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Introduction

Computed tomography (CT) is one of important imaging 
modalities for medical diagnosis. With respect to designs 
of CT scanners, there was a remarkable progress after 
1990. In particular, 3D multi-detector CT scanners and 
4D CT scanners have been developed, which dramatically 
changed the way of medical diagnosis. In this paper, 
we deal with an active direction of research in the CT 
community concerning three new designs of CT scanners 
called sparse-view CT, interior CT, and low-dose CT. The 
sparse-view CT refers to CT in which measured number 
of projection data is reduced to less than 100 determined 
by applications and required image quality. The reduction 

of projection data leads to benefits such as reducing patient 
dose, reducing scan time, and improving time-resolution 
in cardiac CT. The interior CT refers to CT in which 
X-ray beam is radiated only to a small region of interest 
(ROI) such as heart or breast determined from the disease 
to be diagnosed. It has been demonstrated that the interior 
CT leads to various benefits such as reducing patient dose 
outside the ROI and reducing necessary detector size. The 
low-dose CT refers to CT in which power of X-ray tube is 
decreased to reduce patient dose. Since it became apparent 
that the cancer risk increases by excessive CT examinations, 
the low-dose CT has been considered an important research 
topic in the CT community.
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To put these new CT scanners to practical use for 
medical diagnosis, a development of advanced image 
reconstruction methods is required, because all of these 
CTs measure only incomplete projection data so that 
classical image reconstruction methods such as filtered 
backprojection (FBP) and algebraic reconstruction 
technique (ART) are not successful in producing clinically 
feasible images. Therefore, the development of image 

Figure 1 Schematic illustration of data acquisition in (A) the 
ordinary CT and (B) the sparse-view CT. In the sparse-view CT, 
the number of measured projection data is reduced to less than 100 
determined by applications and required image quality

reconstruction methods for the sparse-view CT, the interior 
CT, and the low-dose CT is an area of active research since 
2000 and a remarkable progress has been made. In this 
paper, we review the progress of such image reconstruction 
research for unfamiliar readers. Due to the lack of space, 
we limit the target to the sparse-view CT and the interior 
CT. A nice review of techniques for the low-dose CT can 
be found in (1,2). Also, a review covering wider topics on 
newest image reconstruction research was written by the 
experts in this field (3).

Sparse-view CT and image reconstruction

What is sparse-view CT?

The principle of sparse-view CT is shown in Figure 1. In 
the ordinary fan-beam CT, projection data is measured 
from 1,000-2,000 X-ray source positions uniformly 
distributed over the angular range 0≤θ<2π. In the sparse-
view CT, the number of projection data is reduced to less 
than 100 determined by applications and required image 
quality. Below, we summarize major benefits obtained by 
reducing the number of projection data.

Micro CT, flat panel detector CT, and 3D angiography
In micro CT used for small animal imaging and non-
destructive testing, X-ray exposure time per each projection 
data is longer compared to that in commercial medical 
CT scanners. Furthermore, time to transfer the measured 
projection data to a computer requires a large time. These 
situations are very similar in low-cost CT using a flat panel 
detector and 3D angiography. Therefore, reducing the 
number of projection data possesses a significant benefit in 
these equipments.

Reducing patient dose
In commercial CT scanners, reducing the number of 
projection data contributes to reducing patient dose. As an 
alternative strategy to reduce the patient dose, we can also 
consider to reduce X-ray tube power while measuring the 
sufficient number of projection data. At the current stage, it 
is not very clear which method outperforms the other.

Cardiac imaging
In cardiac CT, so-called cardiac gating is used to decrease 
motion artifacts. The principle is outlined as follows. 
The projection data is measured over many n heart beats 
by continuously rotating an X-ray source together with 
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a measurement of electrocardiogram. To reconstruct an 
image at each time phase t, the projection data measured at 
similar time phase is picked up from all the projection data 
and is used for reconstruction. A comprehensive review of 
cardiac CT imaging can be found in (4,5). However, when 
the measurement time period n is not sufficiently large to 
reduce patient dose or to shorten examination time, we 
cannot pick up the large number of projection data anymore 
for each time phase t so that the image reconstruction must 
be performed from the small number of projection data.

