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Abstract
We assess the progress in biomolecular modeling and simulation, focusing on structure prediction
and dynamics, by presenting the field’s history, metrics for its rise in popularity, early expressed
expectations, and current significant applications. The increases in computational power combined
with improvements in algorithms and force fields have led to considerable success, especially in
protein folding, specificity of ligand/biomolecule interactions, and interpretation of complex
experimental phenomena (e.g. NMR relaxation, protein-folding kinetics and multiple
conformational states) through the generation of structural hypotheses and pathway mechanisms.
Although far from a general automated tool, structure prediction is notable for proteins and RNA
that preceded the experiment, especially by knowledge-based approaches. Thus, despite early
unrealistic expectations and the realization that computer technology alone will not quickly bridge
the gap between experimental and theoretical time frames, ongoing improvements to enhance the
accuracy and scope of modeling and simulation are propelling the field onto a productive
trajectory to become full partner with experiment and a field on its own right.

1. Introduction
1.1 Motivation for field assessment

During a recent play in New York’s Under the Radar Festival named Invisible Atom, the
protagonist Atom begins to question his own existence in the light of recent personal and
world troubles. It appears to him that through attempts for growth and discovery, humankind
has brought destruction. The theory of the atom – the never-ending quest by scientists to
reduce the atom to smaller and smaller parts – serves in the play as an allegory to excess and
greed, which also led to the economic crisis that personally affects Atom, and to the dark
consequences of ‘progress ’.

Like Atom’s questioning and quest for truth, the biological community has continually
inspected its progress. Recent NIH and DOE workshops have explored the impact of
modeling on biology and the potential utilization of next-generation computing technology
by the biological community (DOE, 2009; IMAG, 2009). Recognizing the immense
challenges in biology in the 21st century, the NAS has urged for biology’s integration with
other fields as well as biology’s consolidation of its many sub-disciplines (NAS, 2009).
Furthermore, the general realization that many problems in biology have turned out to be
much more difficult than originally perceived (Hayden, 2010) also affects the impact that

© Cambridge University Press 2011
*Author for correspondence: T. Schlick, schlick@nyu,edu.

NIH Public Access
Author Manuscript
Q Rev Biophys. Author manuscript; available in PMC 2013 July 03.

Published in final edited form as:
Q Rev Biophys. 2011 May ; 44(2): 191–228. doi:10.1017/S0033583510000284.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



modeling can have on solving them. Finally, suggestions have been made of a growing gap
between academe and industry as far as molecular modeling is concerned (Nicholls, 2010)
and a cultural disparity between academic and industrial sectors, including basic versus
applied research (Mowery et al. 2004; Washburn, 2005).

Taken together, it is now valuable to consider progress in the field of biomolecular modeling
and simulation, which appears in a critical ‘coming-of-age ’ time, roughly 40 years after it
started. How has modeling fulfilled initial expectations ? Has it become a field on its own
right ? Are the technological advances paying off? How successful are expansions of the
scope of the simulation subjects – molecular size, complexity and simulation time? How is
modeling perceived in the experimental community, by scientists outside of academe, and
by the general public ? What are future prospects for the field ?

Through specific examples, some of which were provided in response to a questionnaire
(Appendix A), we sketch the field’s progress over the past few decades ; see Schlick et al.
(1999) for an early assessment of algorithmic challenges in computational molecular
biophysics, and recent perspectives regarding protein-folding advances (Dill et al. 2008),
protein modeling’s impact on biomedical research (Schwede et al. 2009) and the usage of
dynamics simulations to interpret single-molecule pulling experiments (Lee et al. 2009), for
example.

Our examination of computing trends and specific examples of success suggest that
biomolecular modeling and simulation is a vibrant field with demonstrated successes and
immense potential to impact biology, medicine, and technology. Thus, despite unrealistic
high expectations expressed in the late 1980s, technical advances in computer technology
and algorithms have transitioned the field well onto a productive and exciting trajectory of
being not only full partner with experiment but eventually a field on its own right.

In the next section, we provide a brief historical perspective of the field. Section 2 presents
metrics of the field’s rise in popularity, as reflected by publication records and computer
power progress. Section 3 collects statements concerning the field’s expectations, and
Section 4 presents a proposed expectation curve for the field. Sections 5 and 6 discuss in
turn examples of success and failure. Our summary in Section 7 is followed by general
recommendations to accelerate the field’s progress. The appendix presents our community
questionnaire, used to sample some opinions rather than represent the field exhaustively, and
mentions some observations shared by respondents.

1.2 What is molecular modeling ?
Molecular modeling is the science and art of studying molecular structure and function
through model building and computation. The model building can be as simple as plastic
templates or metal rods, or as sophisticated as interactive, animated color stereo-graphics
and laser-made wooden sculptures. The computations encompass ab initio and semi-
empirical quantum mechanics, empirical (molecular) mechanics, visualization, homology
modeling, docking, molecular dynamics (MD), Monte Carlo, free energy and solvation
methods, enhanced sampling and pathway methods, principal component analysis (PCA),
structure/activity relationships (SAR), chemical/biochemical information and databases and
many other established procedures and methods (see Fig. 1 for examples).

The questions being addressed by computational approaches today are as intriguing and as
complex as the biological systems themselves. They range from understanding the
equilibrium structure of a small biopolymer subunit to the energetics of hydrogen-bond
formation in proteins and nucleic acids, binding affinities of ligands/drugs to their target,
complex kinetics of protein folding and the complex functioning of a supramolecular
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aggregate. Indeed, given many experimental triumphs, modeling approaches are needed to
pursue many fundamental questions concerning the biological motions and functions of
complex systems like ion channels, signaling receptors, membrane transporters, ribosomes,
nucleosomes and non-coding RNAs. Modeling can provide a way to systematically explore
structural/dynamical/thermodynamic patterns, and test and develop hypotheses to help
understand and extend basic laws that govern molecular structure, flexibility and function.

With improved modeling algorithms, better force fields, faster computers and experimental
advances (e.g. single-molecule techniques and high-speed X-rays), modeling and simulation
have expanded in both quality and scope. Problems and approaches that were
insurmountable a few years ago are now possible.

Yet, a field’s maturity also implies that some current users may not be familiar with caveats
and inherent approximations that field pioneers clearly recognized. Indeed, the readily
available programs for simulation and visualization make usage much more facile but
possibly also easier to abuse. Moreover, advanced programs and simulation methods like
MD and folding are far from generally applicable automated procedures ; their application
relies on user expertise as well as biological intuition.

1.3 Field roots
The field of biomolecular modeling is relatively young, having started in the 1960s, with
pioneers like Lifson, Scheraga, Allinger, Levitt, Warshel and others. Building upon the
simulation technique described in 1959 by Alder and Wainwright and applied to hard
spheres (Alder & Wainwright, 1959), Rahman and Stillinger described in the early 1970s the
first MD simulation of a polar molecule, liquid water (Rahman & Stillinger, 1971, 1974).

These developments led quickly to using molecular mechanics force fields with energy
minimization as a tool for refinement of crystal structures in the late 1970s (Jack & Levitt,
1978; Konnert & Hendrickson, 1980), enzyme energetics (Warshel & Levitt, 1976) and later
to MD approaches (McCammon et al. 1977) (see below) that excited practitioners.

It took a few more years, however, for the field to gain legitimacy, because the work of
these computational chemistry pioneers could not be easily attributed to a specific
discipline ; moreover, the notion of transferability of force field parameters was criticized by
spectroscopists1.

When the first-generation biomolecular force fields were established, the rising power of
supercomputers widened the possibilities for application. Most programs and force fields
today, for both small and large molecules, are based on the works of the pioneers mentioned
above and their co-workers, with the addition of water force fields developed in the late
1970s and early 1980s by Berendsen and co-workers (e.g. Ryckaert et al. 1977) and by
Jorgensen and co-workers (Jorgensen et al. 1983) (SPC and TIP3P/TIP4P, respectively),
concepts in protein electrostatics and enzyme/substrate complexes in solution by Warshel
and colleagues (Warshel & Levitt, 1976; Warshel & Russell, 1984), and pioneering
pharmaceutical applications by the late Peter Kollman (Wang et al. 2001).

1.4 Current simulation trends
Modern versions of these and other molecular simulation packages have led to competition
for ‘ better, bigger, and faster ’ program design. Programs like NAMD (Phillips et al. 2005),
Desmond (Bowers et al. 2006), or GROMACS (Berendsen et al. 1995; Lindahl et al. 2001)

1This comment was shared by force-field pioneer Norman L. Allinger.
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have focused on efficient multi-processor implementations. In addition, a specialized
computer hard wired for long MD simulations, called Anton, has been launched with the
explicit goal of generating long simulations (approaching the millisecond and beyond)
(Shaw et al. 2007, 2009, 2010).

