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Plant ARGONAUTE7 (AGO7) assembles RNA-induced silencing
complex (RISC) specifically with miR390 and regulates the auxin-
signalling pathway via production of TAS3 trans-acting siRNAs
(tasiRNAs). However, how AGO7 discerns miR390 among other
miRNAs remains unclear. Here, we show that the 50 adenosine of
miR390 and the central region of miR390/miR390* duplex are
critical for the specific interaction with AGO7. Furthermore,
despite the existence of mismatches in the seed and central
regions of the duplex, cleavage of the miR390* strand is required
for maturation of AGO7–RISC. These findings suggest that
AGO7 uses multiple checkpoints to select miR390, thereby
circumventing promiscuous tasiRNA production.
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INTRODUCTION
Small RNAs, including microRNAs (miRNAs) and small interfering
RNAs (siRNAs), have important roles in spatiotemporal regulation
of diverse biological processes [1–4]. Small RNAs act via the
effector ribonucleoprotein complex called RNA-induced silencing
complex (RISC), at the core of which lies Argonaute (AGO)
protein. Although mature RISC contains a single-stranded small
RNA (the guide strand or miRNA strand), both siRNAs and
miRNAs are generated as double-stranded RNAs by RNase III
enzymes such as Drosha and Dicer in animals and Dicer-like
proteins in plants [1–3]. These small RNA duplexes, called siRNA
duplexes and miRNA/miRNA* duplexes, are first loaded into AGO
to form pre-RISC. Duplex loading requires the activity of the
Hsp70/Hsp90 chaperone machinery [5–9], which is proposed
to mediate a conformational change in AGO so that it can
incorporate bulky small RNA duplexes [5,7,10]. Pre-RISC is then
matured into RISC by separation of the two strands and ejection of

one strand (the passenger strand or miRNA* strand) from AGO.
Passenger ejection proceeds through two distinct pathways
depending on the complementarity of small RNA duplexes.
siRNA-like duplexes with extensive complementarity require
cleavage of the passenger strand at the phosphodiester bond
between positions 9 and 10 of the passenger strand (across
from positions 10 and 11 of the guide strand) for passenger
ejection [11–14]. In contrast, miRNA-like duplexes bearing
mismatches in the central region are not subject to passenger-
strand cleavage but instead undergo slicer-independent passenger
ejection [11,12,15,16], which is boosted by mismatches or G–U
wobbles in the seed region (positions 2–7 or 8 of the guide
strand) or the 30-supplementary region (positions 12–15 of the
guide strand) [12,15,16].

Many eukaryotes possess multiple AGOs with specialized
functions, and small RNA duplexes are often sorted into different
AGOs. In Drosophila, miRNA/miRNA* duplexes and siRNA
duplexes are actively sorted into Ago1 and Ago2, respectively,
according to their intrinsic structures and the identity of the 50

nucleotide of the guide strand [10,15,17–20]. The model plant
Arabidopsis thaliana has 10 AGO proteins (AGO1–10), each
of which has distinct roles in a diverse array of biological
processes [21]. For many Arabidopsis AGOs, the identity of the 50

nucleotide governs sorting of small RNAs; for example, AGO1
prefers 50 uridine (U), while AGO2 and AGO4 favours 50 adenosine
(A) [22–24]. The identity of the 50 nucleotide is directly sensed by
the nucleotide specificity loop in the MID domain of AGOs [25,26].
However, not all Arabidopsis AGOs obey this rule. For example,
AGO7 specifically binds to miR390, which triggers TAS3 trans-
acting siRNA biogenesis and regulates expression of auxin response
factors (ARF3 and ARF4) [23,27], and the sequence of the miR390 is
proposed to be required for the specific interaction between AGO7
and miR390 [23]. However, how AGO7 selectively loads miR390/
miR390* duplex among other miRNAs and how AGO7 ejects the
miR390* strand remain obscure.