Compressed sensing image reconstruction

Next, we explain image reconstruction methods from 
a small number of projection data. First, we explain 
solution uniqueness of this reconstruction problem. Old 
works in the mathematical literature demonstrate that the 
solution to image reconstruction from a finite number of 
projection data is not unique (6,7). Therefore, to achieve 
satisfactory reconstructions, some prior knowledge on the 
object to be imaged must be employed. Classically, many 
researchers investigated this problem with a variety of 
reconstruction methods and prior knowledge (8,9). A nice 
review concerning this research area before 1990 can be 
found in (10), but no one has found an excellent method 
which can be used in practice. The situation has changed 
dramatically during 2000’s thanks to the discovery of so-
called compressed sensing (CS) as a new technique to solve 
inverse problems. The goal of CS is to reconstruct a signal 
or an image from measured sensor data undersampled 
below the Nyquist rate violating the conditions of Shannon 
sampling theorem. The pioneering papers of CS were 
written by Donoho (11) and by Candes et al. (12).

We introduce the mathematical principle of CS as 
comprehensive as possible. The problem treated in the CS 
is formulated as follows. We represent the original image to 
be reconstructed and the measured projection data by
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where J is the number of pixels and I is the number of 
sampling points in the projection data. We represent the 
system matrix relating x and b by A={aij}. Using these 
definitions, we have the measurement equation

[2]Ax=b 

Then, our problem is to recover x from b when I<J. 

We note that equation [2] is an underdetermined linear 
equation having infinite solutions x given b. The principle 
of CS can be roughly described as follows. The key is a 
concept called “sparsity”. We assume that the vector Wx 
obtained by applying some transform W, called sparsifying 
transform, to x is sparse in the sense that most components 
of Wx are close to zeros, i.e., negligibly small. By using 
this property, we can reduce the number of unknowns in 
equation [2] from J to I so that equation [2] is uniquely 
solvable achieving accurate image reconstruction. The 
selection of sparsifying transform W is important in the CS. 
For example, the identity operator can be used for blood-
vessel images and star images obtained by a telescope, 
because these images themselves are sparse. For general 
images, we can use the gradient operator or the wavelet 
transform as a sparsifying transform, because derivative 
signals are expected to become sparse in most parts except 
for highly active parts such as edges and textures.

Next, we explain detailed methods of image recovery. In 
the CS, we are required to perform the following two tasks, 
i.e., (I) identifying negligible components of Wx and (II) 
recovering x by assuming that the negligible components 
of Wx are zeros. Normally, the following clever framework 
using a nice property of L1, L0 norms is used to perform the 
two tasks simultaneously. We begin by defining the cost 
function of image reconstruction by
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where W is the K×J matrix representing the sparsifying 
transform and m is the reference image closer to the object  
x, i.e., x–m is sparse. The role of W and m is to convert x into 
a sparse vector as much as possible. Concrete choices of W 
and m for a variety of imaging situations can be found in 
the literature (13-37). In equation [3], the parameter 0≤p≤2 
is the order of norm. In classical solution techniques of 
inverse problems, p=2 is normally used. On the other hand, 
to evaluate the degree of sparsity in a more rigorous way, 
p=1 or 0 is used in the CS, where
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The norm corresponding to p=1 (or 0) is called the  
L1 (or L0) norm. The L0 norm can be interpreted as the 
number of non-zero components of a vector, and the L1 
norm is a convex function which approximates the L0 norm 
well. In Figure 2, to understand why the L1, L0 norms pick 
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up the sparse solutions better compared to the standard L2 

norm, we show equi-contour lines of the L2, L1, L0 norms 
for the case where z=(z1, z2)

T is a 2D vector. It is observed 
that the L1, L0 norms yield larger costs to non-sparse 
vectors, which are located far from the coordinate axes, 
compared to the L2 norm. This property, often called “L1, 
L0 magic”, is the key, which explains why the L1, L0 norms 
possess a significantly stronger power in picking up the 
sparse solutions. Using equation [3] as the cost function 
to pick up a reasonable sparse solution, we formulate the 
image reconstruction problem as the following linearly 
constrained minimization.
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=

The CS was originally proposed to solve the signal 
reconstruction from the undersampled data. However, the 
same approach can be used to solve denoising problems 
and image reconstructions from noisy projection data. In 
these cases, under the assumption that the additive noise 
is Gaussian, the problem is formulated as the following 
unconstrained minimization.
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As a special case of the CS, the total variation (TV) 
minimization is frequently used for image reconstruction 
in the sparse-view CT, which is also called “ROF model” 
because it was first proposed by Rudin, Osher, and 

Fatemi (14). In the TV minimization, the cost function 
f(x) is defined by
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where imn is a gray-scale value of the image x at the pixel 
(m,n). The meaning of equation [7] can be interpreted as 
the L1 norm of the magnitude image of intensity gradient 
||