For a historical perspective (see details in Schlick, 2010), the first MD simulation of a
biological process was for the small protein BPTI (bovine pancreatic trypsin inhibitor) in
vacuum (McCammon et al. 1977). In 1998, a 1 μs simulation of a villin-headpiece (using
periodic boundary conditions) made headlines (Duan & Kollman, 1998; Duan et al. 1998) as
its duration was longer by three orders of magnitude than all prior simulations. Three years
later, the longest simulation of 38 μs reflected aggregate dynamics by the ingenious
folding@home distributed computing approach (Shirts & Pande, 2000) – many short
trajectories performed on contributed processors worldwide to simulate the microsecond
timescale – for the C-terminal β-hairpin from protein G (16 residues) (Zagrovic et al. 2001) ;
see later works in (Ensign et al. 2007; Snow et al. 2002) extending the work up to hundreds
of 1 μs simulations.

Modelers have continued to simulate larger biomolecular systems (e.g. entire satellite
mosaic virus with one million atoms (Freddolino et al. 2006)) as well as longer time frames
(e.g. B-DNA dodecamer (Pérez et al. 2007), ubiquitin (Maragakis et al. 2008), and β2 AR
protein receptor (Dror et al. 2009) for over 1 μs, and small proteins for one millisecond
(Shaw et al. 2010)) with specialized MD programs and dedicated supercomputers. In fact,
these achievements suggest by simple extrapolation that 1-second simulations will be
attainable by 2015 (Fig. 2f) ! At the same time, coarse-grained models and combinations of
enhanced sampling methods are emerging as viable alternatives for simulating complex
biomolecular systems (recently reviewed in (Earl & Deem, 2008; Klein & Shinoda, 2008;
Lei & Duan, 2007; Liwo et al. 2008; Maisuradze et al. 2010; Schlick, 2009b, c)).

Long simulations, however, open interesting questions regarding the adequacy of force
fields as well as long-time stability and error propagation of the simulation algorithms.
Although for some proteins, folding simulations can be very successful (e.g. Bowman et al.
2009; Day et al. 2010; Dror et al. 2009; Freddolino & Schulten, 2009; Kelley et al. 2009;
Mittal & Best, 2010; Noé et al. 2009; Pitera et al. 2008; Voelz et al. 2010), long simulations
can reveal inadequacies in force fields and therefore help advance force field development.
For example, a 10 μs simulation of the β-protein Fip35 (Freddolino et al. 2008) did not
provide the anticipated folded conformation nor the folding trajectory from the extended
state, as expected from experimental measurements; it was determined in a subsequent work
that force field inaccuracies for β-protein interactions affected the results and not incorrect
sampling (Freddolino et al. 2009).

Overall, the sampling problem in MD remains a fundamental limitation of the technique’s
general utility, including its usefulness in drug design applications.

2. Metrics of the field’s rise in popularity
As mentioned above, protein folding has attracted many to biomolecular modeling and
simulation, as indicated by the rise of CASP (critical assessment of techniques for protein
structure prediction) participants in Fig. 2a. To measure the rise in popularity of the field of
biomolecular modeling, more generally, Fig. 2b shows the rise in the number of scientific
publications since 1970 (see caption for key words searched). A notable increase can be seen
with sharper linear increase since 2005.

The quality and relevance of the publications, however, speaks more for a field’s stature
than sheer number alone. As an estimate of the change in relevance and quality of the
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publications in the field of biomolecular modeling, we quantify the number of papers in
several high-impact journals in Fig. 2c. Again, we note a sharp rise in the number of
biomolecular modeling papers around 1990. Since the selected journals are not specialized
in modeling, this trend also implies that the field is gaining more attention from a wider
community of scientists.

A decomposition of the papers measured in Fig. 2b according to the simulation technique
can be seen in Fig. 2d. Clearly, MD overwhelms all other techniques, and it is followed by
Monte Carlo simulations, ab initio quantum mechanics (QM), coarse graining, and quantum-
mechanics/molecular-mechanics (QM/MM) methods. Indeed, several sophisticated MD
programs and force field packages are now available ; Fig. 2e shows trends in citations to
the original papers of popular MD programs (Amber (Pearlman et al. 1995; Wang et al.
2004), CHARMM (Brooks et al. 1983), GROMACS (Berendsen et al. 1995; Hess et al.
2008; Lindahl et al. 2001) and NAMD (Phillips et al. 2005)) ; the low number of 2009
citations likely represents a lag in the update of manuscript databases rather than a decrease
in program usage. While the number of citations for Amber and CHARMM has remained
steady in recent years, the number of citations for GROMACS and NAMD continues to rise,
likely because the latter are especially suitable to parallelized computer architectures and
present open-source environments.

Has the biology community utilized computer power well ? A dramatic increase in
computational power over the past 20 years has certainly helped fuel the field, but how do
the computers used compare with the fastest computer system available ?

Figure 2f shows that since 1993 the speed of the fastest computer system in the world has
increased exponentially according to the Top500 list (http://www.top500.org), a biannual list
of the 500 fastest non-distributed computers ranked by their performance on the LINPACK
benchmark. From the Top500 list, the speed of the fastest computer systems used in
academia is shown in Fig. 2f and listed in Table 1. We have also added the current total
speed achieved by the folding@home project which has now passed the Petaflop mark.
These trends of computer power follow an exponential growth. The figure also shows that
many milestones in the field of biomolecular simulation –including the villin (Duan &
Kollman, 1998) and bc1 membrane complex (Izrailev et al. 1999) on the Cray T3E900, B-
DNA dodecamer on MareNostrum (Pérez et al. 2007), and fip35 protein on NCSA Dell
clusters (Freddolino et al. 2008) – have been obtained using one of the fastest Top500
computers available.

More generally, this publication volume and computation perspective is optimistic. The
trends suggest that biomolecular researchers have utilized well and will continue to have
access to ever more powerful machines that in turn push the frontiers of the field.

3. Field expectations
As the field of biomolecular modeling gained momentum in the late 1980s with the
increasing availability of high-speed computers, introduction of standardized programs, and
significant technological innovations, the notable application and algorithmic (for
minimization, integration, and data analysis) successes that followed stirred a new
enthusiasm in the molecular biophysics community and beyond. Biomolecular modeling and
simulation, in addition to high-throughput structure technology and other experimental
information, was expected to revolutionize many applications through systematic structure-
to-function links.

As early as 1986, the computational quantum chemistry pioneer Henry Schafer wrote
(Schaefer, 1986) :
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It is clear that theoretical chemistry has entered a new stage … with the goal of
being no less than full partner with experiment.

Commenting in 1988 on two exciting MD applications to materials and liquids, the late Sir
John Maddox, former editor of Nature, wrote (Maddox, 1989):

Molecular dynamics is clearly well on the way to being a universal tool, as if it
were the differential calculus. So much is plain from the range of problems now
being tackled, and sometimes at least partially solved, by the application of this
technique. Gone, it seems, are the days when people’s ambitions in the field were
restricted to the calculation of the properties of smallish molecules, with only
distant hopes of being able to tackle the problems of, say, protein molecules. Now,
molecular dynamics is being used to tackle problems which are quite general.

A decade later, as technological advances in high-throughput technology provided biological
data as never before, it was believed that computers would allow us to quickly sift through
all these data and transform it into relevant biological information. The New York Times
reporter Andrew Pollack wrote in 1998 (Pollack, 1998):

In a marriage of biotech and high tech, computers are beginning to transform the
way drugs are developed, from the earliest stage of drug discovery to the late stage
of testing the drugs in people.

Similarly, Stu Borman, reporter for Chemical & Engineering News, wrote in connection to
drug design using combinatorial chemistry approaches in 1998 (Borman, 1998):

Recent advances in solid-phase synthesis, informatics, and high-throughput
screening suggest combinatorial chemistry is coming of age.

Commenting on the two 1998 Chemistry Nobel Prize awardees in quantum chemistry –
Walter Kohn of the University of California, Santa Barbara and John Pople of Northwestern
University who ‘have developed computational methods to crunch the numbers involved in
quantum theory in ways that allow chemists to make sense of the behavior of atoms as they
bond together to form molecules ’ – a reporter in The Economist went as far to suggest that
experimentalists will soon face competition (Economist, 1998):

In the real world, this could eventually mean that most chemical experiments are
conducted inside the silicon of chips instead of in the glassware of laboratories.
Turn off that Bunsen burner; it will not be wanted these ten years.

Have these high expectations been met? While it remains to be seen how effective in-silico
biology will be over the long run, it appears that those early expressed hopes for quick
break-throughs have not been realized consistently. Or, perhaps, expectations were simply
too high for this young field.

In response to our questionnaire question regarding fulfillment of initial expectations
(Appendix A), computer scientist Jacques Cohen writes:

These are very difficult modeling problems and nature has to be considered as the
ultimate referee.

Structural biologist and crystallographer Stephen Neidle put it best:

My expectations have been conservative, and the reality has thus not disappointed
me.

For the subfield of computer-aided drug design (CADD), a 2007 perspective (Drie, 2007)
suggests that only since 2000 have structure-based design and virtual screening technologies
begun to pay off in a realistic way; still, the future is considered bright, with new avenues
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for CADD – like new drug target classes, novel drug mechanisms, multiple drug targets and
automated technologies – expected to bear fruit.

In their 2005 review of MD and protein function, Karplus and Kuriyan state that, at the very
least, simulations have reached the stage that they can be critically evaluated by
experimentalists (Karplus & Kuriyan, 2005):

The combination of increased computer power and improved potential functions
has resulted in an ability to generate simulations that approach the point at which
they can survive critical examination by the experimentalists who determine the
structures of the proteins being simulated.