Here, by using in vitro RISC assembly system, we demonstrate
that the 50 A of the miR390 strand and the central 3-nucleotide (nt)
region of miR390/miR390* duplex are crucial for the interaction
with AGO7. Furthermore, despite the existence of mismatches in
the central and seed regions, cleavage of the miR390* strand is
required for maturation of AGO7–RISC. Thus, assembly of plant
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AGO7–RISC utilizes multiple checkpoints and a unique passenger
ejection mechanism to select miR390 and exclude other miRNAs.

RESULTS AND DISCUSSION
AGO7 specifically associates with miR390 in vitro
To investigate the mechanism of AGO7–RISC assembly, we
utilized translationally active lysate from evacuolated protoplasts
of tobacco BY-2 cultured cells [5]. First, FLAG-tagged Arabidopsis
AGO1 and AGO7 mRNAs were translated in the BY-2 lysate, and
subsequently incubated with a series of chemically synthesized
small RNA duplexes, of which the guide strands were
radiolabelled with 32P (Fig 1A,B). AGO proteins were then
immunoprecipitated and the bound double-stranded and single-
stranded RNAs were isolated and analysed by native PAGE
(Fig 1A,C). No RNAs were detected in the precipitate without
AGO translation (Fig 1C). Both double-stranded RNAs (corre-
sponding to pre-AGO7–RISC) and single-stranded RNAs
(corresponding to mature AGO7–RISC) were immunoprecipitated
with AGO7 for miR390/miR390* duplex, but neither for miR171/
miR171* nor miR166/miR166* duplex (Fig 1C). In contrast,
AGO1 specifically associated with miR166/miR166* and
miR171/miR171* duplexes but not with miR390/miR390* duplex
(Fig 1C). These results are consistent with previous in vivo studies
showing that AGO1 forms RISC predominantly with small RNAs
bearing 50 U on the guide strand, while AGO7 specifically
associates with miR390 [22–24]. Geldanamycin (GA) and
2-phenylethynesulphonamide (PES), which are specific inhibitors
of Hsp90 and Hsp70, respectively, blocked loading of miR390/
miR390* duplex into AGO7 (Fig 1D), suggesting that AGO7–RISC
assembly requires the activity of the Hsp70/Hsp90 chaperone
machinery, as is the case for Arabidopsis AGO1, AGO4 and
animal AGO proteins [5,7,9,28]. Taken together, we concluded
that the plant cell-free system faithfully recapitulates the
specificity of AGO7–RISC assembly and decided to use this
system for further analyses.

AGO7 prefers 50 A
The guide strand of miR390 starts with 50 A. It was previously
reported that AGO7 tolerates the conversion of 50 A to 50 U for
association with miR390 [23]. To quantitatively examine the effect
of the 50 nucleotide in the assembly of AGO7–RISC, we prepared
a series of miR390/miR390* variants that bear U, G or C at the
50 end of the miR390 strand (Fig 2A; g1U, g1G and g1C), and
measured the time course of pre-AGO7–RISC and mature AGO7–
RISC formation. The duplex loading efficiency was calculated as
the sum of pre-AGO7–RISC and mature AGO7–RISC, whereas the
passenger ejection rate was calculated as the fraction of mature
AGO7–RISC in the sum of pre- and mature AGO7–RISC.
Compared with the wild type (g1A), all the mutants showed a
marked reduction in duplex loading with the order being
A4U4GBC (Fig 2B,C). In contrast, passenger ejection was
comparable among the four 50 nucleotides (Fig 2B,D). These
results indicate that AGO7 inspects the 50 nucleotide on loading of
miR390/mi390* duplex and the preference for 50 A is maintained
during RISC maturation. To rule out the possibility that the 50

mismatch introduced in the mutants accounts for the reduced
duplex loading, we closed the 50 mismatch of the g1U duplex by
introducing A at position 19 of the passenger (miR390*) strand
(Fig 2A, g1U/p19A). Much as the mismatched mutant (g1U), the

base-paired mutant (g1U/p19A) also showed a strong defect in
duplex loading but not in passenger ejection (Fig 2B–D),
indicating that AGO7 senses the nucleotide identity, but not the
base-paring status, of the 50 end.
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Fig 1 | AGO7 specifically associates with miR390. (A) Scheme for the RISC

