetic variants which
predispose to psychosis are present in AD+P, with some limited overlap of these variants
with other psychoses. For example, there is strong evidence against an association of AD+P
(in comparison to AD without psychosis) and APOE and TOMM40 (DeMichele-Sweet et al.
2011b; Hollingworth et al. 2011; Chu et al. 2011). Similarly AD+P is not associated with
variation in recently identified AD risk genes CLU, PICALM, CR1, BIN1, ABCA7, MS4A,
CD2AP, CD33 and EPHA1 (Hollingworth et al. 2011) nor with other genes that may
contribute to neurodegeneration risk: APP, BACE1, SORL1, and MAPT (DeMichele-Sweet
et al. 2011a). In contrast, the first GWAS of AD+P was recently completed, which identified
VSNL1 (the gene encoding Vilip1), and other novel loci (e.g. STK11, RIMBP2)
(Hollingworth et al. 2011). This study also, albeit to a lesser extent, found evidence for
association of AD+P with a group of SNPs that appear to contribute to risk for schizophrenia
(Hollingworth et al. 2011).

It has been appreciated for a number of years that the strongest correlate of cognitive
impairment in individuals with AD is loss of synapses across neocortical regions (Terry et
al. 1991; Scheff and Price 2003), with excitatory synapses onto dendritic spines particularly
affected (Baloyannis et al. 2007; Grutzendler et al. 2007). This has led to the hypothesis that
the more rapid cognitive deterioration seen in AD+P reflects greater vulnerability of
neocortical synapses than in AD-P (Sweet et al. 2002b). Evidence in support of this
hypothesis is described below.

In vivo neuroimaging studies of individuals with AD indicate there is increased disruption of
neocortical gray matter is subjects with psychosis. In contrast, findings are largely negative
with regard to medial temporal lobe (hippocampal formation) differences between AD+P
and AD-P subjects. Delusions were associated with decreased gray matter density in the left
frontal lobe and in the right frontoparietal cortex (Bruen et al. 2008). Single photon emission
computed tomography (SPECT) studies of regional perfusion in AD+P (in comparison to
AD-P) have found lower regional perfusion in bilateral dorsolateral prefrontal cortex
(DLPFC), (Mega et al. 2000) left anterior cingulated gyrus (Mega et al. 2000), right frontal
(Moran et al. 2008), left frontal (Kotrla et al. 1995), right temporal (Moran et al. 2008), and
bilateral temporal cortices (Starkstein et al. 1994). Studies of brain metabolism using 18F-
fluorodexoxyglucose imaging have provided further evidence for frontal cortex
abnormalities in AD+P, including a relationship between severity of delusions and reduced
cerebral metabolism in right DLPFC, right inferior frontal pole, and right lateral
orbitofrontal cortex (Sultzer et al. 2003; Mentis et al. 1995).

Using magnetic resonance spectroscopy to examine postmortem brain tissue sample from
AD+P and AD-P subjects, significant elevations in concentrations of the phosphodiester
membrane breakdown product, glycerol-phosphoethanolamine have been reported (Sweet et
al. 2002b). Elevations were present across the neocortex, with DLPFC, superior temporal
gyrus (STG), and inferior parietal cortex (IPC) most affected. In contrast, medial temporal
cortex (amygdala) and cerebellum were unaffected (Sweet et al. 2002b). These changes
were interepreted as evidence of excess synaptic disruption in AD+P, in a pattern consistent
with generalized neocortical involvement.

More recently, the dendritic spine associated protein, kalirin, was examined in post-mortem
gray matter protein extracts from the dorsolateral prefrontal cortex of subjects with AD+P
and AD-P. Kalirin is found in adult human cerebral cortex gray matter as one of four
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predominant isoforms, kalirin-5, -7, -9, and -12 (Deo et al. 2011). Significant reductions in
levels of kalirin-7, -9, and -12 were found in AD+P (Murray et al. 2012). In contrast, levels
of the kalirin-5 isoform were unchanged (Murray et al. 2012). Because all four isoforms are
found in post-synaptic density fractions (Deo et al. 2011), the absence of reduction in
kalirin-5 suggest that the reductions in kalirin-7, -9, and -12 are better interpreted as
evidence of synaptic dysfunction than of frank synapse loss (Murray et al. 2012).

Substantial evidence now indicates that aggregation of Aβ into soluble oligomers
(dimers→protofibrils) is a primary source of synaptotoxicity in Alzheimer's disease (Selkoe
2002; Selkoe 2008; Walsh and Selkoe 2007; Koffie et al. 2011). This includes evidence
from human postmortem tissue that cortical synapse loss is an early pathologic event and
that cognitive impairments and synapse loss correlate most strongly with soluble Aβ (Lue et
al. 1999), even in subjects with early disease (Naslund et al. 2000).