They continue to write that statistically meaningful folding simulations of proteins with all-
atom models are not yet possible but that it is likely that within the next decade (i.e. by
around 2015) folding mechanisms and folded structures might be simulated directly from
sequence by MD. Indeed, recent dynamics simulations of protein folding have already been
impressive using innovative conformational sampling approaches like Markov state models
(Noé et al. 2007, 2009; Voelz et al. 2010), network models (Berezhkovskii et al. 2009), or
replica-exchange MD (Day et al. 2010; Garcia & Pascheck, 2008; Kelley et al. 2009; Mittal
& Best, 2010; Ozkan et al. 2007; Pitera et al. 2008).

In 2000, Duan et al. projected that, in 20 years, simulating a second in the lifetime of
medium-sized proteins will be possible, as well as in 50–60 years, the entire life cycle of an
Escherichia coli cell ; these projections assume a computational power increase of one order
of magnitude every 3–4 years (Duan et al. 2000). From Fig. 2, this computational increase
has been more than met, but the issues of force fields and sampling have not been taken into
account in setting those goals.

Folding simulations have of course received substantial attention. Folding proteins by 2005
was the stated goal of the IBM Blue Gene over a decade ago. When a new computer game
called Foldit based on Rosetta@home software was launched for the general public, a
reporter in the local newspaper ScienceDaily enticed readers with the headline
(ScienceDaily, 2008):

Computer Game’s High Score Could Earn The Nobel Prize in Medicine.

Foldit has since showed great promise, because some folding tasks are better handled
visually than automatically (Cooper et al. 2010). More generally, a rise in the community’s
participation in CASP predictions shows the rising interest in protein folding (Fig. 2a) :
since CASP1 in 1994 where 35 research groups participated to predict 33 target proteins,
CASP8 in 2008 has attracted 233 participant groups to predict 121 target proteins.

Medical applications remain the most prominent driving force for modeling. Current NIH
Director Francis S. Collins recently wrote (Collins, 2010):

The power of the molecular approach to health and disease has steadily gained
momentum over the past several decades and is now poised to catalyze a revolution
in medicine.

Modeling and simulation is certainly playing an important role in this new era.

4. Field evolution assessed via an expectation curve
In reference to the unanticipated challenges that we face today concerning unveiling the
genetic basis for disease, NIH Director Francis S. Collins also stated (Borman, 2010):
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It’s been said that a truly transformational technology will always have its
immediate consequences overestimated and its long-term consequences
underestimated.

Based on the data collected here, this certainly appears to be true for the field of
biomolecular modeling and simulation.

In 1993, computer scientist James Bezdek introduced the general notion of a technology
expectation (or hype) curve in his first editorial of the new journal he founded on fuzzy
models, a branch of mathematics that attempts to formulate the notion of vagueness
(Bezdek, 1993). Bezdek’s technology development framework was later popularized by the
Gartner group. This expectation curve describes the evolution of a new technology or field
by several common stages in terms of expectation levels : (1) a technology trigger that
serves as the starting point for the field ; (2) an early high peak corresponding to initial
euphoria and inflated expectations when a frenzy of publicity envelopes some isolated
successes ; (3) a trough of disillusionment or depth of cynicism, when failures become
apparent, obstacles appear, and general support and interest wane; (4) recovery phase, where
practitioners continue to develop and refine the technique or technology ; and (5) steady
progress of productivity when realistic expectations and true benefits emerge. Not all new
technologies reach the final stage ; some new approaches fade away after the cynicism stage.

Our version of the expectation curve for biomolecular modeling and simulation is presented
in Fig. 3. Based on the quotes above and general information discussed here, the starting
point for the field is the 1970s, when force field pioneers began reporting their applications.
Rising expectations continued (especially from the late 1980s) until the late 1990s, where
the height of naive euphoria for biomolecular modeling occurred (stage 2). Structure-based
rational drug design was then well recognized and expected to replace older, less efficient
and laborious ways of screening. Some disappointments became apparent as this 21st
century began: pharmaceutical industries have expended huge resources on drug design
modeling initiatives that only led to modest successes at best (Munos, 2009), and the
revolutionary transformations expected following completion of the Human Genome Project
in our understanding of ancestry and human disease diagnosis and treatment did not bear
fruit right away as our appreciation of the enormous complexity of biology set in (Hayden,
2010). While the new technologies helped generate voluminous amounts of data, the
complexity of information storage involved (in genes, regulation, etc.) has also escalated
into a picture of intertwined complex layers of regulatory networks. This problem is also
manifested in the recent declining production of new drug entities (Munos, 2009) (further
discussed in Schlick, 2010).

Although it is difficult to pinpoint exactly where the trough in the expectation curve (stage
3) lies for the field, we suggest that it may have occurred roughly one decade ago. Our
optimism also suggests that the productivity phase is well underway, following the
appreciation for the field’s great potential to help understand biological systems, despite the
apparently complex intertwined regulatory networks and the realization that force fields and
sampling algorithms require improvement.

5. Modeling and simulation successes
Many notable successes in various areas – from experimental interpretation to structure
prediction to drug design – have been reported for biomolecular modeling, and it is
instructive to examine them. Our examples include MD theory and applications, algorithms
for biomolecular simulation, structure prediction, protein-folding theory, modeling-aided
drug design, and interpretation of complex experimental phenomena.
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5.1 MD as a technique to study atomic motions
A spectacular example of success reflecting a modern marriage among modeling theory,
technology and biology involves the theory and practice of MD. Essentially, MD is
statistical mechanics by numbers, or Laplace’s vision of Newtonian physics (de Laplace,
1820) on modern supercomputers. The impressive progress in the development of
biomolecular force fields, coupled to spectacular computer technology advances, has now
made it possible to transform this vision into a reality, by overcoming the difficulty noted by
Dirac of solving the equations of motion for multi-body systems (Dirac, 1929).

Since successful applications were reported in the 1970s in protein dynamics (McCammon
et al. 1977), MD – with variations and extensions – has now become a popular (Fig. 2d) and
universal tool, ‘as if it were the differential calculus ’ (Maddox, 1989). MD is in fact one of
the few tools available, by both experiment and theory, to probe molecular motion on the
atomic scale. By following the equations of motion as dictated by a classic molecular
mechanics force field, complex relationships among biomolecular structure, flexibility, and
function can be investigated.

Today’s sophisticated dynamics programs, like NAMD or GROMACS, adapted to parallel
and massively parallel computer architectures, and specialized hardware have made
simulations of biomolecular systems in the microseconds feasible in several weeks of
computing. Anton’s hardware/software co-design is pushing the envelope to the millisecond
timeframe (Shaw et al. 2009, 2010). Although the well-recognized limitations of sampling in
atomistic dynamics, as well as in the governing force fields, have led to many innovative
sampling alternatives to enhance coverage of the thermally accessible conformational space
(as recently reviewed in Earl & Deem, 2008; Klein & Shinoda, 2008; Lei & Duan, 2007;
Liwo et al. 2008; Schlick, 2009b, c), many still rely on MD for local sampling.

Overall, MD simulations have been used for numerous applications, including to refine
experimental structures, extending most recently to low-resolution crystal data (Schröder et
al. 2010), interpret various experimental data such as single-molecule force-extension curves
(e.g. Lee et al. 2009) or NMR spin-relaxation in proteins (e.g. Case, 2002; Henzler-Wildman
et al. 2007; Tsui et al. 2000), improve structure-based function predictions, for example, by
predicting calcium-binding sites (Altman et al. 2009), link static experimental structures to
implied pathways (e.g. Golosov et al. 2010; Radhakrishnan & Schlick, 2004), estimate the
importance of quantum effects in lowering free-energy barriers of biomolecular reactions
(Hu et al. 2003), make structural predictions, deduce reaction mechanisms, propose free-
energy pathways and associated mechanisms (e.g. Faraldo-Gomez & Roux, 2007;
Radhakrishnan & Schlick, 2005), resolve or shed light on experimental ambiguities (see
Subsection 5.6), and design new folds and compounds, including drugs and enzymes (e.g.
Baker et al. 2003; Hornak & Simmerling, 2007; Jiang et al. 2008; Neidle et al. 2001).
Challenging applications to complex systems like membranes, to probe associated
structures, motions and interactions (e.g. Grossfield et al. 2008; Khelashvili et al. 2009;
Vasquez et al. 2008) are also noteworthy. Specific success stories from such MD
simulations are discussed separately in the subsections below.

5.2 Establishment of reliable algorithms
Rigorous algorithm development and analysis provide a clear framework by which to define
the important notions of accuracy, stability and error control. This understanding in turn
provides practical guides to parameter selection and trajectory analysis. Three notable areas
of algorithmic contributions in recent years include methods for MD integration, evaluation
of non-bonded electrostatic interactions and enhanced sampling methods for biomolecules.
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The establishment of symplectic integrators such as leap frog, velocity Verlet, and
constrained dynamics formulations (e.g. Leimkuhler & Reich, 2004; Schlick, 2010) has
allowed researchers to correctly generate MD trajectories and analyze the stability of a
simulation in terms of energy conservation, and the robustness of the simulation with respect
to the timestep size.