assembly in BY-2 lysate. (B) The structures of miR390/miR390*, miR166/

miR166* and miR171/miR171* duplexes. Red and black strands represent

the guide and passenger strands, respectively. The 50 end of the guide

strand was radiolabelled with 32P. (C) RISC assembly in BY-2 lysate. AGO7

specifically associates with miR390/miR390* duplex. In contrast, AGO1

interacts with miR166/miR166* and miR171/miR171* duplex both bearing

50 U. ‘ds’ and ‘ss’ denote double-stranded miRNAs (pre-RISC) and single-

stranded miRNAs (mature RISC), respectively. Western blotting of

immunoprecipitated AGO proteins is shown at the bottom. (D) Hsp90

and Hsp70 inhibitors block both AGO1– and AGO7–RISC assembly. RISC

was assembled in the presence of an Hsp70 inhibitor (PES), an Hsp90

inhibitor (GA) or DMSO (mock). AGO, ARGONAUTE; DMSO,

dimethylsulphoxide; GA, geldanamycin; IP, immunoprecipitation; PES,

phenylethynesulphonamide; RISC, RNA-induced silencing complex.
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AGO7 inspects the central region of miR390 duplex
Besides miR390, plants have many other miRNAs that bear 50 A
on the guide strand. Thus, AGO7 must also recognize other
features of miR390/miR390* duplex for its high selectivity. To
investigate what region(s) of miR390/miR390* duplex is inspected
by AGO7, we prepared a series of ‘flipped’ mutants of miR390/
miR390* duplex, where corresponding parts of the guide and
passenger sequences within sliding 3-nt windows were swapped
without altering the base-paring status (Fig 3A). Mutations in the
seed, central and 30 regions caused various degrees of defects in
RISC assembly (Fig 3B–D). In particular, both duplex loading and
passenger ejection were severely compromised by swapping the
central 3-nt region (Fig 3B–D, lane 5). Thus, the central region
of miR390/miR390* duplex is critical for assembly of AGO7–
RISC. In contrast to AGO7, AGO2 efficiently incorporated
the miR390/miR390* mutant with the flipped central 3-nt
(Supplementary Fig S1 online), suggesting that AGO2 does not
inspect the central region for RISC assembly. This is consistent
with the previous finding that AGO2 incorporates a wide variety
of 50-A small RNAs including viral siRNAs [22–24].

miR390/miR390* duplex has two mismatches: a G–U wobble
in the seed region (guide position 3) and a G–A mismatch in the
central region (guide position 11). Intriguingly, the central
mismatch is perfectly conserved in monocot and eudicot
miR390 family (Supplementary Fig S2 online). To investigate the

importance of the seed wobble and the central mismatch, we
closed one or both of them by introducing base substitutions in the
passenger strand (Supplementary Fig S3A online; p17C, p9C,
p9C17C), and analysed the formation of pre- and mature AGO7–
RISC. Both duplex loading and passenger ejection were hardly
affected by removing the seed wobble, but were dramatically
impaired by closing the central mismatch (Supplementary Fig S3
B–D online), suggesting that the conserved central G–A mismatch
is crucial for AGO7–RISC assembly. We then shifted the
position of the G–A mismatch by one nucleotide backward
(Supplementary Fig S3E online, g10G/p9C10A; G–A at position
10) or forward (Supplementary Fig S3E online, p8A9C; G–A at
position 12) relative to the 30 end of the guide strand. Compared
with the wild-type miR390/miR390* duplex, both g10G/p9C10A
and p8A9C duplexes were markedly defective in duplex loading.
In addition, g10G/p9C10A duplex was slow in passenger ejection
(Supplementary Fig S3F–H online). Thus the G–A mismatch
at position 11 of miR390/miR390* duplex is important for
AGO7–RISC assembly. Notably, among 299 Arabidopsis miRNA
precursors registered in miRBase [29], only miR390/miR390*
duplex bears both 50 A and the G–A mismatch at position 11.
Taken together, we conclude that AGO7 recognizes miR390/
miR390* duplex primarily by the 50 A and the 3-nt central region
that contains the conserved G–A mismatch at position 11. To
confirm this, we created three chimeras between miR171 and
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miR390: chimera1 bearing 50 A instead of U, chimera2 that has
50 A and miR390-like secondary structure, and chimera3 with 50 A
and the central 3-nt region substituted with that of miR390/
miR390* duplex (Fig 3E). In contrast to the wild-type miR171/
miR171* duplex that does not interact with AGO7, replacing the
50 U to A partially restored duplex loading (Fig 3F, chimera1).
Introducing the miR390-like secondary structure showed no
improvement in RISC assembly (Fig 3F, chimera2). However,
substitution of the central 3-nt region of miR171/miR171* with
that of miR390/miR390* efficiently produced mature AGO7–RISC
(Fig 3F, chimera3), supporting the importance of the above-
mentioned two primary features. Yet, RISC assembly of the
wild-type miR390/miR390* duplex was still more efficient than