∆

f(x)||.
Next, we explain iterative methods to solve the problems 

formulated by equations [5] and [6]. First, the problems 
in equations [5] and [6] cannot be solved by using classical 
differentiable optimization techniques such as the gradient 
method, because the L1, L0 norms are neither strictly 
convex nor differentiable. Therefore, in the CS field, a 
development of valid iterative methods to solve the L1, L0 

norm minimization is an area of active research. A nice 
review of this area can be found in (15-18). Among many 
famous methods, the iterative-thresholding (IT) method 
has been used in many cases (19). Since the constrained 
problem of equation [5] can be reformulated in the form 
of equation [6] using the penalty method, we describe 
the IT method to solve the unconstrained problem [6]. 
For simplicity, the explanation below assumes that the 
sparsifying transform W is the orthogonal J×J matrix and 
the reference image m is zero. The IT method is derived 
based on the majorization-minimization (MM) technique, 
which is known to be a powerful and general tool to 
develop a wider class of iterative methods (20,21). Denoting 

Figure 2 Equi-contour lines corresponding to the L2, L1, L0 norm cost functions in the case where z=(z1, z2)
T is a 2D vector. The L1, L0 norms 

have a property that they yield larger costs to non-sparse points located far from the coordinate axes, which leads to a strong power in 
picking up sparse solutions better than the L2 norm
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the iteration number by k, the structure of algorithm 
construction in the MM technique is summarized as 
follows.

[Step 1] (Majorization) At the current iterate x (k), 
construct a surrogate function Q(x;x(k)) satisfying the 
following conditions.

[8]xxgxxQxgxxQ kkkk     )();(  ),();( )()()()( ∀≥=

[Step 2] (Minimization) Minimize Q(x;x(k)) instead of g(x) 
to obtain the next iterate x(k+1).

We note that the MM technique can be thought of as 
a method to replace the minimization of complex cost 
function g(x) into a sequence of tractable minimizations 
of Q(x;x(k)). If Q(x;x(k)) is constructed such that equation [8]  
is satisfied, the iteration is convergent. Furthermore, if 
the original cost g(x) and the surrogate function Q(x;x(k)) 
satisfy some additional assumptions [such as the convexity 
of g(x)] (20,21), the sequence x(k) converges to the solution 
to the original problem. In our current problem of the CS, 
Q(x;x(k)) can be constructed in the following way.
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where α>||AT A|| is a constant and we replaced AT A by αI 
to derive the last inequality. Simplifying equation [9] by 
putting the terms independent of x into the constant C 
yields
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We note that a(x(k)) can be considered an image obtained 
by applying one iteration of the gradient descent with the 
least-squares term ||Ax−b||2 to x(k). This observation allows 
us to summarize the IT method as follows.

[Step 1] (Initialization) Set the initial image x(0). Set the 
iteration number as k←0.

[Step 2] (Computation of intermediate image) Compute 
the intermediate image a(x(k)) from the current iterate x(k) by 
second equation of [10].

[Step 3] (Minimization of surrogate function) Minimize  
Q(x;x(k)), i.e., first equation of [10], to obtain the next iterate 
x(k+1). This minimization can be done in closed form when 
f(x) is the L1 norm or the L0 norm (19), the result of which is 
expressed as
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[Step 4] Increase the iteration number as k←k+1. Go to 
[Step 2].

The operation appearing in [Step 3] can be interpreted 
as a kind of thresholding in the space of sparsified data 
Wa(x(k)) as follows. First, we apply the forward transform 
W to a(x(k)) to obtain the transformed vector z=(z1,z2,…,zJ)

T.  
Next, we apply the thresholding operation expressed 
by Th(zj) in equation [11] to each component zj. Finally, 
we apply the inverse transform WT to come back to the 
original space. In Figure 3, we show input-output functions 
corresponding to this thresholding operation for the L1, L0 
norms. The left one corresponding to the L1 norm is called 
“soft thresholding”, which cuts all small components to 
zeros and decrease large components towards zeros. On the 
other hand, the right one corresponding to the L0 norm is 
called “hard thresholding”, which cuts all small components 

Figure 3 Thresholding operations in implementing the iterative—
thresholding method corresponding to the L1, L0 norms
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to zeros and keep large components with no change. Finally, 
we would like to strengthen that the above derivation leads 
to an algorithm which repeats (I) the gradient descent 
update using the least-squares term and (II) the thresholding 
operation in the transformed space alternately. The name 
“iterative thresholding” originates from this algorithmic 
structure. Its convergence to the solution to the problem [6]  
is proved for the case of L1 norm. The convergence in 
the case of L0 norm is unknown mainly due to the non-

