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Carnosine is an endogenous dipeptide abundant in the central nervous system, where by acting as intracellular pH
buffering molecule, Zn/Cu ion chelator, antioxidant and anti-crosslinking agent, it exerts a well-recognized multi-protective
homeostatic function for neuronal and non-neuronal cells. Carnosine seems to counteract proteotoxicity and protein
accumulation in neurodegenerative conditions, such as Alzheimer’s Disease (AD). However, its direct impact on the
dynamics of AD-related fibril formation remains uninvestigated. We considered the effects of carnosine on the formation of
fibrils/aggregates of the amyloidogenic peptide fragment AB1-42, a major hallmark of AD injury. Atomic force microscopy
and thioflavin T assays showed inhibition of AB1-42 fibrillogenesis in vitro and differences in the aggregation state of AB1-
42 small pre-fibrillar structures (monomers and small oligomers) in the presence of carnosine. in silico molecular docking
supported the experimental data, calculating possible conformational carnosine/AB1-42 interactions. Overall, our results
suggest an effective role of carnosine against AB1-42 aggregation.
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Introduction

Carnosine (B-Ala-L-His) is a bioactive dipeptide endogenously
abundant in the central nervous system (CNS) [1]. High rates of
carnosine synthesis are thought to occur in glial cells (oligoden-
drocytes and astrocytes), but not in neurons, that are conversely
thought to mainly receive carnosine from glial cells [2-6].
Carnosine is known to operate as intracellular pH buffer
modulator, Zn/Cu ion chelator, and antioxidant, aldehyde-
scavenger, antiglycating and anti-crosslinking agent for proteins
[1,7-15]. In the CNS, it is assumed to work as a multi-functionally
homeostatic and protective molecule for neuronal and non-
neuronal cells, bringing inherent benefits in terms of counteracting
to neurodegenerative conditions [14-20]. Carnosine has been
analyzed as a specific metabolic tool against neuronal toxic effects,
such as those arising from age-related proteotoxicity or from
pathophysiological pathways leading to altered protein accumu-
lation [1,18,21-29], and its protective effects against aberrant
amyloid peptides have been tested in various mammalian tissues
and cells [28,30,31]. Interestingly, carnosine has also been
investigated in tissues and fluids from patients with well-known
neurodegenerative conditions/pathologies, such as Parkinson’s
Disease, Freiderich’s ataxia and Alzheimer’s Disease (AD)
[1,11,26,32-37]. In the context of AD, the genes involved in
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carnosine metabolism have also been investigated. In particular,
the activity of the brain-specific carnosinase has been shown to be
altered in fluids from patients with AD dementia [38] and, more
recently, this enzyme has been validated as a novel biomarker in
the cerebro-spinal fluid for staging early AD [39]. Furthermore,
the mRNA of PEPT2 [40], a carrier protein involved in
transmembrane transport of carnosine, has been studied as a
marker for differential staging of AD progression in mammalian
models [41].

A key feature in AD pathogenesis is the excess formation/
accumulation of amyloid fibrils and plaques. The predominant
portion of the AD neuritic amyloid formations consists of the
peptide fragment AP1-42, produced physiologically by the
amyloid precursor protein, which readily associates into soluble
oligomers, required for AD-related neurotoxicity onset [42,43].
The aberrant accumulation of AB1-42 is directly involved in the
escalation of the neuronal injuries typical of AD [44-46], and its
plasma levels strictly correlate to the severity of the disease [43,47].
The self-associating AB1-42 peptides form nucleation centers [48]
from where the amyloid fibrils can quickly grow, contributing
primarily to form the AD-related senile plaques [49-54]. The huge
tendency of AB1-42 to display fibril formation has clearly been
demonstrated by i vitro assays [55]. Also, the structure-neurotox-
icity relationships of AB1-42 fragments have been investigated in
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depth with respect to morphology and polymerization state of
aggregates and fibrils [43,55,56].

Currently, the inhibitory activity of small molecules (small
peptides included) able to break down the structural organization
of soluble or aggregating AB1-42 in the fibrillogenesis process is
under investigation [57,58] with the aim of identifying novel
inhibitors of AP1-42 aggregation and toxicity, a major topic in AD
research [59]. In this context, we considered the direct effects of
carnosine, a naturally occurring dipeptide in nervous cells, on the
fibrillogenesis process of the AB1-42 fragment.

Materials and Methods

Materials

AB1-42 amyloidogenic peptide fragment corresponding to the
human amino acid sequence, carnosine (B-Ala-L-His), B-alanine,
L-histidine and Thioflavin T (ThT) were purchased (reagent
grade) from Sigma Aldrich (St. Louis, USA).

