Skip to main content
. 2013 Jul 4;8(7):e68607. doi: 10.1371/journal.pone.0068607

Figure 2. Putative membrane proteins encoded by GCRV-HZ08/GD108 and GCRV104.

Figure 2

In each panel, the genomic plus strand is indicated by the heavy line above and the encoded protein(s) by boxes below. Numbers indicate positions of protein start and stop codons (above) and overall strand length (right). (A) Putative membrane protein NS41 encoded by GCRV-HZ08/GD108 segment 8. Transmembrane regions predicted by the indicated algorithms are indicated by gray bars for GCRV-HZ08 (darker) and GCRV-GD108 (lighter). (B) Putative membrane protein NS11/9 encoded by GCRV-HZ08/GD108 segment 11. Start-codon environment for each of the two ORFs is shown; for the NS11/9 ORF, the two potential in-frame start codons are shown. The potential NS9 product is shaded yellow. Predicted NS11/9 sequences of both GCRV-HZ08 and GCRV-GD108 are shown, with differences in cyan letters and the NS9 product background-shaded in yellow. Transmembrane regions predicted by the indicated algorithms are indicated by gray bars for NS11/9 of GCRV-HZ08 (darker) and GCRV-GD108 (lighter). (C) Putative membrane protein NS15 encoded by GCRV104 segment 11. Start-codon environment for each of the two ORFs is shown; for the NS15 ORF, the extended upstream region without in-frame stop codons preceding the first in-frame Met codon is also shown, and positions of potential, in-frame non-AUG start codons within this region (see text) are indicated by green lines. The NS15 product arising from the first in-frame Met codon is shaded yellow. The predicted NS8 and NS15 sequences are shown, the NS15 starting with the first potential, in-frame non-AUG start codon. Transmembrane regions predicted by the indicated algorithms are indicated for N-terminally extended NS15 by gray bars; yellow background shading indicates the non-N-terminally extended NS15 product.