Figure 4 Reconstructions of sparse blood-vessel images by the 
ART method and Li’s L1 norm method (22). We note that the 
ART method is an iterative method which uses the L2 norm cost 
function. It is observed that the  L1 norm cost function has a strong 
power in picking up sparse solutions well

numerical phantom

reconstruction by the ART method

reconstruction by Li’s L1 norm method
1

convex nature of the cost function. Finally, we would like 
to mention that the IT method can be also viewed as an 
application of the forward backward splitting method to 
solve the non-linear monotone equation, and, in this case, 
the thresholding operator Pα,β corresponds to the proximal 
operator (18).

Overview of existing research

As we mentioned earlier, Donoho and Candes et al. 
proposed the concept of CS in the middle of 2000’s (11,12). 
Before and after these publications, too many authors have 
applied the CS to image reconstruction for the sparse-view 
CT. We cannot review all the activities due to the lack of 
space. Therefore, we mainly introduce works done in the 
early stage. To the best of our knowledge, the first paper 
which applied the CS to tomography was published by 
Li et al. (22). They applied the CS to reconstruct a sparse 
blood-vessel image from few projection data measured with 
contrast agent using the L1 norm cost function. In Figure 4,  
we show their reconstructed images in comparison to 
those obtained by the classical ART method. It is known 
that the ART iteration converges to a solution minimizing 
the L2 norm when applied to the underdetermined linear 
equation. Therefore, this result demonstrates that the 
difference between the L1 norm and the L2 norm in the task 
of recovering a sparse image is surprisingly larger than what 
we imagine intuitively. Another earlier work was done by 
Sidky et al. (23,24). They applied the TV minimization to a 
variety of image reconstruction problems with incomplete 
projection data. They also developed a number of different 
iterative methods for the TV minimization, in which the 
overall structure is to repeat one iteration of the ART 
method and updating the image towards the descent 
direction of TV alternately (they named “ART-TV”). 
Other works on the use of TV can be also found in (25,26). 
One more important work in the early stage was done 
by Chen et al. (27,28). They developed a reconstruction 
method called Prior Image Constrained Compressed 
Sensing (PICCS) for cardiac CT and other applications. 
The PICCS method uses the cost function similar to that 
in equation [3], i.e., a reference image together with the 
gradient operator as a sparsifying transform. In the case of 
cardiac CT, the reference image can be constructed from 
the other neighboring time frames or by averaging all the 
frames. We also mention that the CS has become popular 
in MRI reconstruction (29). Very Recently, Rashed and 
Kudo developed an alternative method called intensity 
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Figure 5 Illustration of the existence of null space for image 
reconstruction from two projections. Projection data are 
measured from two directions, i.e., horizontal and vertical. Since 
the projection data of the left image coincides with that of the 
right image, the TV minimization favors the left image having 
shorter region boundaries than the right image. Therefore, the 
central lesion structure in the right object disappears by the TV 
minimization

Figure 6 Reconstructions from 16 projection data of the chest 
numerical phantom by using the FBP method, the ART method, 
and the TV minimization. It is observed that the TV minimization 
eliminates streak artifacts almost perfectly while preserves fine 
structures inside the lung well

MAP (I-MAP) reconstruction, in which only information 
of intensity histogram expressed in the form of Laplacian 
mixture model is used instead of the reference image as 
prior knowledge (30). All the above-mentioned papers 
showed surprising reconstructed images.

On the other hand, Herman and Davidi claimed that 
“exact” reconstructions from a small number of projection 
data are impossible due to the existence of null space of 
the operator, and “what we can do best” is to improve the 
degraded images (31). They showed an example in which 
the TV minimization fails. Similarly to their explanation, 
in Figure 5, we show a trivial example of the existence of 
null space. In this figure, we assume that projection data are 
measured from two directions, i.e., horizontal and vertical. 
Then, the projection data of the left image coincides with 
that of the right image. The TV minimization favors the 
left image than the right image, because the length of 
region boundaries for the left is shorter than the right. 
Therefore, the structure of central lesion part of the right 
image disappears by the TV minimization.