Sample Preparation for Fibrillogenesis Assays

AB1-42 stock solution (100 uM) was prepared by dissolving the
peptide fragment powder (two different lots from Sigma-Aldrich
were used, namely lot n. 079K8729 and SLBC5079V) in sterile
Milli-Q) water, as previously reported [43,58,60-65]. Aliquots
(5 ul) were lyophilized and stored at —20°C until use. For
fibrillogenesis assays, AP1-42 lyophilized aliquots were routinely
reconstituted in 50 mM Tris-HCL, pH 7.4 (5 ul) [61] to the
original concentration of 100 uM. Solubilized AP1-42 was
incubated in a water bath for 30 min at 37°C under gentle
mixing, either alone or in the presence of carnosine (0.1, 1 and
10 mM) or hydrolysed carnosine (B-alanine and L-histidine,
10 mM each).

Sample Adsorption for Fibrillogenesis Assays

Sample aliquots were removed from the water bath, diluted 1:2
(5 to 10 ul) with 50 mM Tris-HCI, pH 7.4, and rapidly casted on
freshly cleaved mica. After dehydration for 15 min at room
temperature (RT: 23-26°C, relative humidity ~40%) in a not
hermetically covered box, samples were rinsed thrice with 50 pl
Milli-Q water in order to remove salt and loosely bound
molecules. Samples were taken to dryness in a gentle stream of
nitrogen. Then, they were promptly imaged.

Atomic Force Microscopy (AFM)

All images were recorded in air at RT using a Nanoscope VI
Multimode Scanning Probe workstation (Digital Instruments,
Santa Barbara, CA) operating in tapping mode with phosphorus
doped silicon cantilevers, tip radius of 8 nm and a resonance
frequency of 69-92 kHz (probe model R FESPA, Digital
Instruments). Different scanner types were used (Picoforce and E —
type, with xy range of 40 um and 15 pm, respectively). Recording
parameters varied with individual samples, hence consecutive
shots were monitored before collecting images at sizes of 5, 2.5, 2.0
or 0.5 um?, with the maximum 512x512 pixel resolution, and
scan rate from 1 to 1.5 Hz.

ThT Fluorescence Assays

ThT stock solution was prepared at a final concentration of
1.5 mM in Tris-HCI, pH 7.4. The solution was filtered through a
0.22 pm pore size filter and stored in the dark at 4°C for no longer
than a week. To quantify AP1-42 aggregation state, a typical ThT
fluorescence assay was conducted [66,67]. Spectrofluorimetric
measurements were performed by adding ThT to a 100 uM AB1-
42 solution, in the presence (0.1, 1 and 10 mM) or absence of
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carnosine and hydrolysed carnosine (B-alanine and L-histidine,
10 mM each), under the fibril aggregation conditions described
above. Briefly, fluorescence emission spectra of ThT incorporated
into B-sheet amyloid structures are red-shifted [66]. Thus, binding
of ThT micelles to growing fibrils results in enhanced uorescence
signal [67]. ThT was incubated for 10 min with AB1-42 at the
molar ratio of 1:2, in the presence or absence of carnosine.
Fluorescence was measured by a Varian Cary Eclipse spectroflu-
orometer (JVA Analytical Ltd, Dublin, Ireland), using excitation
and emission wavelengths of 440 and 482 nm, respectively (slit
widths 5 nm). Emission spectra were collected (between 450 and
560 nm). The emission spectrum of carnosine alone was subtract-
ed, and emission data of peptide dispersions were normalized.

Fibril Morphology Analysis

Structures heights were measured by using the NanoScope
software v7.30 (Bruker, Mannheim, Germany). The roughness
routine statistics was used in order to get peaks height data,
expressed as the average distance between the five highest profile
points and the mean data plane (R,m) over areas of 5 um?.
Images, acquired from at least 3 independent tests, were analysed
for each experimental condition.

Measurements of contour lengths were performed manually on
binary transformed images, using the Image] software v1.43
(National Institute of Health, Bethesda, MD; http://rsbweb.nih.
gov/1j/), by truthfully tracing the backbone of the selected
fragments. A total of at least 200 aggregates were measured from
6 separate AFM images for each experimental condition. Only
fibril-like aggregates that could clearly be sized over 30
nanometers were included in the count [43,55]. Numerical data
were exported as ordinary ASCII files, tabulated and plotted using
OriginPro 8 (OriginLab Corporation, Northampton, MA). All
dimensional data were obtained from not processed images with
respect of flatten or plane fit inputs. Furthermore, in order to
examine differences in the aggregates nanostructure, a topograph-
ical evaluation of representative fibrillar structures was done, by
performing several measurements of subsequent cylindrical
segments along the fibril axis. The method described by the
following equation (1) W#*=W — 2/[H(2R, — H)] was applied to
the obtained width and height values in order to correct the
geometry of the resulting convolved image [68]. In (1), W*and W
represent the actual and observed fibril width from the AFM
image, respectively, H is the height of the structure from the
substrate and R, is the curvature radius of the tip (R,= 8 nm).