Highlighting resonance artifacts in MD simulations (Mandziuk & Schlick, 1995; Schlick et
al. 1998), predicting resonant timesteps, and establishing stochastic solution to resonances
(Barth & Schlick, 1998; Schlick et al. 1997; Sweet et al. 2008) have all led to an improved
understanding and quality of MD simulations (Morrone et al. 2010).

The advent of efficient and straightforward-to-program particle mesh Ewald (PME) (Darden
et al. 1993; Essmann et al. 1995; York & Yang, 1994) and related methods (Duan & Krasny,
2000; Greengard & Rokhlin, 1987; Saito, 1992; Saito, 1997; Sandak, 2001; Skeel et al.
2002) for evaluation of the long-range electrostatic interactions, which constitute the most
time-consuming part of a biomolecular simulation, has made possible more realistic MD
simulations without non-bonded cutoffs. A problem that in part remains unsolved in their
implementation involves the optimal integration of PME methods with multiple-timestep
methods and parallelization of PME implementations. The presence of fast terms in the
reciprocal Ewald component limits the outer timestep and hence the speedup (Morrone et al.
2010; Procacci et al. 1998; Qian & Schlick, 2002; Stuart et al. 1996; Zhou et al. 2001).
Moreover, memory requirements create a bottleneck in typical PME implementations in MD
simulations longer than a microsecond. This is because the contribution of the long-range
electrostatic forces imposes a global data dependency on all the system charges ; in practice,
this implies communication problems (Fitch et al. 2006). Thus, much work goes into
optimizing associated mesh sizes, precision, and sizes of the real and inverse spaces to delay
the communication bottleneck as possible (e.g. Shaw et al. 2009), but overall errors in long
simulations are far from trivial (Morrone et al. 2010; Snir, 2004).

In addition to MD integration and electrostatic calculations, sampling the vast
configurational space has also triggered many innovative approaches to capture ‘ rare
events ’. The many innovative enhanced sampling methods are either independent of MD or
based on MD. In the former class, as recently surveyed (Earl & Deem, 2008; Liwo et al.
2008; Schlick, 2009b), are various Monte Carlo approaches, harmonic approximations, and
coarse-grained models. These can yield valuable conformational insights into biomolecular
structure and flexibility, despite altered kinetics. Although Monte Carlo methods are not
always satisfactory for large systems on their own right, they form essential components of
more sophisticated methods (e.g. transition path sampling (Dellago & Bolhuis, 2007) or
Markov chain Monte Carlo sampling (Pan & Roux, 2008)), as recently surveyed (Schlick,
2009c).

More generally, MD-based methods for enhanced sampling of biomolecules can involve
modification of the potential (like accelerated MD or AMD (Grant et al. 2010; Hamelberg et
al. 2004), simulation protocol (like replica-exchange MD or REMD (Sugita & Okamoto,
1999)), or algorithm; as well as global reformulations, such as transition path sampling
(Bolhuis et al. 2002; Dellago & Bolhuis, 2007), forward flux simulation (Borrero &
Escobedo, 2008), and Markov state models (Noé & Fischer, 2008). Simple modifications
like AMD can aid in the interpretation of residual dipolar coupling and chemical shift
measurements in NMR (Cervantes et al. 2009; Markwick et al. 2009, 2010). Global
formulations, however, are needed more generally not only to generate more configurations
or to suggest mechanistic pathways but also to compute free-energy profiles for the reaction
and detailed kinetics including reaction rates.
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Divide and conquer methods for sampling and for piecing together reaction rate information
are especially suitable for readily available computer cluster networks. REMD is a popular
method, with many extensions (e.g. Roitberg et al. 2007), but implementations for large
systems are problematic due the need for many replicas and the non-uniform sampling.
There are many successful reports of using tailored enhanced sampling methods for
biomolecular applications (e.g. Abrams & Vanden-Eijnden, 2010; Berezhkovskii et al. 2009;
Chennamsetty et al. 2009; Noé et al. 2007, 2009; Ozkan et al. 2007; Radhakrishnan &
Schlick, 2004; Voelz et al. 2010), but applications at large to biomolecules and/or in the
absence of experimental data remain a challenge.

Among the numerous other examples of algorithms, PCA, clustering techniques and simple
consistency tests have helped to analyze complex groups of experimental data. For example,
clustering graphs of RNA secondary structures led to a proposal of novel RNA motifs that
are RNA-like (i.e. physical) and non-physical (Kim et al. 2004a, b) ; some in the former
class have been designed computationally and also later experimentally confirmed (Kim et
al. 2010; Schlick, 2010). Interestingly, a simple tool to analyze PDB structures in terms of
quantifying the interior protein volume called RosettaHoles (Sheffler & Baker, 2008)
detected a group of significant outliers, some of which were traced to a single author ; this
eventually led to the retraction of structures (Borrell, 2009).

Thus, algorithms are playing an increasing role in a wide range of problems dealing with
biomolecular structure, thermodynamics, and dynamics, as well as design.

5.3 Structure predictions that preceded experiment
Although the general problem of structure prediction is far from solved, predicting a peptide
structure has been more amenable to present modeling, and there have also been notable
success stories for larger systems, as early as the late 1980s, for human immunodeficiency
virus (HIV) protease (PR), and for complex RNAs, by sequence alignment. The successes
for RNA are especially noteworthy since far fewer structures of RNAs are available at
atomic resolution and the field is younger than protein prediction. Some interesting early
prediction cases are collected below, following general trends for peptides and proteins.

5.3.1 HIV-1 PR—HIV-1 PR is an aspartic PR essential for the replication of the HIV.
Already in 1987, Pearl & Taylor attempted to predict the HIV-1 PR tertiary structure by
computational modeling alone (Fig. 4a) (Pearl & Taylor, 1987). Their approach involved
multiple sequence alignment to predict a secondary structure followed by a knowledge-
based method that matches fragments from large related structures to produce a tertiary
structure model.

Two years later, another theoretical model was produced (Weber et al. 1989) using related
information from the Rous sarcoma virus (RSV) determined at 3 Å resolution (Miller et al.
1989). In the same year, the HIV-1 PR structure was resolved by X-ray crystallography at 3
Å resolution (Navia et al. 1989). Interestingly, the authors noted a local structural
discrepancy with respect to the predicted models (Pearl & Taylor, 1987; Weber et al. 1989)
in the topology of the N- and C-terminal regions and the helix near the C-terminal ; some of
these residues at the N-terminal were not observed in the electron density map, and so
inherent disorder and flexibility were presented as possible explanations for these
differences. However, when another structure of HIV-1 PR at 2·8 Å resolution was solved
soon after, residues not captured in the first crystal were explicitly resolved (Wlodawer et al.
1989), and subsequent analysis showed excellent agreement with the modeling predictions
rather than the previous crystal. The studies of HIV-1 PR initiated by the theoretical models
and confirmed later by the crystallography eventually led to development, largely due to
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molecular modeling, of the first PR inhibitor, saquinavir, which was approved by FDA in
1995, and nine other PR inhibitors approved by 2006.

5.3.2 Group I intron—The group I intron is a self-splicing ribozyme present in a wide
range of pathogenic organisms. The conserved core of a tertiary structure, where two
parallel coaxial stacking of helices were juxtaposed to form an active site, was first modeled
in 1990 by Michel & Westhof using comparative sequence analysis (Michel & Westhof,
1990). Specifically, they aligned the 87 available sequences of group I introns and derived
some tertiary contacts from a distance co-variation analysis. Using stereochemical modeling,
a tertiary structure of the conserved core of group I introns was then predicted. It took six
additional years until the predicted model was confirmed by crystallography of the catalytic
core structure (P4–P6 domain) at 2·8 Å resolution (Cate et al. 1996) (Fig. 4b). Since the self-
splicing function of group I introns from ribosomal RNA genes is essential for maturation of
ribosome, inhibition of self-splicing is a therapeutic goal. Indeed, various subsequent RNA–
ligand interaction studies have led to the design of inhibitors for RNA function (Labuda et
al. 2009).

5.3.3 Peptide structure prediction—Unlike many proteins, peptides can adopt a variety
of conformations in solution depending on the conditions and presence of ligands, and thus
there has been great interest in design of stable peptides, such as the synthetic β-peptides
composed of β amino acids. Already in 1998, reversible β-peptide folding in solution in
atomic detail was demonstrated (Daura et al. 1998), in agreement with NMR data (Daura et
al. 1999). Other interesting examples include an engineered 20-residue Trp-cage peptide
with a novel fold and fast folding kinetics (Neidigh et al. 2002), Amber-based folding of the
Trp-cage peptide at 1 Å resolution (Simmerling et al. 2002) and mini-protein simulations
using folding@home whose predicted folding rates agree well with experimental
measurements of mean folding times and equilibrium constants by circular dichroisms and
fluorescence (Snow et al. 2002). Some successful programs for peptide prediction include
PEPstr which uses clever initial modeling followed by Amber-based energy minimization
(Kaur et al. 2007), PepLook based on a Monte-Carlo refinement procedure in the peptide
conformational space sampled systematically (Thomas et al. 2009) and Robetta (a
descendant of Rosetta) based on homology modeling and knowledge-based potentials (Kim
et al. 2004a).