Some recent trend is to develop a class of iterative 
methods, which can treat the non-smoothness of TV in 
a rigorous way using techniques of convex optimization 
and non-linear variational analysis. We note that the IT 
method cannot be used for the TV minimization because 
the differentiation operator associated with the TV in 
equation [7] is not a pure orthogonal transform but a 

tight frame. For example, works along this direction were 
published by Defrise et al. (using the MM technique) (32),  
Ramani and Fessler (using the alternating direction method 
of multipliers, ADMM) (33), and Sidky and Pan (using the 
Chambolle-Pock primal-dual algorithm) (34). An alternative 
future direction would be to employ past CT images of the 
same or other persons in the form of prior knowledge to 
improve the reconstructions. For example, Xu et al. (35), Van 
de Sompel et al. (36), and Rashed and Kudo (37) investigated 
such approaches.

We show our non-published simulation results for 
chest CT imaging. In this study, a numerical phantom 
simulating a human chest slice was reconstructed from 
only 16 projection data. We developed a reconstruction 
method which uses the TV cost function combined 
with the constrained formulation of equation [5]. We 
show reconstructed images in Figure 6 together with 
reconstructions by the classical ART and FBP methods. As 
shown in many other papers too, it is observed that streak 
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artifacts arising due the angular undersampling are almost 
perfectly eliminated while fine structures inside the lung are 
preserved well.

Interior CT and image reconstruction

What is interior CT?

The principle of interior CT is shown in Figure 7 in 
comparison to the geometry of ordinary CT. In many 
situations of medical diagnosis, physicians are interested 
in a relatively small ROI containing a target of diagnosis. 

Figure 7 Schematic illustration of data acquisition in (A) the 
ordinary CT and (B) the interior CT. In the interior CT, an 
X-ray beam from each source position covers only a small ROI 
containing a target of diagnosis. For example, projection data 
corresponding to the red line is measured, but projection data 
corresponding to the blue line is unmeasured

For example, such situations occur in cardiac imaging, 
mammography, and abdominal imaging to examine some 
specific single organ. In these cases, current CT scanners 
still need to measure complete projection data covering 
the whole object which corresponds to all lines passing 
through the whole object (not only the ROI). However, it 
can be intuitively expected that the projection data passing 
through the ROI (red line in Figure 7B) cannot be reduced, 
but the projection data passing through only outside the 
ROI (blue line in Figure 7B) need not be measured because 
they do not bring information inside the ROI. Based on 
this observation, the interior CT refers to new CT in 
which only a set of projection data passing through the 
ROI is measured. Potential impacts of the interior CT in 
clinical diagnosis are not clear at the current stage, but we 
expect that it lead to the following advantages over the 
conventional CT.

Reducing patient dose
Even in the interior CT, patient dose inside the ROI 
cannot be reduced. However, the dose outside the ROI 
can be significantly reduced. We have done some Monte 
Carlo simulation study evaluating the patient dose outside 
the ROI for the case of cardiac imaging. The result 
demonstrates that the dose can be reduced to approximately 
20-30 percent of that of the conventional CT. Of course, 
the degree of achieved dose reduction depends on the ratio 
of the size of ROI to the size of whole object.

Imaging a large object extending outside scanner field 
of view
In many instances of medical or non-destructive testing CT 
applications, it is required to reconstruct a partial ROI of 
a large object extending outside the scanner field of view 
(FOV). For example, hands sometimes extend beyond the 
FOV in medical CT. These cases cannot be exactly handled 
in the conventional CT.

Reducing detector size and X-ray beam width
Similarly, the interior CT also leads to reducing necessary 
detector size and X-ray beam width when imaging a partial 
ROI. For example, this advantage is significant in the 
synchrotron radiation CT in which available X-ray beam is 
very narrow (38).

Major theoretical advances

Next, we review theoretical advances of image reconstruction 
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for the interior CT which occurred mainly after 2004. We 
begin by formulating the reconstruction problem in the 
interior CT. As shown in Figure 8, we represent the object 
by a function f(x,y) and represent the convex ROI to be 
imaged by S. For simplicity, we consider the parallel-beam 
geometry and represent the projection data by a function 
p(r,ϕ), where r is the radial variable and ϕ is the angle. 
Extending the explanation below to the case of fan-beam 
geometry is easy. In the interior CT, we measure all values 
of p(r,ϕ) corresponding to a set of lines passing through the 
ROI S, and do not measure p(r,ϕ) corresponding to a set of 
lines not passing through the ROI S at all. Consequently, 
the projection data p(r,ϕ) corresponding to each angle ϕ is 
truncated at least either in the left or right part dependent 
on the size and the location of ROI S. Image reconstruction 
from such truncated projection data is called “ROI 
reconstruction” or “interior reconstruction”.