Molecular Docking

Molecular docking was carried out using Autodock Vina
program [69]. Structures of the carnosine or canosine-like
dipeptides and the natural or synthetic B-amyloid aggregation
inhibitors were obtained from the PubChem Compound database
(Table S1) and pdbgt-formatted using the Open Babel Package
2.1.1 [70]. The simple monomer of the B-fibril model of AB1-42
(PDB: 2BEG) [55] was used as the receptor for docking
calculations. For all docking studies the size of grid box was set
to 45 Ax21 Ax11 A to encompass the entire surface of monomer
fibril, while grid spacing was set to the default value (0.375 A).
Docking was carried out with an exhaustiveness value of 8 and a
maximum output of 10 structures and the best bound conforma-
tion for each docking simulation was chosen based on the lowest
Autodock Vina predicted binding energy calculated in kcal/mol.
Molecular graphics and analysis of docking results were performed
using the UCSF Chimera package [71] (http://www.cgl.ucsf.edu/

chimera).
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Molecular Properties and Efficiency Indices Calculation

Molecular size descriptors [i.e.: molecular weight (MW),
number of heavy atoms (NHA), number of carbons (NoC) and
Wiener index (W, a topological index defined as the sum of the
edges in the shortest paths between all the heavy atoms)] of ligands
were calculated using the Marvin Calculator Plugin (Version
5.10.3; http://www.chemaxon.com). The ligand efficiency indices
were calculated as previously described [72,73] by normalizing the
Autodock Vina predicted free energy of binding of the ligand with
respect to the different size descriptors.

Results

Effect of Carnosine on AB1-42 Fibrillogenesis

AFM imaging was used to evaluate fibrillogenesis of AB1-42
(100 uM) at physiological pH (7.4) in the absence and presence of
excess carnosine (10 mM). After 30 min incubation at 37°C,
imaging of the amyloid samples deposited on mica revealed the
presence of both abundant and extended fibrillar structures and
smaller aggregates (see Fig. 1A—~C). Specifically, abundant linear
fibrils were detected, with associated or overlapping filaments and
branched-like structures, as well as smaller fibrillar formations,
oligomers (=0.1 um) and globular particles. Conversely, co-
incubation of AB1-42 with carnosine led to a different picture,
with detection of spare fibrils, shorter than those observed in AB1-
42 control samples, in addition to globular particles (Fig. 1D-F).
Under the same fibrillogenesis conditions, ThT fluorescence assays
confirmed that AP1-42 polymerization of amyloid aggregates was
quantitatively reduced in the presence of carnosine 10 mM with
respect to what observed in the absence of carnosine (Fig. 1G);
such effect of carnosine was dose-dependent, as assessed in the 0—
10 mM range (Fig. 2). Overall, in our experimental conditions the
highest carnosine concentration (10 mM) lowered formation of
AB1-42 aggregates from 40% to 60%, depending on the
commercial lot of AB1-42 used. The observed inhibitory effect
on the AB1-42 fibrillogenesis was due to carnosine and not to its
component amino acids (Fig. S1). Anyhow, no carnosine
hydrolysis occurred under the experimental conditions used for
the fibrillogenesis assays, as assessed by HPLC analysis (see Fig.
S2). Taken together, these results highlight the potential anti-
aggregating effect of carnosine on AB1-42 polymerization and
amyloid fibril formation n vitro.

Effect of Carnosine on AB1-42 Fibril Morphology

Incubation of AP1-42 (100 uM) with carnosine (10 mM)
affected fibril morphology in terms of decrease of frequency of
longer AB1-42 fibril formations, and increase of shorter. To get
relative quantitation of frequency, the fibril contour length
distributions were calculated for fibrils deposited both in the
absence and presence of carnosine. Measurements revealed that
interaction with carnosine strongly reduced the frequency of AB1-
42 fibrils longer than 200 nm, and increased the frequency of
protofibrils or short fibrils in the range 30-200 nm, with respect to
control (Fig. 3A). Overall, the mean values of fibril length of
deposited amyloid aggregates was reduced from 270£17.7 nm in
the absence of carnosine to 134+8.9 nm when carnosine was co-
incubated (Fig. 3B). By further processing of the acquired AFM
images, the output values of the analysis of the surface roughness
profiles from the mean data plane were obtained to evaluate the
mean peak height of the amyloid formations deposited in AB1-42
samples and in AB1-42 co-incubated with carnosine. A reduction
of the mean peak height of the deposited aggregates from
27.6%3.69 to 16.5+2.31 nm was observed, passing from AB1-42
alone to carnosine co-incubated samples (Fig. 3C).
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Deeper morphological analysis was conducted on single fibril
digital magnifications to reveal qualitative shape-contour differ-
ences between deposited preparations in the absence or presence
of carnosine. When the height profiles were analyzed, fibrils from
control samples exhibited a likely constant structure periodicity
and height variation was consistent with branching or overlapping
structures sites (Fig. 4A). On the other hand, analyzing surface
profiles of sporadic fibrils from carnosine co-incubated samples a
less constant structure periodicity along the filament, and lower
baseline level than that detected in the control samples were
recorded (Fig. 4B); specifically, marked alternation of both
beaded and tubular segments could be noticed more often along
fibrils in the presence of carnosine, thus corresponding to minor
homogeneity of the deposited structures. Consistently, the average
thickness along these representative fibrillar structures seemed
reduced in carnosine co-incubated samples (from 24.87 to
17.96 nm in the carnosine co-incubated sample; deconvoluted
value of representative data). More clearly, higher resolution AFM
scansion (E type scanner) of AB1-42 amyloid fibrils in the absence
of carnosine showed deposition of aggregates of reduced size, such
as small protofibrillar, oligomeric formations, and globular
particles, within a network of extended fibrils (Fig. 4C); imaging
of the aggregates revealed possible pre-fibrillar organization of the
amyloid structures, such as ordered rows retaining a constant and
homogeneous height profile, composed of closely spaced/linked
beads of comparable size (Fig. 4D, E). On the other hand, when
carnosine was co-incubated, sub-fibrillar AB1-42 aggregates
detected did not show any similar structural organization or
possible ordered patterns, appearing dispersed and showing size
heterogeneity (Fig. 4F, G); quasi-spherical and decorated
aggregates were also typically detectable only in AB1-42 amyloid
deposits from carnosine co-incubated samples (Fig. 4H). Overall,
the quantitative analysis of the fibril length distributions together
with the in-depth AFM imaging of the deposited aggregates
confirmed the evidence that less AB1-42 amyloid aggregation
occurred, with less fibril growth, in the presence of carnosine,
assessing structural and morphological rearrangements due to the
dipeptide action leading to abortive dynamics of amyloid
fibrillogenesis by Ap1-42.