Studies of the synaptic effects of Aβ are further elucidating a model of how Aβ acts to
eliminate dendritic spines. Though reductionistic, the predominant model proposes that Aβ
shifts the balance within spines from LTP→LTD, through mechanisms including reduced
NMDA receptor dependent Ca++ influx, mGluR activation, and low level caspase-3
activation (Selkoe 2008; Koffie et al. 2011). The final common mechanism for these
pathways converge on altered endocytotic recycling of glutamate receptors, resulting in
reduced synaptic expression of GluR1 and GluR2 containing AMPA receptors and synaptic
NMDAR (Hsieh et al. 2006). The net result of these effects is loss of dendritic spines (Hsieh
et al. 2006).

Despite these advances, unresolved questions persist. For example, it is clear that shifting
the balance from LTP→LTD leads to net removal of GluR and NMDAR from synapses.
However, it is not resolved whether signaling through specific NMDAR subtypes (i.e.
NMDAR2A vs NMDAR2B), or signaling through NMDAR in specific locations (synaptic
versus extrasynaptic) are associated uniquely with generation of LTP versus of LTD
(Fetterolf and Foster 2011). Similarly, although studies clearly indicate phosphoTau is a
necessary downstream mediator of Aβ impairments of LTP (Shipton et al. 2011), its
dendritic mechanisms are just emerging (Zempel et al. 2010), leaving unclear how it may
interact with other LTP and LTD mediators impacted by soluble Aβ. The exact species of
soluble Aβ oligomers most relevant for spine toxicity is also not known as species from
dimers to protofibrils are typically present in varying degrees. Similarly, soluble Aβ
oligomers exist in equilibrium with fibrillar deposits of Aβ in plaques, and thus plaques may
serve as reservoirs of soluble Aβ (Walsh and Selkoe 2007; Koffie et al. 2009). Plaques may
themselves contribute to spine toxicity through a mechanism that differs from soluble Aβ
(see(Bittner et al. 2010)) and serve as a site for inflammatory responses (Spires-Jones et al.
2007). How inflammation contributes to synapse loss is itself an emerging field (Rosen and
Stevens 2010).

For AD+P, then, the important residual question is whether the greater cortical synaptic
disruption in these subjects reflects enhanced Aβ drive, an increased response of
downstream mediators of Aβ-induced synaptotoxicity, or additional independent
synaptotoxic pathologies. There is no consistent evidence that AD+P is associated with a
higher burden of neocortical deposition of fibrillar Aβ (2000;2000). Similarly, AD+P was
not associated with increased neocortical concentrations of soluble Aβ1-42, and the
concentrations of soluble Aβ1-40 were reduced in AD+P (Murray et al. 2012). However, the
ratio of Aβ1-40 : Aβ1-42 was elevated in the dorsolateral prefrontal cortex in AD+P subjects
(Murray et al. 2012). Because Aβ1-40 can inhibit the oligomerization of Aβ1-42 into more
toxic species by sequestering it into stable mixed tetramers (Murray et al. 2009), it remains
possible there is heightened Aβ drive in AD+P.

Penzes et al. Page 13

J Neurochem. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In contrast, there is substantial evidence for an association of AD+P with at least one
mediator of Aβ effects, neocortical phospho-tau pathology. Neurofibrillary tangle density is
increased in AD+P in dorsolateral prefrontal, superior temporal, and inferior parietal cortex,
but not in medial temporal lobe. Similarly, increased aggregated tau protein has been found
in cortical gray matter extracts from subjects with AD+P (Rakic et al. 1986). More recently,
measures of spread of phospho-tau pathology and phospho-tau concentration were evaluated
in within dorsolateral prefrontal cortex from subjects with AD+P and AD-P. While only
phospho-tau concentration differed significantly between groups, both measures were
correlated with degree of cognitive impairment, suggesting they also contribute to greater
synapse loss in these subjects (Murray et al., AJGP, abstract).