Up to 2004, approximate reconstructions based on 
various iterative reconstruction methods or extrapolating 
the truncated part of p(r,ϕ) by a smooth function followed 
by the FBP reconstruction had been investigated in many 
papers (45,46). On the other hand, after Noo et al. (39) and 
Pan et al. (40) independently discovered a new analytical 
reconstruction method called differentiated backprojection 
(DBP) which possesses a potential to exactly solve the 
ROI reconstruction, several authors demonstrated that 
the solution to the ROI reconstruction is determined in 
the “unique” and “stable” way under the assumptions 
that (I) the size and the location of ROI S satisfy some 
geometrical condition and (II) some prior knowledge on 
the object f(x,y) is available (41-44,47-54). Here, the word 

“unique” refers to the fact that the solution to the problem 
is uniquely determined, and the word “stable” refers 
to the fact that the inversion is stable in the sense that 
perturbations (such as noise and discretization errors) on 
the measured data or the prior knowledge are not amplified 
during the inversion. Also, we note that the word “prior 
knowledge” implies that the function f(x,y) is known on 
some specified region inside or outside the ROI S. Due 
to the lack of space, we cannot explain all the research 
activities along this direction. Therefore, as a useful index 
for unfamiliar readers to search for the corresponding 
original papers, in Table 1, we summarize theoretical 
results concerning the uniqueness and the stability 
discovered after 2004. Most these results have been 
obtained based on the above-mentioned DBP concept. 
First, in the papers of Noo et al. (39) and Pan et al. (40),  
they proved that the ROI reconstruction can be uniquely 
and stably solved if the ROI S is a convex region containing 
both the left and right boundaries of the object (Figure 8A).  
In 2006, Defrise et al. (41) investigated the case where the 
ROI S is a convex region containing only one of the left or 
right boundaries of the object (Figure 8B). By using the fact 
that there exists a small region B located outside the object 
and inside the ROI S in which we know that f(x,y)=0, they 
proved that the solution is still unique and obtained some 
stability estimate demonstrating that the inversion is only 
“mildly ill-posed”. The left problem at this stage is the case 
where the ROI S is a convex region completely contained 
inside the object f(x,y) corresponding to the setup of 
interior CT (Figure 8C). For this case, some mathematical 
literature had already proved that the solution to the 

Table 1 Summary of various uniqueness results obtained in the research of interior CT

Year Reference ROI S Reconstructed region Prior knowledge Solution stability

2004 Noo (39)
Figure 8A ROI S No B Stable

2005 Pan (40)

2006 Defrise (41) Figure 8B ROI S Object support B Mildly ill-posed

2007 Ye (42)

Figure 8C ROI S Region B Mildly ill-posed2008 Kudo (43)

2008 Courdurier (44)

2008 Ye (50)
Figure 8C Whole object Region B Severely ill-posed

2008 Courdurier (44)

2009 Li (51) Figure 8B+8C ROI S Object support B Unknown

2008 Yu (52) Figure 8C Whole object Piecewise constant object Unknown

2009 Van Gompel (53) Figure 8C Whole object Single object with constant intensity Mildly ill-posed

2013 Wang (54) Figure 8C ROI S Partial region outside ROI S (E-line) Mildly ill-posed
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ROI reconstruction is not unique such that there exists 
a non-trivial null space (48,49). On the other hand, by 
using the DBP concept, Ye et al. (42) and Kudo et al.  
(43,44) independently proved that the interior problem 
can be uniquely solved and the inversion is “mildly ill-
posed” if we know the object f(x,y) on a small region B 
located inside the ROI S. The surprising fact is that the 
prior knowledge region B assuring the solution uniqueness 
can be an arbitrary small region having non-zero measure 
(single point is not enough). Kudo et al. expressed this fact 
by the phrase “Tiny a priori knowledge solves the interior 
problem”.

Other new uniqueness results can be found in Ye et al. (50), 
Courdurier et al. (44), Li et al. (51), Yu and Wang (52), Van 
Gompel et al. (53), and Wang and Kudo (54). In particular, Yu 
and Wang proved that the solution for the setup of interior 
CT (Figure 8C) is unique on both inside and outside the 
ROI if we know that the object f(x,y) is a piecewise constant 
function everywhere and proposed a reconstruction method 
using the TV minimization (52).

Differentiated backprojection method

Next, we explain the DBP reconstruction method in some 
rigorous way such that unfamiliar readers can understand 
why this method contributes to exactly solving the ROI 
reconstruction. First, we begin by explaining why the 
classical FBP method cannot solve the ROI reconstruction. 
The procedure of FBP reconstruction for the parallel-beam 
geometry is expressed as the following two steps.