Molecular Docking Analysis of AB1-42 Aggregation
Inhibition by Carnosine

To characterize the molecular mechanisms/interactions by
which carnosine can inhibit AB1-42 aggregation, a molecular
docking analysis was employed. Docking calculation of a data set
of 89 compounds, composed of three different carnosine-like
dipeptides (homocarnosine, anserine and balenine) and 86 selected
inhibitors of the AB1-42 aggregation, was performed in the same
analysis to compare docking results and to explore variations on
ligand efficiencies. All compounds were ranked according to four
ligand efficiency indices and frequency distribution graphs were
composed accordingly (Fig. 5). The i silico screening of AB1-42
ligands predicted carnosine as the best ligand among the natural
histidine-containing dipeptides tested (Table S1), and as a very
good ligand when compared with other compounds capable of
inhibiting the aggregation of the AB1-42 amyloid peptide (Fig. 5
and Table S1).

Docking simulations placed carnosine at the level of the central
coiled region of the AB1-42 peptide (Fig. 6). In particular, the
predicted binding mode for carnosine and AB1-42 fibril displayed
a close interactions between the natural dipeptide and the residues
D23 (L-aspartic) and K28 (L-lysine) of AB1-42 (Fig. 6A), with
direct contacts occurring between the D23 residue of Ap1-42 and
the imidazole ring of carnosine, and between the K28 residue of
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Figure 1. Effects of carnosine on Af1-42 fibrillogenesis. Analysis of the deposited amyloid aggregates as assessed by Atomic Force
Microscopy (AFM) and thioflavin T (ThT) assays. AFM pictures (A-F) represent a comparative view of deposited AB1-42 amyloid aggregates, with
representative fibrils from (A-C) AB1-42 samples (control) and (D-F) AB1-42/carnosine co-incubated samples. (B, C) Higher resolution images of (A)
are reported, showing (B) extended structures of linear branched (arrowhead), overlapped (closed arrow) or associated (open arrow) fibrils; small
fibrillar formations and oligomers among globular particles are also observed. (E, F) Higher resolution images of (D) are reported, showing spare
fibrils and aggregates with respect to what observed in A1-42 samples; conspicuous fibril segmentation and size reduction were observed [Height
mode imaging; Pico Force type scanner; scanned area size: 5x5 um in (A) and (D) and 2.5x2.5 um in the others; height bars colour code: 0.0 nm,
total black, 15 nm, total white]. (G) Quantitative effects of carnosine on AB1-42 fibrillogenesis by ThT assay. Data are expressed as ThT
photoluminescence (PL; Y axis) values (means * SD, n=3) in solutions of Af1-42 (100 uM) incubated for 30 min in the absence (control) and
presence of carnosine (10 mM). In the left graph, the maximum photoluminescence intensity (near wavelength 480 nm; X axis) is reduced in the co-
incubated samples (red circles) with respect to the samples containing AB1-42 alone (grey triangles), passing from 1.0 to ~ 0.4 absorbance units
(a.u.). The emission spectrum of carnosine alone was subtracted, and emission data of peptide dispersions were normalized. In the graph on the right:
fluorescence signals expressed as the integrated areas under the curves (OriginPro 8).