chimera3, suggesting that other features, presumably in the seed
and 30 regions of miR390/miR90* duplex (Fig 3A–D), are also
required for maximum AGO7–RISC assembly.

AGO7–RISC maturation requires miR390* cleavage
In general, mismatches in the central region of small RNA
duplexes prevent passenger strand cleavage, and mismatches in
the seed or 30-supplementary region accelerate slicer-independent
passenger ejection [5,11,15,16]. This is also the case for Nicotiana
tabacum AGO1 [5]. Given that miR390/miR390* duplex has a
mismatch at position 11 adjacent to the scissile phosphate and an
extra mismatch in the seed region, AGO7 is expected to separate
the miR390 and miR390* strands independently of cleavage.
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To test this idea, we constructed a cleavage-incompetent mutant
of AGO7 bearing a D734A mutation in the catalytic site in the
PIWI domain (AGO7D734A, Supplementary Fig S4 online) and
examined in vitro RISC assembly. Contrary to expectation,
miR390/miR390* duplex could not be separated in AGO7D734A

(Fig 4A), raising a possibility that cleavage of the miR390* strand is
required for its ejection by AGO7. To address this, we sought to
detect the cleavage product of the miR390* strand by radiolabel-
ling its 50 end (Fig 4B). Indeed, a 9-nt fragment of miR390*
was detected in the BY-2 lysate expressing AGO7WT but not

AGO7D734A (Fig 4C), indicating that the miR390* strand was
cleaved at the expected position facing positions 10 and 11 of the
miR390 strand. Moreover, when a phosphorothioate modification,
which blocks cleavage by AGO proteins [12,30], was introduced
between positions 9 and 10 of the miR390* strand (Fig 4D, p9-PS-
10), accumulation of the 9-nt fragment was decreased and mature
RISC formation was severely inhibited (Fig 4E,F). In contrast, when
the position of the phosphorothioate modification was shifted by
one nucleotide backward (Fig 4E, p8-PS-9) and forward (Fig 4E,
p10-PS-11) relative to the 30 end of the miR390* strand, miR390*
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strand cleavage and passenger ejection were comparable to the
wild-type miR390/miR390* duplex (Fig 4E,F). Together we
conclude that, unlike any known AGOs in animals and plants,
cleavage of the miR390* strand is essential for AGO7–RISC
maturation, despite the existence of the seed and central
mismatches (Fig 4G). We speculate that the local structure
around the catalytic site in the PIWI domain of AGO7 adopts a
conformation that selectively accommodates the central mis-
match of miR390/miR390* duplex and yet is capable of cleaving
the miR390* strand at the mismatched nucleotide. This
particular conformation, together with the 50 A-specific specifi-
city loop in the MID domain, might act for AGO7 to reject other
miRNAs and specifically assemble RISC with miR390. Clearly,
this idea awaits structural studies in the future.