[Filtering]

[12]drrprrhrq ),()'(),'( φφ ∫
∞

∞−
−=

[Backprojection]

,),sincos(
2
1),(

0∫ +=
π

φφφφ
π

dyxqyxf [13]

where h(·) is the kernel of ramp filter applied to the 
projection data p(r,ϕ). It is well-known that h(·) is a 
function having infinite support (extending to infinity) 
so that  the f i l ter ing operat ion [12]  i s  non-local .  
Therefore, the computation of filtering by equation [12] 
involves all values of p(r,ϕ) even if we only need partial 
filtered data q(r,ϕ) backprojected to the small ROI S. To 
overcome this drawback, in the papers of Noo et al. (39) 
and Pan et al. (40), they divided the ramp filtering into a 
succession of the differentiation and the Hilbert transform, 
and exchanged the order of the Hilbert transform and the 
backprojection.

The resulting DBP method is summarized in the 
following form. The key is to decompose the ROI S into 
a set of straight lines L(u);uϵU called Hilbert line (u is the 
parameter to specify each line), and to factorize the 2-D 
reconstruction problem into the inverse Hilbert transform 
along each Hilbert line. First, in prior to the reconstruction, 
we decompose the ROI S into a set of Hilbert lines L(u);uϵU 
such that the following two conditions are satisfied.

(I) Each point (x,y) belongs to at least one lines L(u);
(II) In the setup of Figure 8B,C, all the lines L(u) intersect 

the prior knowledge region B.
In Figure 9, we illustrate typical decompositions 

corresponding to each setup shown in Figure 8. After 
performing this decomposition, the DBP method 
reconstructs f(x,y) on each Hilbert line L(u) in a line-by-line 
manner according to the following steps.

[Step 1] (DBP) For all (x,y)ϵS∩L(u), we compute the 
DBP by the following equation to obtain an intermediate 
image g(u,x,y) called Hilbert image.
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Figure 8 Three different situations of the ROI reconstruction. A. The case treated by Noo et al. (39) and Pan et al. (40); B. the case treated 
by Defrise et al. (41); C. the case of interior problem (42-44)

q(xcosϕ+ysinϕ,ϕ)dϕ

h(r'−r)p(r,ϕ)dr



157Quantitative Imaging in Medicine and Surgery, Vol 3, No 3 June 2013

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2013;3(3):147-161www.amepc.org/qims

,
)0(  1
)0(    0
)0(    1

)sgn(

))](sgn[cos(),(
2
1),,(

0 sincos









<−
=
>

=

−
∂
∂

−= ∫ +=

a
a
a

a

durp
r

yxug yxr

π

φφ φθφφ
π

[14]

where θ(u) is the angle between L(u) and the x-axis. We 
note that the DBP cannot be computed outside S∩L(u) due 
to the lack of P(r,ϕ) over ϕϵ[0,π).

[Step 2] (Hilbert inverse) On each Hilbert line L(u), 
we define the coordinate t as shown in Figure 8 where the 
coordinate origin can be arbitrary. We denote f(x,y) and 
g(u,x,y) on the t-axis by functions f(t) and g(t) respectively. 
Then, the relation between f(t) and g(t) can be expressed by 
the Hilbert transform as

[15],),(   )(1p.v.1)( ∫ ∈
−

=
f

a
ebtdssf

st
tg

π

where p.v denotes the Cauchy principal value of integral 
and the definition of points (a,b,c,d,e,f) are shown in 
Figure 8 dependent on each case. Therefore, the image 
reconstruction on the Hilbert line L(u) can be reduced to 
the inversion of Hilbert transform. The inversion for each 
case of Figure 8 can be performed as follows.

(I) Case of Figure 8A
In this case, we have (b,e)⊃(a,f) and equation [15] is 

Figure 9 Example choices of a set of valid Hilbert lines 
corresponding to each situation shown in Figure 8
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B called the finite Hilbert transform. The following inversion 
formula of finite Hilbert transform is available to perform 
the inversion (47).
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We can compute equation [16] because C  is the 
projection data along the Hilbert line L(u), which is 
measured.