doi:10.1371/journal.pone.0068159.g001

AB1-42 and the B-alanine end of dipeptide (Fig. 6B). This properties observed i vitro for carnosine, being the D23 and
proposed pose was in agreement with the anti-aggregating K28 residues directly involved in the AP1-42 self-association
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Figure 2. Dose-dependent effects of carnosine on AB1-42 fibrillogenesis. Analysis of the deposited amyloid aggregates as assessed by
Atomic Force Microscopy (AFM) and thioflavin T (ThT) assays. AFM pictures (A-D) represent a view of deposited AB1-42 amyloid aggregates, with
representative fibrils from AB1-42 samples (A; control) and Af1-42 samples incubated with 0.1 mM (B), 1 mM (C) and 10 mM (D) carnosine. AFM
picture (E) of 10 mM carnosine alone. [Height mode imaging; Pico Force type scanner; scanned area size: 5x5 um; height bars colour code: 0.0 nm,
total black, 30 nm, total white]. (F) Quantitative effects of increasing concentrations of carnosine on AB1-42 fibrillogenesis by ThT assay. Data are
represented as ThT photoluminescence (PL) values (means * S.E.M., n=3) in solutions of Af1-42 (100 uM) incubated for 30 min in the absence
(control, 0 mM carnosine) and presence of 0.1, 1 and 10 mM carnosine. The photoluminescence intensity at 480 nm is reduced in the co-incubated
samples in a dose-dependent manner with respect to the samples containing AB1-42 alone, passing from 1.0 to 0.64+0.03 absorbance units (a.u.).
The emission value of carnosine alone was subtracted, and data were normalized with respect to the control (Af1-42 alone, 0 mM carnosine). (**

p<<0.01; * p<<0.05; one-way ANOVA analysis of variance of the means; Bonferroni post-hoc test).

doi:10.1371/journal.pone.0068159.g002

process by forming an intermolecular salt bridge between two
adjacent AB1-42 monomers [55]. In this context, the binding of
carnosine to the AB1-42 monomer could prevent the intermolec-
ular salt bridge formation, thus inhibiting the fibril aggregation
process (Fig. 6C, D).

Overall, molecular docking results supported the notion that
carnosine efficiently binds to the AB1-42 peptide and the evidence
that impairs fibril formation w vitro.

Discussion

Due to the high levels of natural synthesis occurring in several
nervous cell types, carnosine is a dipeptide endogenously abundant
in many CNS districts. Its potential in counteracting neurodegen-
erative effects arising from altered protein accumulation and
toxicity has been studied, and its protective effects against aberrant
amyloid peptides have been investigated in mammalian tissues and
cells [28,30,31]. Nevertheless, the direct impact of carnosine on
the dynamics of the AD-related AB1-42 fibril formation remains
completely uninvestigated. Thus, we analyzed in vitro the effects of
carnosine on APB1-42 fibrillogenesis, which was carried out at
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physiological pH (7.4), temperature (37°C) and carnosine levels
(0.1-10 mM), based on data from mammalian nervous tissues
[74,75] as well as on our experimental measurements (data not
shown). AFM was used as method of choice since it successfully
reveals basic and hierarchical aspects of amyloid fibril structure
formation [62,63,76], with ThT assay supporting AFM to
quantitatively examine the alterations of self-assembled AB1-42
amyloid aggregates.

As also described by others [62,63,76], our AFM images of
deposited AB1-42 reveal extended linear and branched fibrils
(>1 um) and smaller structures resembling in size protofibrillar
and oligomeric formations, among many globular aggregates.
Conversely, in the presence of carnosine extended fibrils appear
drastically underrepresented, while the few deposited aggregates
predominantly include shorter fibrils and small globular forma-
tions. This evidence of reduced AB1-42 aggregation is confirmed
quantitatively by ThT fluorescence assay, showing a reduction of
the AB1-42 polymerization process in the presence of increasing
concentrations of carnosine. Moreover, the overall count of the
deposited aggregates was shown to be significantly decreased in a
dose-dependent manner (Fig. $3), suggesting that disrupting or
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Figure 3. Effects of carnosine on Af1-42 fibril morphology: length and height analysis of deposited aggregates. (A) The fibril contour
length distributions were calculated based on Atomic Force Microscopy measurements (grey and red bars refer to absence and presence of
carnosine, respectively). Fibril sizes are grouped by length range (nm), while length distributions are reported as relative (%) frequency groups of the
total number of measurements (n =206 for AB1-42 and n =202 for carnosine co-incubated samples; see table related to figure A for statistical details).
(B) The mean values of the total fibril length measurements are reported for fibrils detected in the absence (grey bars) or presence (red bars) of
carnosine (*** p<<0.0001; unpaired t test). (C) Height digital data were obtained by scanning areas of 5x5 um from AB1-42 alone (grey bars) and

carnosine co-incubated samples (red bars), using the Nanoscope Software 7.3 roughness routine (* p<<0.05; n=5; unpaired t test).

doi:10.1371/journal.pone.0068159.g003

disaggregating effects (probably leading to a number of deposited
aggregates greater than or equal to the control) should not even
occur. It has to be noticed that in our experiments carnosine
effects were evaluated after 30 min incubations, that is a time
interval referred to very early phases of AP1-42 amyloid
fibrillogenesis i vitro, during which carnosine could interact/
interfere mainly with growing oligomeric aggregates and proto-
fibrils [43,63]. Taken together, our results indicate an important
anti-aggregating effect of carnosine on early AB1-42 polymeriza-
tion and amyloid fibril formation @ vitro.