5.3.4 Protein structure prediction: lessons from CASP—The high-profile
community-wide exercise for protein structure prediction, CASP, held biannually since
1994, has sharpened our understanding of what works and what fails in current protein
structure prediction. The exercise consists of released protein sequence targets, soon to be
resolved by X-ray crystallography or NMR spectroscopy, serving as prediction targets in
various categories : template-based or template-free modeling for tertiary structure
prediction, substructure prediction for high-resolution models, disordered protein-region
identification, function prediction, and more; predictions are then collected and assessed by
independent experts who meet together with the predictor teams to discuss the work. The
growth of participants in CASP (Fig. 2a) has also led to significant computational advances
in structure determination and has identified select groups whose methods were consistently
found to score high. For example, Baker’s group has been singled out as a good performer
using template-based predictions (assembly of short fragments of known proteins using a
Monte Carlo sampling procedure followed by all-atom refinement) with the Rosetta
program; in CASP8, prediction of accuracy up to 1–2 Å resolution were demonstrated
(Raman et al. 2009) (e.g. Fig. 4c).
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More generally, comparative modeling (template based) and knowledge-based approaches
(using statistical potentials based on analysis of known protein structures) have been found
to produce reasonably good structural models, with notably more accurate predictions
becoming possible. Predicting regions that are substantially different from the target appear
far more difficult.

This is somewhat disappointing to devotees of ab initio folding, relying on physics-based
force fields, a technique that has shown some, but more modest, progress (see next section).
Still, template-free approaches based on statistical instead of molecular mechanics potentials
have also emerged as competitive. Nonetheless, force-field-based approaches are essential
for interpreting protein interactions and energies, such as required for drug design, and also
for later stages of refinement, following template and homology modeling.

Ultimately, modeling work in this field is invaluable because it teaches us to ask, and seek
answers to, systematic questions about sequence/structure/function relationships and about
the underlying forces that stabilize biomolecular structure.

5.4 Protein-folding theory
Besides the folded protein structures discussed above, other parts of the protein-folding
puzzle that have intrigued experimentalists and theoreticians alike are understanding the
associated protein-folding code (thermodynamics) and pathways (kinetics) (Dill et al. 2008).
A statistical– mechanics framework based on the density of states has been pioneered by
Frauenfelder, Wolynes, Dill, Onuchic, Thirumalai and others for answering these questions
(e.g. Dill et al. 2008; Frauenfelder et al. 1991; Wolynes, 2005) by analyzing energy
landscapes of proteins on the basis of various experimental studies of proteins (fluorescence
spectroscopy, NMR, single-molecule experiments, fast-laser temperature jumps, mutational
studies, etc.). Essentially, the density of states arranged in the funnel landscape describes the
conformational heterogeneity of the protein. Such free-energy landscapes can help interpret
conformational substates and folding mechanisms and thereby relate protein dynamics,
folding kinetics, and function. For example, fast protein folders must navigate through
mostly local contacts in smoother free-energy landscapes, while slow-folding kinetics can be
attributed to rugged energy landscapes, with more global contacts and more conformational
traps and barriers. Standard chemical kinetics and transition state theory in combination with
simplified models have also been important in analyzing folding events (e.g. Berezhkovskii
et al. 2009; Best & Hummer, 2006; Ozkan et al. 2007; Yang & Grueble, 2003).

By relating folding kinetics to mutation profiles, mutation experiments have also helped
further validate the utility of such theoretical frameworks. For example, recent folding
kinetics experiments on mutants of α-spectrin, a protein of the intracellular matrix of red
blood cells important for membrane elasticity (Wensley et al. 2010), have confirmed the
notion that slow kinetics is correlated to rugged landscapes. By swapping domains through
chimeric constructs for protein domains of α-spectrin, the reasons for disparate folding rates
(by three orders of magnitude) of the protein relative to two homologues were traced to
internal friction resulting from residue-specific interactions that can lead to misdocking of
helices. For this membrane protein, slow unfolding kinetics can be advantageous because
fewer rearrangements during the cell’s lifetime, and hence fewer possible degradations,
result.

That theory contributes significantly to experiment was also echoed by Fersht and
colleagues in a separate work on a three-helix bundle protein and various mutants which
showed via simulation that folding intermediates are on the folding pathway (Mayor et al.
2003):
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… combining molecular dynamics and experiment has now allowed us to
characterize all of the necessary structures along the pathway. … Simulation could
well be the answer in general for solving such problems in mechanism.

Numerous other general areas of theory, such as protein electrostatics and enzymatic
reactions (Kamerlin et al. 2009; Warshel et al. 2006), conformational transitions in DNA
polymerases in relation to fidelity mechanisms (Bebenek et al. 2008; Foley & Schlick, 2009;
Golosov et al. 2010; Radhakrishnan et al. 2006), and interpretation of NMR signals (Case,
2002; Henzler-Wildman et al. 2007; Markwick et al. 2010; Tsui et al. 2000) have also
benefited from simplified theoretical frameworks and models developed to interpret
complex biological phenomena.

5.5 Modeling-aided drug discovery and design
Modeling molecular structures and dynamics has already helped to define molecular
specificity and clarify functional aspects that are important for drug development (see also
Schwede et al. 2009). Although modeling suggestions are not always verified by
experiment, they help make important suggestions and offer general leads.

Clearly, as biological structures and functions are being described, natural disease targets
that affect the course of disease can be proposed. Examples include specific regions of HIV
enzymes or misfolded protein fibrils known as amyloids (for related misfolding disorders
like Alzheimer’s and Creutzfeltdt–Jakob disease). Modeling work is important for
pinpointing specific targets in these regions from structural, stability, and flexibility
considerations and also testing resulting interactions (as reviewed in Ghosh et al. 2006;
Zhou, 2008). For example, the sequence-specific triggers for amyloid formation, as recently
uncovered (Goldschmidt et al. 2010) – self-complementary segments that can stick together
– suggest capping alterations to slow down their formation or small molecules to act as
folding chaperones (Schnabel, 2010). Supplementing these structure–function drug design
paradigms is a systems-biology approach that attempts to modify response of genes, proteins
and metabolites by integrating organ- and system-level modeling (Csermely et al. 2005;
Kitano, 2007).

The solved HIV enzymes (PR, integrase, and reverse transcriptase) led to the development
of many inhibitors that are now in clinical usage, some of which were aided by computer
simulations. For example, besides the structural determination mentioned above for HIV PR,
MD simulations using various HIV PR models have suggested that a fully open
conformation of the PR ‘flaps’ may be favorable for drug access to the active site (Collins et
al. 1995; Hamelberg & McCammon, 2005; Hornak et al. 2006; Tozzini & McCammon,
2005). Recent simulations have also led to design proposals (Scott & Schiffer, 2000) and
other insights into PR/drug interactions (Hornak & Simmerling, 2007).

The solved complex of HIV integrase with an inhibitor in 1999 (Goldgur et al. 1999)
attracted considerable attention since it provided a general platform for the drug design of
another class of HIV inhibitors besides PR inhibitors. MD simulations have suggested that
inhibitors could bind in more than one orientation to HIV-1 integrase, preferred and flipped
(Perryman et al. 2010; Schames et al. 2004), as shown in Fig. 5, which also shows an X-ray
structure of an inhibitor bound to an evolutionary similar virus (Hare et al. 2010).
Simulations also showed that binding modes can be selected to exploit stronger interactions
in specific regions and orientations (Hazuda et al. 2004; Lin et al. 2002; Schames et al.
2004) and that different divalent-ion arrangements are associated with these binding sites
and fluctuations (Perryman et al. 2010). Thus, modeling can help outline new possibilities
that stimulate further modeling and experimentation. More generally, emerging
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experimental findings combined with modeling are expected to aid the development of
antiretroviral drugs.

Other examples of drug successes based on molecular modeling include the design of potent
thrombin inhibitors to treat a variety of blood coagulation and clotting-related diseases by
tailoring ligands to the enzyme pocket (Brady et al. 1998), the SARS virus inhibitor (Dooley
et al. 2006), glutamate nanosensors to monitor neurologic functions (Okumoto et al. 2005),
agonists to treat anxiety and depression (Becker et al. 2006), and a migraine treatment
(Boyd, 1998).

While both the monetary cost and development time required for each successful drug
remains very high (Amir-Aslani, 2008; Munos, 2009), and great successes are now few and
far between, it is clear that molecular modeling will be important for the future of drug
discovery and for many other design applications in biomedicine and nanotechnology. What
is not obvious, however, is what type of modeling tool will prove to be most useful. This is
because the usage of MD simulations by pharmaceutical scientists appears to be minimal
(Nicholls, 2010), compared to tools from cheminformatics, ligand similarity searches and
visualization, which are heavily used, and quantitative structure-activity relationships
(QSAR), docking, homology modeling, bioinformatics and quantum mechanics, to a lesser
extent. Limitations of force fields and sampling are most often quoted as reasons for the
curbed application of dynamics to real-life problems.