(II) Case of Figures 8B,C
In these cases, the main feature is that the Hilbert 

transform g(t) is available only on the limited interval 
(b,e) which does not cover the whole object support (a,f), 
i.e., (b,e)⊂(a,f). In other words, the Hilbert transform is 
truncated. Such Hilbert transform is called truncated Hilbert 
transform (41). It is known that the solution to equation [15] 
is not unique for any point tϵ(a,f). However, let us remind 
that we can use the prior knowledge of f(t) on the interval 
tϵ(c,d) which corresponds to the prior knowledge interval 
L(u)∩B. By using analyticity of the Hilbert transform kernel, 
it was proved that the combination of equation [15] and this 
prior knowledge uniquely determines f(t) on the interval 
(b,e) which corresponds to the whole ROI interval L(u)∩S 
(41-44,50). Unfortunately, analytical inversion formulae 
are not available. Defrise et al. (41), Ye et al. (42), and Kudo  
et al. (43,44) used the iterative method called Projection 
Onto Convex Set (POCS) to perform this inversion.

Example reconstructed images

We show two example reconstructed images in the interior 
CT from our past research. The first example is the 
reconstruction of head CT projection data shown in Kudo 
et al. (43). As shown in Figure 10, we considered the setup 
where the ROI S is a rectangular region located inside the 
head and the prior knowledge region B is the strip region 
located at the left end of S. We compared the reconstructed 
image with the prior knowledge and that without the prior 
knowledge. The result clearly demonstrates that the small 
prior knowledge significantly reduces the low-frequency 
shading artifact occurring due to the non-uniqueness of 
solution in the interior CT. The second example in Figure 11  
shows reconstructions of pulmonary alveoli of a small 
mouse and a phantom consisting of calcite in talc powder. 
These objects were imaged using the synchrotron radiation 
CT at SPring-8 facility in Japan. In the both objects, there 

r=xcosϕ+ysinϕ sgn[cos(ϕ−θ(u))]dϕp(r,ϕ)
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exist air regions inside the object on which we know that the 
value of attenuation coefficient is zero. The air regions were 
automatically identified using a special iterative method 
using the L1 norm minimization described in Rashed and 
Kudo (38), which were used as the prior knowledge region 
B for reconstruction. Similarly to the case of head CT, the 
strong shading artifacts occurring at the boundaries were 
almost perfectly eliminated by using the prior knowledge.

Overview of related research

Several authors extended the DBP approach to other 
imaging geometries such as cone-beam CT (55-57), 
single-photon emission CT (58,59), cardiac CT (60), and 
phase-contrast CT (61). In particular, Pan et al. (55), Noo 
et al. (56), and Ye et al. (57) extended the DBP method 
to cone-beam CT. Unfortunately, the resulting DBP 
method still requires a complicated implementation mainly 
due to the lack of freedom in the choice of Hilbert lines 

Figure 10 Reconstructions of real CT data for head imaging 
where the ROI S is a rectangular region located inside the head. 
We compared the reconstruction by using the prior knowledge 
of object in the region B (located at the left end of ROI S) to 
the reconstruction without the prior knowledge. The result 
demonstrates that the very small prior knowledge dramatically 
reduces the low-frequency shading artifacts.

Figure 11 Reconstructed images of real projection data obtained 
by the synchrotron radiation CT at the SPring-8 facility in 
Japan. The top row shows reconstructions of pulmonary alveoli 
of a mouse lung, and the bottom row shows reconstructions of a 
phantom consisting of calcite in talc powder. In the both cases, 
we identified air regions using the iterative method proposed by 
Rashed and Kudo (38), which were used as the prior knowledge 
region B. It is observed that the low-frequency shading artifacts at 
the boundaries of the ROI significantly reduce by using the prior 
knowledge

(called PI lines in the cone-beam geometry) so that further 
research is necessary for its practical use. Furthermore, a 
case study of how to acquire the prior knowledge to assure 
the solution uniqueness in actual imaging situations has 
been investigated (62). Another direction is to use various 
iterative reconstruction methods including those belonging 
to the CS framework for the interior CT instead of the 
DBP method (38,52,59,63).

Finally, we would like to mention that Clackdoyle  
et al. (64) discovered an alternative approach, called “virtual 
fan-beam method”, to solve the ROI reconstruction in 
2004. An interesting observation is that this method leads 
to a data sufficiency condition for exact ROI reconstruction 
which is different from that of the DBP concept.
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Conclusions

This paper picked up two relatively large topics, sparse-view 
CT and interior CT, both of which are under investigation 
in the CT community. We explained their recent advances 
mainly from the image reconstruction perspective. In the 
sparse-view CT, image reconstruction based on the CS has 
been the major promising research direction after 2000. 
In the interior CT, after 2004, there have been significant 
progresses in theoretical parts concerning the solution 
uniqueness and the solution stability.
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