Besides the evidence to reduce the total number of aggregates,
carnosine specifically affects the frequency of extended AB1-42
fibril formations, and short-sized fibrillar aggregates prevail in the
presence of the dipeptide. The analysis of the fibril contour length
distribution clearly indicates that carnosine/AB1-42 interaction
leads to increased relative frequency of short fibrillar aggregates
from 30 to 200 nm, that is the range corresponding to lengths
reported for small protofibrils or premature fibrils [43,55]. On the
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other hand, frequency of AB1-42 fibrils longer than 200 nm is
largely reduced by carnosine. Overall, the mean fibril lengths of
deposited aggregates appear almost halved. Moreover, the
evidence of a reduction of the mean peak height of the deposited
aggregates in the presence of carnosine supports the idea that
carnosine interaction does have an impact on the structural
morphology of the growing fibrillar aggregates. On these bases,
deeper morphological analysis was conducted on single fibrils to
reveal qualitative differences between amyloid structures deposited
in the absence and presence of carnosine. Analyzing the height
profiles, fibrils from control samples exhibit structural homogene-
ity, whereas the sporadic fibrils from carnosine-treated samples
show less regular periodicity along the surface profile and more
irregular vertical distances from the substrate baseline, with
evident alternation of both beaded and tubular segments along
fibrils. These findings indicate minor structural homogeneity of the
aggregated fibrils (as well as irregular polymerization) with respect
to untreated AP1-42 samples. In addition, besides the dense
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Figure 4. Effects of carnosine on Af1-42 fibrillogenesis: structural changes of fibrils and morphology of sub-fibrillar aggregates. (A)
Magnification of a representative fibril from a control sample (from Figure 1B; 100 uM AB1-42). The related graphic panel reports the surface profile
of a selected segment (white arrowheads, from left to right). A regular structure periodicity is shown, with relative height homogeneity among
different pointed regions (blue arrowheads), except in protrusion (or interacting) sites (first blue arrowhead, left); for the fibril surface structure, a
baseline height of 2 nm from substrate level is reported. (B) The profile of the selected segment (white arrowheads, from left to right) from a digitally
zoomed sporadic fibril from carnosine (10 mM) co-incubated samples shows tangled pattern, irregular vertical height from the baseline (0.5 nm), and
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alternation between beaded regions (red arrowheads) and tubular segments (height bars colour code in A, B: 0.0 nm, total black, 10.0 nm, total
white; Height mode imaging; Nanoscope 7.3 Section Analysis tool with no flatten filter applied). (C) Higher resolution scansion of AB1-42 fibrils in the
absence of carnosine: aggregates of reduced size (protofibrillar/oligomeric formations, globular particles) are detected among fibrils. (D) Higher
magnification (Phase signal; white square inset from C) shows pre-fibrillar organization of the amyloid structures as ordered rows with constant and
homogeneous topographic profile along the axis (blue arrow in D indicates the profile direction reported in E). (F) Magnifications of carnosine co-
incubated samples do not show similar ordered patterns of the sub-fibrillar dispersed aggregates (G, Phase mode imaging, white square inset from
F); aggregates show size heterogeneity and less regular shape. (H) Quasi-spherical and decorated aggregates are typically visible in the carnosine co-
incubation. Imaging from C to H performed with E type scanner; specific scan sizes: 2.5x2.5 um in C, F, H and 0.625x0.625 um in D, G; height bars
colour code: 0.0 nm, total black, 15.0 nm, total white.

doi:10.1371/journal.pone.0068159.9004
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Figure 5. Frequency distributions of ligand efficiency indices (LEls). LEls were obtained by using the Autodock Vina predicted binding free
energies calculated for carnosine, carnosine-like dipeptides and natural or synthetic anti-amyloid aggregation compounds vs AB1-42. Relative
positions of the carnosine score in the distribution graphs were indicated. The same number of bins were applied for all the histograms. (A) Molecular
weight-based efficiency index (free energy of binding/MW). (B) Number of heavy atoms-based efficiency index (free energy of binding/NHA). (C)
Number of carbons-based efficiency index (free energy of binding/NoC). (D) Wiener index-based efficiency index (free energy of binding/W).