The emergence of another class of successful drugs distinct from the traditional small-
molecule drugs, namely biologics – biomolecules derived from living cells – might also
increase the role of modeling in pharmaceutical discovery. This is because understanding the
complex biomolecular function is important to this alternative approach, which also relies on
a systems biology viewpoint. Overall, it is becoming clear that integrated advances on
several fronts – small-molecule drug design, biologics, high-throughput approaches,
pharmacogenomics and other innovations – are required to develop new paradigms to
manage the complex scientific, technological and economic factors involved in drug design.

5.6 Interpretation of experimental structures and related data disparities
In a recent review of their group’s applications of biomolecular dynamics for interpretation
of atomic force microscopy studies and electron microscopy structures, Schulten and
colleagues write (Lee et al. 2009) that :

… the power of molecular dynamics (MD) simulations to make relevant
discoveries on their own, i.e., without corroborating experimental evidence, is a
hotly debated topic today.

They continue to argue that :

… many important research problems in modern cell biology require a combined
experimental-computational approach and computing has to be a reliable partner.
Indeed, in many cases, experimental researchers must team up with MD experts
who complement and resolve ambiguity in experimental data.

Other examples were provided above in Subsection 5.1, on using MD simulations and other
modeling techniques (spectral decompositions, enhanced sampling methods, QM/MM
techniques, etc.) to gain insights into biological structure and function. Many of these
predictions can ultimately be tested by further experimentation.

Importantly, modeling can help sift through conflicting experimental information. Two such
examples where different experimental techniques have produced different structural
perspectives involve the organization of G quadruplexes and of chromatin fibers.
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5.6.1 G-quadruplexes—G-quadruplexes are organized topologies of G-rich sequences in
telomeric DNA (chromosome ends) held by Hoogsteen base pairing. Such sequences are of
great interest because of their role in preserving genomic stability ; a better understanding of
their structural properties could help interpret processes related to human aging caused by
chromosome degradation.

Crystal structures of short telomeric sequences are available, as are several NMR solution
structures. The topologies from these studies, however, differ in the orientation of the loops
connecting the G-tetrad planes (Fig. 6) and in the overall stacking arrangement of the
complexes. Namely, whereas the crystal topologies suggest parallel stranded constructs, the
NMR structures suggest anti-parallel backbone arrangements with stabilizing ions (Burge et
al. 2006).

By modeling guanine-rich quadruplexes using MD, free-energy simulations, and PCA,
Neidle and co-workers determined stable structures of these complexes in parallel
orientations and predicted higher-order organizations (Haider & Neidle, 2009; Haider et al.
2008). These structures help propose plausible models on longer systems that could not be
solved experimentally as well as build higher-order repeat models. Such detailed models can
examine the relative stability of parallel and anti-parallel arrangements and suggest
conditions under which each form will be stable. Ultimately, atomic models could be used
for ligand-binding drug design, already an active area to fight cancer (Neidle & Parkinson,
2002). Figure 6c shows a crystal structure of an anti-cancer drug, at the interface of two
parallel-folded quadruplexes and stabilized by a water network, bound between two human
telomeric quadruplexes (Campbell et al. 2008). The structure confirms and extends
modeling predictions and underscores that, while theory provides generally correct ideas,
experimental data clarify and refine the modeling suggestions.

5.6.2 Chromatin organization—Chromatin structure represents another higher-order
structure of great interest. Understanding chromatin organization is important because the
chromatin structure affects genome accessibility to the protein synthesis machinery. Hence,
transcription regulation is ultimately a structural problem.

Although several levels of folding are recognized for the chromatin fiber, only the basic unit
of the chromatin fiber – the nucleosome, or the protein octamer core around which about
200 bp of DNA are wound (Davey et al. 2002; Kornberg & Thomas, 1974; Luger et al.
1997) – and the associated low-level packaging are well characterized (Felsenfeld &
Groudine, 2003).

At physiological ionic strengths, it is believed that the chromatin forms a ‘30 nm’ chromatin
filament observed by electron microscopy, but several models for this polynucleosomal
level of folding have been suggested based on X-ray crystallography and electron
microscopy imaging, with yet no consensus (Tremethick, 2007; van Holde & Zlatanova,
2007). For example, the two-start zigzag model, where the nucleosomes crisscross one
another around the helical axis with straight linker DNA (Dorigo et al. 2004) is evident in
the recent crystallographic structure of the tetranucleosome (Schalch et al. 2005), while the
solenoid topology (Finch et al. 1977), in which the nucleosomes arrange helically around the
fiber axis with bent linker DNA, is supported by electron micrographs (Fig. 7).

Only recently have researchers begun to dissect the influence of key internal and external
factors such as length of the connecting linker DNA segments between nucleosomes (which
can vary from 10 to 70 bp), the binding of linker histones, and the presence of various
concentrations of monovalent and divalent ions on chromatin structure (e.g. Kruithof et al.
2009; Robinson et al. 2006). Modeling has played an important role (e.g. Arya & Schlick,
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2006; Grigoryev et al. 2009; Schlick & Perisic, 2009; Stehr et al. 2008; Sun et al. 2005;
Wong et al. 2007) in examining different models, dissecting the dependence of fiber width
on the linker DNA length, the effect of linker histones of fiber structure and the
condensation roles of divalent ions on chromatin organization. For example, our Monte
Carlo simulations of a coarse-grained oligonucleosome model have suggested a compact
zigzag organization for the chromatin fiber at typical linker DNA lengths with linker
histones and a more heteromorphic architecture of zigzag forms with straight linker DNA
interspersed with bent DNA linkers at divalent ion environments (Fig. 7) (Grigoryev et al.
2009); this view thus merges the two ideal models and provides further explanations to the
prevalence of both structures by experiments. While studies are ongoing, modeling has
underscored the notion that the chromatin structure is heteromorphic (Grigoryev et al. 2009;
Wong et al. 2007) rather than a single dominant structure.

Interestingly, recent folding simulations of proteins have indicated that conformational space
may be more heterogeneous than originally believed (Ensign & Pande, 2009; Freddolino &
Schulten, 2009).

6. Some modeling and simulation failures
Although publications of failures are not common, several general areas of failure can be
noted in biomolecular modeling.

6.1 CASP failures in structure prediction
As mentioned above, prediction of successes for small proteins can be documented by the
CASP experiments, especially from template-based modeling; indeed, proteins with >35%
sequence similarity tend to be folded alike. However, exceptions are well known (Gan et al.
2002). In a recent CASP8 experiment, two protein targets (56 residues each) for template-
based modeling were released containing>90% sequence identity ; the first protein falls in
the α fold class, while the second has an α/β topology. Surprisingly, all 159 participant
teams except four failed to recognize the two different folds. Instead, most predictors
attributed the α/β fold to both targets ; the difficulty was traced to steric clashes occurring at
the side chain of the non-identical residues (Alexander et al. 2007).

More common are failures in de novo or ab initio folding predictions. In CASP8, several
groups submitted predictions for up to 10 targets. Except for one group that performed well,
the performance of the others was inconsistent, i.e. some bad and some good predictions
(Kryshtafovych et al. 2009). One difficult target, which contained five α-helices and four
antiparallel β-strands, received no correct predictions (Ben-David et al. 2009). It has also
been established that high-resolution modeling (<2 Å) for new folds is far beyond the
current capacity of even the best of programs (Zhang, 2008). Moreover, protein structure
refinement appears to be quite a difficult task, as evident from performance in CASP8 for
this new refinement category (MacCallum et al. 2009).

6.2 Failures in configurational sampling
Sampling the high-dimensional rugged function of biomolecules to locate all the thermally
accessible configurations is a well-recognized bottleneck in MD. Moreover, despite all the
clever enhanced sampling methods that have been designed, the problem is far from solved.
The sampling problem is also exacerbated by the parameter approximations in force fields
and algorithms, and this rigorously requires stochastic frameworks for modeling as well as
data analysis. In practice, this means that most MD simulations sample local states that are
initial configuration, model, and parameter dependent, as shown for the narrow sampled
ranges in dihedral angle distributions in peptides (Sugita & Okamoto, 1999), or the limited
configurational space sampled for the ring peptide cyclosporin A, which could not be found
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in the all trans conformation except at very high temperatures (O’Donohue et al. 1995).
Thus, convergence of structures in the global sense can almost never be proven in practice,
even with simplified coarse-grained models and enhanced sampling methods.

6.3 Force field biases
Force field problems are well recognized, for example, in predicting β proteins (Ensign &
Pande, 2009; Freddolino & Schulten, 2009; Maupetit et al. 2009; Mittal & Best, 2010) and
the related over-stabilization of helices (Best et al. 2008; Freddolino et al. 2009; Hornak et
al. 2006; Tanizaki et al. 2008), possibly due to systematic errors in protein backbone
potentials and the approximate treatment of hydrogen bonds. Noted also in implicit solvent
models are structural biases (e.g. towards α helices) compared to explicit-water systems
(Roe et al. 2007) and limitations in electrostatic treatments due to simple atom-centered
charged models (Beachy et al. 1997; Chen & Brooks, 2008; Halgren, 1999); polarizable
force fields thus represent a more accurate description of molecular properties (Ponder et al.
2010).