There is evidence for reduced expression of multiple kalirin isoforms in AD-P, with further
reductions in AD+P (Murray et al. 2012). Kalirin plays an integral role in dendritic spine
growth, morphogenesis, and activity-dependent plasticity (Cahill et al. 2009; Xie et al.
2007). Importantly, kalirin reduction is known to deplete PSD GluR1, NMDAR2B, and
cause spine loss (Xie et al. 2007; Ma et al. 2008), and conversely, increased expression of
kalirin-7 and -9 increases spine density (Deo et al. 2011; Ma et al. 2008). An important
downstream target of kalirin signaling, p21-activated kinase (PAK), shows reduced
activation in response to Aβ in vitro and in vivo, and contributes to dendritic spine loss
(Zhao et al. 2006). However, whether kalirin reductions are intermediate between Aβ and
these effects of PAK, and therefore contribute to excess dendritic spine loss in AD+P, awaits
experimental verification.

The data reviewed above support a model of AD+P summarized in Figure 3. Importantly the
existing imaging and postmortem data suggest that it is neocortex, but not medial temporal
cortex, that is most affected in AD+P, with the most consistent findings in the dorsolateral
prefrontal cortex. The vulnerability to AD+P, due to underlying genetic factors, may affect
the cascade of pathology in AD in any of several ways. The net result of these effects is
enhanced drive of the pathologic cascade, increasing pTau, and leading to reductions in
kalirin, removal of post-synaptic GluR and NMDAR, and spine loss. These effects are
manifest as a greater rate of cognitive deterioration with subsequent emergence of psychotic
symptoms.

Conclusions
Disorders such as ID, ASD, SZ, and AD+P have complex etiologies with heterogeneous
symptomatology. An interesting observation that has recently emerged is that a significant
overlap exists in the genetic etiology of these disorders. Based on such findings it has been
hypothesized that disorders historically considered distinct might share at least partially
overlapping pathogenic mechanisms, and differential manifestations of alterations in shared
cellular substrates might underlie the phenotypic variability (Burbach and van der Zwaag
2009; Girirajan and Eichler 2010; O'Roak and State 2008; Penzes et al. 2011; Poot et al.
2011). However, there is also a significant phenotypic divergence between these disorders,
most notably in the ages of onset spanning infancy, early childhood, adolescence and
senescence. How overlapping genetics may lead to such diverse manifestations remains to
be identified, although could be conceptualized as resulting from progressively less severe
molecular alterations, such that developmental onset is in some cases delayed (e.g.
schizophrenia), or requires the presence of an additional neuronal pathology before being
manifest (e.g. AD+P). Consistent with this idea, the divergence among these syndromes is
already apparent at the cellular level, manifested by differential alterations in dendrites and
spines (Penzes et al. 2011; van Spronsen and Hoogenraad 2010). Such findings highlight the
importance of finding common final molecular and cellular mechanisms, as well as
mechanisms of molecular convergence and divergence. Recent breakthroughs in the
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characterization of regulators of synaptic circuits have provided opportunities to identify
molecular changes that could directly contribute to pathology. The molecular networks that
control spines provide a framework for understanding how a large number of genetic
perturbations can interact to disrupt synaptic function, neuronal circuit organization, and
behavioral output in a disease-specific manner. As the pace of discovery in psychiatric
genetics is very rapid, elucidating the functions of newly identified disease-associated genes
within synaptic molecular networks is a key step to translating genetic findings into
biological understanding and clinical applications. Understanding the causal links between
synaptic pathology and disease phenotypes, and the identification of novel drug targets
based on these links, will also facilitate the development of effective treatments for these
disorders.
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Figure 1. Trajectory of synapse number across the lifespan
Synapse numbers increase before and after birth; synapse are selectively eliminated during
childhood and adolescence to adult levels. Bars on the top indicate the period of emergence
of symptoms of specific disorders.
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Figure 2. Schematic structure of a spiny synapse
Alterations in the mechanisms that control the formation, maintenance, and elimination of
spiny synapses are likely to contribute to synaptic pathology in mental disorders.
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Figure 3. Summary diagram of synaptic vulnerability in Alzheimer Disease with Psychosis (AD
+P)
Effects for which there is existing evidence are shown as unidirectional solid black arrows.
Gray arrows indicate hypothesized effects.
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Table 1

Summary of important genes associated with X-linked intellectual disabilities.

Protein name Chromosome Protein function Phatology

Shank 22 scaffold Phelan-McDremid Syndrome, autism

IL1RAPL1 X synaptic adhesion non syndromic XLID

Oligophrenin-1 X RhoGAP syndromic XLID

TSPAN7 X tetraspanin non syndromic XLID
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Table 2

Summary of genes discussed in this review associated with schizophrenia.

Protein name Chromosome Protein function

NRG1 8 neuronal growth and differentiation

ErbB4 2 receptor tyrosine kinase

DISC1 1 scaffold

ZDHHC8 (22q11.2) 22 palmitoyl transferase

Dgcr8 (22q11.2) 22 miRNA processing
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