doi:10.1371/journal.pone.0068159.g005
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Figure 6. Three-dimensional model of interactions of carnosine with the fibril of the A$1-42 peptide. Binding mode of carnosine with
the fibril structure of AB1-42 (PDB Acc. no. 2BEG) was obtained using Autodock Vina and visualized by UCSF Chimera software. (A) The carnosine
dipeptide interacts with the fibril monomer of AB1-42 at the level of the coiled region between the two B-sheet portions of the AB1-42 peptide. The
fibril monomer is represented by tube, and the secondary structure is reported colored in sky-blue; the dipeptide is depicted by tube colored in red.
(B) Direct binding contacts (yellow lines) occur between the imidazole ring of L-histidine in carnosine and residue D23 (green) of AB1-42, and
between the B-alanine end of carnosine and amino acid K28 (blue) of AB1-42. Surface renditions of the binding interface of carnosine and amyloid
peptide are shown. (C) The self-association process of AB1-42 is inhibited by carnosine. The interaction of carnosine with the AB1-42 monomer
prevents the direct binding of the D23 of a monomer with the K28 of the adjacent monomer in the growing A1-42 oligomer. The elongation/growth
direction of AB1-42 aggregation is reported as fiber axis. (D) A 90° clockwise rotation view (around the fiber axis) of the of AB1-42 self-association

model inhibited by carnosine.
doi:10.1371/journal.pone.0068159.9g006

network of extended fibrils, AB1-42 samples incubated in the
absence of carnosine show very small fibril-like or globular
formations, resembling in size (<30 nm) the soluble oligomeric
species reported frequently in structure-function studies of AB1-42
amyloid fibrils in AD performed by using AFM imaging and 3D
structure modeling [43,55,77]. Detailed imaging of these aggre-
gates reveals pre-fibrillar organization of the amyloid structures,
such as ordered rows of linked beads with homogeneous height
profiles. Carnosine modifies such a kind of sub-fibrillar Ap1-42
aggregation states. In fact, the deposited formations detected in the
presence of the dipeptide do not show any structured organization
or ordered patterns such as those detected in its absence, and
invariably appear heterogeneous in size and shape. Overall, the
analysis of the fibril length, together with the detailed morpho-
logical analysis of shapes and structures of the deposited
aggregates, suggest that carnosine induces a less ordered AB1-42
amyloid aggregation, with less fibril growth. This suggests
structural and morphological rearrangements due to carnosine
inhibitory effects on AB1-42 fibrillogenesis in its early phases.
For what discussed above, carnosine seems to operate as an
interfering, anti-aggregating agent, with evident effects on AB1-42
small pre-fibrillar structures. Thus, a molecular docking approach
was exploited to specifically predict the molecular interactions

PLOS ONE | www.plosone.org

between carnosine and the AP1-42 peptide and to evaluate the
anti-aggregating behavior of carnosine. Ligand efficiency indices,
calculated for carnosine and for a large data set of compounds
exerting anti-aggregating effects against AP1-42 fibrillogenesis,
were used as tools to predict and “measure” the drug-likeness of
compounds [78,79]. Coherently with the experimental evidence,
in silico analysis recognized carnosine as a potential drug candidate,
predicting ligand efficiency indices equal to or better (i.e. deeper)
than values reported in previous drug screening studies [80,81]
(Table S1). Moreover, the extensive molecular docking studies
performed on several known inhibitors of the AB1-42 fibril
formation, groups carnosine together with the top-ranked com-
pounds (Fig. 4 and Table S1), confirming carnosine as a good
mnhibitor of the fibril aggregation process.

The binding mode of carnosine on the AB1-42 shows that the
dipeptide interacts with a coiled region between the two B-sheet
portions of the AP1-42 peptide in the folded conformational state,
that is the amyloid peptide conformation occurring during the
amyloid fibril polymerization process [55]. In detail, the analysis
shows arrangement of carnosine in a region where two amino acid
residues, namely D23 and K28, are present. Such residues are
known to be crucial in the intermolecular interactions between two
adjacent AB1-42 monomers during the elongation of protofibrils,
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according to the model of growth by single monomer addition
[55]. Docking clearly reveals oriented contacts between the
imidazole ring of the L-histidine of carnosine and the D23 residue
of AB1-42, and between the B-alanine of the dipeptide and the
K28 residue of AB1-42. Docking of carnosine on AB1-42 in the
oligomeric/fibrillar form reasonably confirms the potential inter-
ference of carnosine on fibrillogenesis, and its ability to unsettle the
growing fibril by impeding direct binding of the D23 of one AB1-
42 monomer and the K28 of the adjacent monomer. Overall, our
docking analysis suggests that relevant molecular interactions may
occur between carnosine and AP1-42, thus disrupting the
organization of the growing small protofibrils and the self-
association process, according to our experimental results of
impaired fibril formation n vitro.

Conclusions

In summary, carnosine appears to operate as a relevant
interfering, anti-aggregating agent against AB1-42 small pre-
fibrillar structures. To date, small oligomers are considered the
major aggressive variant of the amyloid formations [43], and the
so-called “oligomer cascade hypothesis™ is becoming a key premise
in studies concerning the structure-neurotoxicity relationships of
the amyloid formations [82]. Our results give hints for disclosing
the crucial role of carnosine and its homeostasis in the context of
AB1-42 amyloid fibril formation, a topic that needs further
investigation in consideration of carnosine pathophysiological
potential deriving from its natural occurrence in the CNS.

