Table 7. Phylogenetic ANOVA of calcaneal elongation residuals (see Table 1: Res A) and distal calcaneal length residuals (see Table 1: Res B) for extant and subfossil prosimian species means from PGLS line based on “all primate” sample including posthoc comparisons.
Data | grp | tree | λ | df | MS | F | P | SC/T v AQ | SC/T v VCL/L | AQ v VCL/L |
Res A | All | 1 | 0.991 | 63 | 0.055 | 11.6 | <0.0001 | −0.107 (−4.6/0.0001)* | −0.112 (−3.6/0.0006)* | −0.004 (−0.163/0.87) |
Res B | All | 1 | 0.990 | 63 | 0.275 | 2.47 | 0.07 | −0.115 (−2.2/0.035) | −0.109 (−1.6/0.123) | 0.007 (0.105/0.92) |
Res A | Anth | 1 | 0.960 | 33 | 0.036 | 4.22 | 0.012 | −0.078 (−2.9/0.007)* | −0.036 (−1.0/0.323) | 0.042 (1.32/0.195) |
Res B | Anth | 1 | 0.739 | 33 | 0.028 | 5.35 | 0.004 | −0.085 (−1.9/0.055) | 0.052 (1.06/0.298) | 0.137 (3.14/0.004)* |
Res A | Pros | 1 | 0.993 | 27 | 0.027 | 30.16 | <0.0001 | −0.298 (−6.4/<0.0001)* | −0.340 (−7.6/<0.0001)* | −0.042 (−1.18/0.248) |
Res B | Pros | 1 | 1.000 | 27 | 0.258 | 6.17 | 0.002 | −0.389 (−2.5/0.018)* | −0.525 (−3.15/0.001)* | −0.136 (−1.16/0.256) |
Res A | Pros | 2 | 1.000 | 27 | 0.00023 | 32.8 | <0.0001 | −0.279 (−6.2/<0.0001)* | −0.353 (−8.1/<0.0001)* | −0.074 (−2.46/0.020)* |
Res B | Pros | 2 | 1.000 | 27 | 0.00262 | 9.038 | 0.0003 | −0.327 (−2.2/0.037)* | −0.582 (−4.0/0.0004)* | −0.254 (−2.54/0.017)* |
Res A | Pros | 3 | 0.993 | 27 | 0.0278 | 30.75 | <0.0001 | −0.282 (−6.1/<0.0001)* | −0.347 (−7.8/<0.0001)* | −0.065 (−2.13/0.042)* |
Res B | Pros | 3 | 1.000 | 27 | 0.317 | 7.58 | 0.0008 | −0.334 (−2.18/0.038) | −0.548 (−3.72/0.0009)* | −0.214 (−2.14/0.041) |
Column abbreviations: df, degrees of freedom; MS, mean squared error within groups from ANOVA; F, F-statistic for ANOVA; P, probability of significant between groups variance for ANOVA. For each cell of the post-hoc comparison first the difference between group means is given. Then in parentheses the t-value/p-value for a students paired sample t-test is given. Correction for multiple post hoc comparisons using a sequential Dunn-Šidák correction for k = 3 comparisons and α = 0.05 (Initial α′ = 1- (1 - α)1/k = 0.0169. If smallest P-value ≤0.0169, then for the second smallest P-value, α′ = 1- (1 - α) 1/(k−1) = 0.026. If the second smallest P-value ≤0.026, then α′ = α = 0.05 for last P-value). Asterisks denote a significant P-value.