Although modern force fields perform comparably in MD simulations (Price & Brooks,
2002), the general parameterization problem is difficult for several reasons. These include
the enormity of the parameter space, the difficulty in validating models against the varied
experimental data, the desire to simplify models, while at the same time extending the
biological scope of the modeling, and the practical issue that force field development may
not be as scientifically rewarding as are applications. Thus, no force field can accurately
reproduce all the complex interactions and properties of real systems, but force fields need
not be perfect to be meaningful ! Their overall utility is in generating qualitative and
quantitative insights into structural, energetic, and dynamic properties of complex systems
through systematic studies, especially when trends are compared for a related group of
biological systems (like single base-pair variants of DNA or protein mutants). Ultimately,
predictions or interpretations can be tested experimentally.

7. Summary
From the information and examples provided here, it appears that biomolecular modeling
and simulation is a vibrant field with many avid proponents and numerous exciting areas of
exciting activity. Like many new promising technologies, however, initial expectations
might have been set too high. Indeed, the general appreciation for a greater biological
complexity than originally believed in the wake of the Human Genome Project and beyond,
together with the realization that more work on algorithms is essential to bridge the gap
between experimental and theoretical time frames, has transitioned the field from a trough of
sorts to a more realistic and productive phase of activity (Fig. 3). Clearly, a recognized
strength of researchers in the field is their ability to synthesize information from various
sources and develop innovative tools that build upon knowledge in different disciplines. The
unprecedented opportunities in 21st century biology, in general, and biomolecular modeling,
in particular, argue for a focused effort by the community to define key scientific challenges
that build upon existing knowledge and technical capabilities to advance modeling to new
levels of accuracy and reliability ; concerted advances can undoubtedly help our
understanding of biological systems and lead to many beneficial applications in health,
environment, and technology (NAS, 2009).

8. Recommendations
To help propel the field onto its productive trajectory, the following general
recommendations and areas that require further progress can be identified.
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8.1 Bridging Scales
Given the enormous range and complexity of biological temporal and spatial dimensions,
work should continue on all levels of biomolecular modeling, from all-atom representations
to coarse-grained models on both the classical and quantum-classical levels, despite
imperfections and approximations. This is needed to study processes ranging from
macromolecular folding (proteins, RNA, and other complexes) to biochemical binding and
reaction mechanisms (enzyme catalysis or protein/ligand interactions) to macromolecular
pathways (DNA replication and repair or chromatin organization) and up to supramolecular
cellular processes like protein-signaling networks. Because for biology the ‘devil is in the
details’, simulation efforts are required on all levels of biological complexity rather than
focusing on very accurate studies on the finest level. This means that many approaches in
addition to all-atom modeling are important to continue, such as coarse-grained modeling
and mesoscale models. New methodological developments are needed in all levels (see the
next item) so that, ultimately, an integration of all these tools could allow a kind of
‘telescoping’ from one level of resolution to the other to focus on specific aspects of a
variety of biological processes.

8.2 Methodology advances
Studying biological systems and problems on the above levels successfully and reliably
requires new methods and models to be systematically developed, including force fields,
hybrid quantum/molecular mechanics models, enhanced sampling techniques, rigorous
coarse graining of multiscale models, and tool integration. As mentioned for force fields
(next item), developing models on other scales requires consolidated efforts of concept
development, parameterization, and code sharing.

8.3 Force fields
Improved force fields are needed to address the above biological problems, with
parameterization and validation conducted systematically and rigorously on both all-atom
and coarse-grained models. The ideas needed to improve force fields appear to be known,
like polarizable force fields (Ponder et al. 2010), but efforts need to be consolidated,
prioritized, and organized. Special funding for such consolidated efforts could help attract
researchers to work on these tasks.

8.4 Open-source codes
Better methods for data sharing are needed, including for force fields, algorithms, and many
computer programs associated with research papers. For example, a requirement to deposit
computer codes when submitting methodology papers, as done in some computer science
journals, could help reviewers test the programs and ultimately allow users in the
community to apply the algorithms. This will go a long way toward validating algorithms
and identifying the most effective techniques. For enhanced sampling methods, which tend
to be home grown, this program sharing could help practitioners apply clever ideas to
important systems.

8.5 Better interdisciplinary education
One origin for a poor perception of the field is that many applications of molecular modeling
packages as black boxes are not reliable, although the images may be impressive. This
problem could be alleviated with better multidisciplinary education, including in modeling,
to teach the basics of modeling studies and analysis, to stimulate modeling experimentation,
and to cultivate sound scientific practices (such as parameter testing, statistical
interpretations, and sensitivity analysis). For example, programs in computational biology or
bioinformatics could offer under-graduate and graduate-level courses like bio/molecular
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modeling, computational chemistry, or modeling tools for experimentalists. Courses should
introduce the fundamentals in the fields as well as provide practical experience through
simple programming and modeling assignments to introduce students to common caveats
and encourage critical thinking and healthy skepticism (e.g. as in Schlick, 2010).

8.6 Research collaborations
Although funding agencies have led to many teams working together, there remain many
duplicate research efforts. A better deployment of truly interdisciplinary teams working
together to advance specific areas of methodology and application will be beneficial. This
could be achieved through large community efforts on several key fronts of algorithms (like
MD, QM/MM and sampling), force fields, and specific applications.

8.7 Community assessment efforts
The CASP exercise has been an exemplary success in defining the state-of-the-art in protein
folding and helping propel a field forward in an organized, community-wide manner.
Similar efforts are needed for nucleic acids, force field development, MD practices,
enhanced sampling methods, quantum-classical mechanics simulations, coarse-grained
models, implicit solvation, and others.

8.8 Faster processors
Computer technology has certainly impacted the field tremendously, and will continue to do
so. Efforts must continue to make available large central computing resources like
supercomputing centers to biomolecular modelers. The sharing of an Anton supercomputer
with the community is a commendable effort. In addition, because data management
becomes an issue for biomolecular data, and queue times can be long when computations are
conducted remotely, algorithms and programs that utilize distributed computing platforms
and local networks of fast processors are also important.

8.9 Shared resources
Systematic advances in algorithms, force fields, and modeling approaches require
establishment of better software repositories and shared resources. Infrastructural support for
generating and analyzing such voluminous molecular data requires the development of
efficient simulation management tools such as clustering, archiving, comparison, debugging,
visualization, and communication protocols.

8.10 Better communication between academe and industry
Greater efforts are needed to bring open dialog and constructive research efforts concerning
tools and applications used in academia and those in the pharmaceutical industry. For
example, cross-community interactions could help lead to better efforts in establishing
needed databases, such as for protein/ligand structures, or developing better approaches for
binding free energies. Overall, better modes are needed for transforming basic or
translational research efforts in academia to more applied problems in industry and
technology. Economic incentives for such collaborations would be needed, and these could
come from a combination of industrial, academic and government agencies.

8.11 Reports of failure
Progress in the field could be expedited by a venue that would allow scientists to publish
modeling failures. Understanding the problems or failures could go a long way in helping
finding the right solutions. Perhaps journal sections dedicated to such publications could
inspire scientists to share such information.
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Of course, these wide suggestive strokes require many of the details to be filled in. We
invite readers to share comments and suggestions. Such concerted efforts can help move the
field away from a local trough of disappointment (or a shattering of inflated expectations)
toward a more realistic productive phase, where modeling and experiment can be hand-in-
hand partners (Fig. 3).
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10. Appendix A
The following questions were sent to a small sample of about 125 computational and
biological scientists from students to experts across the globe.

1. Your background: Describe your field of research and professional position.

2. Overall assessment (a): Do you believe that bimolecular modeling has fulfilled the
expectations for the field during the past three decades (e.g. in drug design, protein
folding pathway prediction, etc.) ? Why or why not?

3. Overall assessment (b): Do you consider molecular modeling to be a complement
to experiment or a field in its own right ?

If you are an experimentalist, do you use molecular simulation results/techniques to
interpret experimental data ?

–OR–

If you are a theoretician, does your work help interpret experimental work? Please
elaborate as possible.

4. Success story: Can you describe a striking example of a successful biomolecular
modeling application, from your lab and/or one from another lab, i.e. cases in
which molecular simulations have led to innovative scientific contributions or have
correctly helped interpret experimental results ?

5. Failure: Can you describe a striking example of failure of biomolecular modeling,
i.e. an example in which excessive/incorrect claims regarding the validity of
molecular simulations have lead to misinterpretations of experimental data or
misleading conclusions ?

6. Future (a): In the long term, what applications do you think will benefit most from
the field of biomolecular modeling (e.g. medicine, research, technology, etc.) ?

7. Future (b): What specific advances do you believe the field of biomolecular
modeling would benefit the most from (e.g. improved force fields, faster
processors, increased funding, etc.).

Fifty-eight responses were obtained, most from academic scientists. Although the sample is
small, it was striking to see the difference in opinions regarding the field’s progress as
assessed by mostly algorithm developers (mathematicians, computer scientists, etc.) on one
hand versus computational chemists and biologists on the other. The former group was far
more reserved, and perhaps disappointed, at the relatively modest impact of algorithmic
advances. Perhaps technology advances have overshadowed algorithmic work. Of course,
without the formal guidance that rigorous algorithms provide (see Subsection 5.2), many of
the simulations and applications would not have been possible. Regarding the independence
of the field, opinions were divided in that almost all respondents believed that modeling is a
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complement to experiment. About half of the respondents also added that the field has
become a discipline on its own right.