Supporting Information

Figure S1 Effect of hydrolysed carnosine (f-alanine and
L-histidine) on Af1-42 fibrillogenesis. Analysis of the
deposited amyloid aggregates as assessed by Atomic Force
Microscopy (AFM) and thioflavin T (ThT) assays. AFM pictures
represent a view of deposited AB1-42 amyloid aggregates, with
representative fibrils from AP1-42 samples (0 mM carnosine;
control) and AB1-42 samples incubated with 10 mM hydrolysed
carnosine (B-alanine and L-histidine, 10 mM each). [Height mode
imaging; Pico Force type scanner; scanned area size: 5x5 Wm;
height bars colour code: 0.0 nm, total black, 30 nm, total white].
The graphic below shows quantitative effects of hydrolised
carnosine on AP1-42 fibrillogenesis by ThT assay. Data are
represented as ThT photoluminescence (PL) values (means *
S.E.M., n=3) in solutions of AB1-42 (100 uM) incubated for
30 min in the absence (control, 0 mM carnosine) and presence of
10 mM hydrolised carnosine. The 480 nm photoluminescence
intensity mean values were not statistically different (¢ fest analysis
of the means). Photoluminescence appears only faintly reduced in
the co-incubated samples with respect to the samples containing
AB1-42 alone, passing from 3470022764 (100%) to 301002541
(87%) absorbance units (a.u.). The emission value of carnosine
alone was subtracted.

(TIF)

Figure S2 Reverse Phase High Performance Liquid
Chromatography (RP-HPLC) for detection of carnosine
hydrolysis under the fibrillogenesis buffering condi-
tions. Solutions of carnosine (10 mM), L-histidine (10 mM), and
carnosine (5 mM) plus L-histidine (5 mM) in Tris-HCI buffer
(50 mM, pH 7.4), were incubated 30 min at 37°C and then
immediately processed by RP-HPLC. To evaluate hydrolysis of
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carnosine, possibly due to the buffer solution used to perform the
fibrillogenesis assays (see previous sections), solutions of 10 mM
carnosine, 10 mM L-histidine, and 5 mM carnosine plus 5 mM L-
histidine in 50 mM Tris-HCI at pH 7.4 were incubated for 30 min
at 37°C and subsequently injected for RP-HPLC analysis. A
Hewlett-Packard 1100 Series isocratic system equipped with a
variable wavelength detector was used, and the RP-HPLC
conditions adopted were as follows: Hypersil column ODS
4.6x250 mm, 5 um (particle size); column temperature 40°C;
isocratic elution with 0.1% (v/v) trifluoroacetic acid (TFA) in 95:5
water:acetonitrile; flux 1 mL/min; UV absorbance at 214 nm.
Peaks with different retention times were detected for carnosine
and L-histidine (3.7 min and 3.34 min, respectively), as well as for
the equimolar mix of carnosine and L-histidine. In particular, no
L-histidine peak, due to the possible hydrolysis of the dipeptide,
was detected in the carnosine sample. No peaks were detected with
the buffer alone (Tris-HCI 50 mM, pH 7.4). X axis: retention time
(min); Y axis: Absorbance Units (mAU) (at 214 nm).

(TIF)

Figure S3 Dose-dependent effects of carnosine on the
number of deposited aggregates. Analysis of the number of
deposited amyloid aggregates as assessed by Atomic Force
Microscopy (AFM) images. AFM pictures (A-D) represent a view
of deposited AB1-42 amyloid aggregates, with representative fibrils
from AP1-42 samples (A; control) and AP1-42 samples incubated
with 0.1 mM (B), 1 mM (C) and 10 mM (D) carnosine [Height
mode imaging; Pico Force type scanner; scanned area size:
5x5 wm; height bars colour code: 0.0 nm, total black, 30 nm,
total white]. Data are represented as counts of the detected
aggregates deposited on mica (means = S.E.M., n=4) in different
samples of AB1-42 (100 uM) incubated for 30 min in the absence
(control, 0 mM carnosine) and presence of 0.1, 1 and 10 mM
carnosine (¥** p<<0.001; one-way ANOVA analysis of variance of
the means; Bonferroni post-foc test).

(TIF)

Table S1 Ligand efficiency indices. Ligand efficiency
indices calculated from molecular docking analysis of the B-fibril
model of AB1-42 (PDB: 2BEG) us carnosine and 89 selected
molecules, including: a) carnosine-like dipeptides; b) natural or
synthetic compounds tested for anti-amyloid aggregation effects.
Ligand efficiency indices are indicated as BE/MW (molecular
weight-based efficiency index), BE/NHA (number of heavy atoms-
based efficiency index) BE/NoC (number of carbons-based
efficiency index) BE/W (Wiener index-based efficiency index).
(DOC)
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