METHODS
Plasmid construction and RNA preparation. Plasmid construc-
tion and RNA preparation are described in Supplementary
Information online.
Preparation of plant lysates. The BY-2 lysate was prepared as
described previously [31].
Preparation of miRNA duplexes. Synthetic RNA oligonucleotides
(GeneDesign Inc.) were phosphorylated by T4 Polynucleotide
Kinase (Takara) in the presence of [g-32P]ATP or non-radioactive
ATP and gel purified. After annealing, radiolabelled miRNA
duplexes were quantified using phosphorimager, and the con-
centrations were normalized by appropriate dilution before used
for in vitro RISC assembly assays.
In vitro RISC assembly. Two point five microlitres of the BY-2
lysate, 1.25ml of substrate mixture (3 mM ATP, 0.4 mM GTP,
100 mM creatine phosphate, 200 nM each of 20 amino acids,
320 nM spermine, 0.4 U/ml creatine phosphokinase (Calbiochem))
and 0.25ml of 930 nM mRNAs carrying 3� FLAG-tagged Arabi-
dopsis AGO proteins were incubated for 120 min at 25 1C.
Translation was terminated by adding 1 mM cycloheximide. Then
the mixture was incubated with 10 nM radiolabelled miRNA
duplex. The reaction was mixed with anti-FLAG antibody (Sigma)
immobilized on 1.25 ml of Dynabeads protein G (Invitrogen) and
incubated for 30 min on ice. After incubation, the beads were
washed three times with lysis buffer (30 mM HEPES (pH 7.4),
100 mM KOAc and 2 mM Mg(OAc)2) containing 1% Triton
X-100 and 800 mM NaCl and treated with proteinase K. After
ethanol precipitation, the samples were resuspended in 6 ml of
native loading dye (25% glycerol, 2 mM MgCl2, 0.01% bromo-
phenol blue, 0.01% xylene cyanol, 0.02% tartrazine and 0.5�
TBE), and 3 ml aliquots were separated on a 12% acrylamide
native gel at 4 1C. Gels were analysed by PhosphorImager (FLA-
7000, Fujifilm Life Sciences) and quantified using Image Gauge
software (Fujifilm Life Sciences). Equimolar amounts of non-
radiolabelled miRNA duplexes were used for western blotting of
immunoprecipitated AGO proteins in Figs 1C,D,2B. In Fig 1D,
RISCs were assembled in the presence of 1 mM PES, 1 mM GA or
1% dimethylsulphoxide alone. In Fig 3B, lysate was treated
with 1 U/ml micrococcal nuclease (Takara) in the presence of
0.5 mM Ca(OAc)2 before adding miRNA duplex. Then, 2 mM
EGTA was added to quench the calcium-dependent micrococcal
nuclease activity.
Western blotting. Anti-FLAG antibody (Sigma) was used at
1:5,000 dilution. Chemiluminescence was measured using

Luminata Forte Western HRP Substrate (Millipore), and the signals
were detected with LAS-3000 (Fujifilm Life Sciences).
Target cleavage assay. BY-2 lysate containing overexpressed
AGO7 was incubated with 10 nM small RNA duplexes and
1 nM cap-radiolabelled target mRNA at 25 1C. At each time point,
3 ml aliquot was taken. After proteinase K treatment and ethanol
precipitation, samples were resuspended in 6 ml of Formamide dye
(49% Formamide, 5 mM EDTA, 0.01% xylene cyanol and
0.01% bromophenol blue), and 3 ml aliquots were separated on
an 8% denaturing acrylamide gel. Gels were analysed by
PhosphorImager (FLA-7000, Fujifilm Life Sciences).
Passenger-strand cleavage assay. BY-2 lysate containing over-
expressed AGO7 was incubated with 10 nM miRNA duplexes
containing radiolabelled passenger strands for 30 min at
25 1C. After proteinase K treatment and precipitation, samples
were resuspended in 6 ml of Formamide dye, and 3 ml
aliquots were separated on a 15% denaturing acrylamide gel.
Gels were analysed by PhosphorImager (FLA-7000, Fujifilm Life
Sciences). The RNA ladder was prepared by digesting 10 nM
radiolabelled miR390* with 1.8 U S1 nuclease (Takara) in the
1� S1 nuclease buffer (Takara) containing 0.25 mg baker’s yeast
tRNA (Sigma) for 5 min at 25 1C. The reaction was quenched
by adding 20 mM EDTA.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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