The majority of respondents believe that initial field expectations were not met, but agree
that these might have been set too high.

Although no straight-forward approach to rational drug design has succeeded due to the
underlying complexity of the systems and associated energy landscapes, modeling and
simulation, specifically MD, has provided a way to probe molecular function. Many admit
that modeling helps suggest new experiments and generate hypotheses.

Thus, respondents agree that modeling has provided a variety of creative tools for
investigating biomolecular interactions, structures and energies, and that all these tools have
evolved substantially. Researchers also admit that, to outsiders, these advances may not be
as apparent, convincing, or useful. We suggest here that this is because tools and programs
are not yet automated to the point that they could be used as ‘black box’ tools for specific
applications. Still, a general optimism for the future is shared by many respondents,
especially in biomedical applications.

Force field improvement was by far the most important advance that respondents recognized
as essential for future progress of the field; this is followed by algorithm development. Some
believe that better sampling, due to theoretical and computational advances, will impact
drug modeling and design applications in particular.
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Fig. 1.
Examples of various modeling methods and applications. (a) QM/MM pathway (from top
left to bottom right) of DNA repair enzyme polymerase β nucleotide incorporation
(Radhakrishnan & Schlick, 2006); (b) superimposed MD configurations from a solvated
dodecamer simulation ; (c) mesoscale oligonucleosome model with nucleosome cores in
grey and tails and linker histones in color (see Arya & Schlick, 2009; Schlick, 2009a for
details) ; (d) top three principal component motions in the thumb and finger subdomains of
DNA polymerase β (Arora & Schlick, 2004); (e) representative Monte Carlo snapshots in
the sampling of 48-unit oligonucleosomes at three different salt environments using the
model shown in (c) ; and (f) minimized water clusters.
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Fig. 2.
Metrics of the field’s rise in popularity and the evolution of computational performance. (a)
CASP predictions (left-axis) and participants (right-axis) ; (b) modeling papers in peer-
reviewed journals as found in the ISI Web of Science using the query words molecular
dynamics, biomolecular simulation, molecular modeling, molecular simulation and/or
biomolecular modeling; (c) papers from (b) appearing in high-impact-factor journals ; (d)
papers from (b) decomposed by method; (e) citations to the original papers of four popular
MD packages ; (f) computational systems ranked first, 500th, and highest- ranked academic
facility assembled in the Top500 supercomputer lists (http://www.top500.org). The total
speed for folding@home is also shown for 2007 and 2009. Some biomolecular modeling
milestones are also connected to a specific computing system, assuming that the
computations were performed about a year prior to publication, except for the two 1998
publications which we associate with computations started in 1996, for : 24-bp DNA system
using NCSA SGI machines (Young & Beveridge, 1998), β-heptapeptide using SGI Power
Challenge (Daura et al. 1998), villin using the Cray T3E900 (Duan & Kollman, 1998), bc1
membrane complex using the Cray T3E900 (Izrailev et al. 1999), B-DNA dodecamer using
MareNostrum, Barcelona (Pérez et al. 2007) and fip35 protein ran on NCSA Dell clusters
(Freddolino et al. 2008), with full details presented in Schlick (2010) ; also shown are future
predictions (Duan et al. 2000) (see text).
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Fig. 3.
Proposed expectation curve for the field of biomolecular modeling and simulation, with
approximate timeline. The field started when comprehensive molecular mechanics efforts
started, and it took off with the increasing availability of fast workstations and later
supercomputers. Following unrealistically high expectations and disappointments, the field
is expected to make more realistic progress so that eventually theory and experiment will be
hand-in-hand partners.
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Fig. 4.
Examples of folding predictions that preceded experiment. (a) HIV PR: tertiary structure of
the homodimer (red), predicted by homology modeling (Pearl & Taylor, 1987),
superimposed with the crystal structure 3HVP (blue), 198 residues shown (Wlodawer et al.
1989); (b) group-I intron : P4–P6 domain (red), predicted by a comparative modeling
(Michel & Westhof, 1990), aligned with crystal structure 1GID (blue), 38 residues (Cate et
al. 1996); (c) CASP protein prediction by the Baker group for target T0492 (Raman et al.
2009), kindly provided by Srivatsan Raman and David Baker; crystal structure, 73 residues
(blue) of this all-β protein (SH3-like barrel fold) is shown against the best detectable
template found by comparative modeling (green) and the predicted structure (red) built
using Rosetta using the best template found.
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Fig. 5.
Drug/inhibitor-binding pockets to HIV integrase as solved experimentally and as predicted
by modeling. (a) Preferred (or primary) binding (yellow shading) of the inhibitor 5-CITEP
(green) to the active site of the HIV-1 integrase core domain as determined by
crystallography (Goldgur et al. 1999); (b) preferred binding (yellow shading) of the anti-
HIV drug Raltegravir (purple) to the active site of the prototype foamy virus (PFV)
integrase, a structural homologue of HIV-1 integrase, as determined by crystallography
(Hare et al. 2010); (c) predicted preferred binding (yellow shading) for Raltegravir to the
HIV-1 integrase catalytic core domain as determined by modeling (Perryman et al. 2010);
(d) alternative, or flipped binding (turquoise shading) for Raltegravir to the HIV-1 integrase
catalytic core domain as determined by modeling (Perryman et al. 2010). C and D are based
on PDB entry 1QS4, with missing residues in panel (A) reconstructed by homology. The
magnesium ions are shown as orange spheres.
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Fig. 6.
G quadruplex architecture and drug binding. (a) Antiparallel and (b) parallel folds of human
telomeric G-quadruplexes; (c) biological unit of the complex between the drug candidate
molecule BRACO-19 and two bimolecular human telomeric quadruplexes (Campbell et al.
2008). Figure kindly provided by Stephen Neidle.
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Fig. 7.
Chromatin organization : ideal models and simulation-generated model. (a) Ideal solenoid
model for the chromatin fiber (side, top, and upper top layer views), in which DNA linkers
are bent and neighboring nucleosomes (i±1) are in closest contact ; (b) ideal zigzag model
for the chromatin fiber (side, top, and upper top-layer views), in which DNA linkers are
straight and next-nearest neighbors (i±2) are in closest contact; (c) heteromorphic
architecture obtained by modeling (Grigoryev et al. 2009) at divalent ion environments with
the chromatin model shown in Fig. 1c in which mostly zigzag forms with straight linker
DNAs are interspersed with bent DNA linkers. In all views, linker and wrapped DNA are
colored red ; odd and even nucleosomes are white and blue, respectively ; and linker
histones are turquoise.
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Table 1

Fastest academic computer systems as ranked in the November’s Top500 lists, http://www.top500.org. Rank
represents the position of the fastest academic system in the Top500 list per year. The systems are ranked in
terms of Rmax, which is an estimate of the maximum performance of a computer measured using a freely
available implementation of the High Performance Computing LINPACK Benchmark

Year Rank Institution Computer Rmax (GFlops/s)

1993 4 NCSA Thinking Machines Corporation, CM-5/512 30·4

1994 6 University of Tsukuba Fujitsu, VPP500/30 39·8

1995 6 Cornell Theory Center IBM, SP2/512 88·4

1996 1 Center for Computational Science University of
Tsukuba

Hitachi, CP-PACS/2048 368·2

1997 4 Center for Computational Science University of
Tsukuba

Hitachi CP-PACS/2048 368·2

1998 7 CSAR at the University of Manchester Cray Inc., T3E1200 509

1999 5 University of Tokyo Hitachi, SR8000/128 873

2000 7 Leibniz Rechenzentrum Hitachi, SR8000-F1/112 1035

2001 2 Pittsburgh Supercomputing Center Hewlett-Packard, AlphaServer SC45 1 GHz 4059

2002 6 Pittsburgh Supercomputing Center Hewlett-Packard AlphaServer SC45, 1 GHz 4463

2003 3 Virginia Tech Self-made 1100 Dual 2·0 GHz Apple G5/
Mellanox Infiniband 4X/Cisco GigE

10 280

2004 4 Barcelona Supercomputing Center IBM BladeCenter JS20 (PowerPC970 2·2 GHz) 20 530

2005 8 Barcelona Supercomputing Center IBM JS20 Cluster, PPC 970, 2·2 GHz, Myrinet 27 910

2006 5 Barcelona Supercomputing Center IBM BladeCenter JS21 Cluster, PPC 970, 2·3
GHz, Myrinet

62 630

2007 10 Stony Brook/BNL, New York Center for
Computational Sciences

IBM eServer Blue Gene Solution 82 161

2008 6 Texas Advanced Computing Center University of
Texas

Sun Microsystems SunBlade r6420, Opteron QC
233 GHz, Infiniband

433 200

2009 3 National Institute for Computational Sciences,
University of Tennessee

Cray Inc. Cray XT5-HE Opteron Six Core 2·6
GHz

831 700
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