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Abstract The central nervous system has been considered
off-limits to antibody therapeutics. However, recent ad-
vances in preclinical and clinical drug development suggest
that antibodies can cross the blood–brain barrier in limited
quantities and act centrally to mediate their effects. In par-
ticular, immunotherapy for Alzheimer’s disease has shown
that targeting beta amyloid with antibodies can reduce pa-
thology in both mouse models and the human brain, with
strong evidence supporting a central mechanism of action.
These findings have fueled substantial efforts to raise anti-
bodies against other central nervous system targets, partic-
ularly neurodegenerative targets, such as tau, beta-secretase,
and alpha-synuclein. Nevertheless, it is also apparent that
antibody penetration across the blood–brain barrier is limit-
ed, with an estimated 0.1–0.2 % of circulating antibodies
found in brain at steady-state concentrations. Thus, technol-
ogies designed to improve antibody uptake in brain are
receiving increased attention and are likely going to repre-
sent the future of antibody therapy for neurologic diseases,
if proven safe and effective. Herein we review briefly the
progress and limitations of traditional antibody drug devel-
opment for neurodegenerative diseases, with a focus on
passive immunotherapy. We also take a more in-depth look
at new technologies for improved delivery of antibodies to
the brain.
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Introduction

Developing effective therapies for disorders of the central
nervous system (CNS) is one of the greatest unmet medical
challenges facing our society. As a result of the growing
aging population worldwide, incidences of neurodegenera-
tive diseases, in particular, are projected to increase consid-
erably in the coming decades [1]. At present, there is a
dearth of effective therapeutics for neurodegenerative dis-
eases owing, in part, to the inherent difficulty of developing
safe and efficacious drugs that will cross the blood–brain
barrier (BBB).

Because of their larger size, development of antibody
therapeutics for CNS diseases has been particularly chal-
lenging. However, target specificity, reduced off-target side
effects, and better pharmacokinetics make antibody and
protein therapeutics an attractive and promising approach
for targeting CNS diseases [2, 3]. Furthermore, progress in
the field of Alzheimer’s passive immunotherapy—particu-
larly results showing that peripherally administered beta
amyloid (Aβ) antibodies can cross the BBB and reduce
amyloid plaque—have spurred efforts to raise antibodies
to other CNS targets [4]. We review the recent advances in
antibody drug development for neurodegenerative disease,
focusing almost exclusively on passive antibody therapy
with only a brief comment on active immunization ap-
proaches that provided initial proof-of-concept for immuno-
therapy. A focus is also placed on antibodies designed to
treat or prevent Alzheimer’s disease (AD), paying particular
attention to Aβ, BACE1, and tau, with an emphasis on our
current understanding of the associated mechanisms of ac-
tion supported by the most recent findings in the field. We
also explore the limitations of traditional antibody develop-
ment for CNS diseases, namely limited antibody exposure in
brain.
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The inherent biological limitation of antibody uptake in
brain with roughly 0.1–0.2 % of peripherally administered
antibody crossing the BBB has resulted in efforts to engi-
neer antibodies to cross the BBB by utilizing endogenous
transport mechanisms, such as receptor-mediated
transcytosis of large molecules. We end our review by
summarizing the recent progress in utilizing endogenous
transport mechanism to boost antibody uptake in brain,
and propose that this approach may lead to the next gener-
ation of CNS antibody therapeutics designed to treat a wide
range of CNS diseases.

The BBB

A major obstacle in the development of antibody therapeu-
tics for CNS diseases is the tightly regulated BBB that is
localized to the brain vasculature. The BBB is one of many
distinct barriers that limit the transport of peripheral sub-
stances into the CNS; the blood–cerebrospinal fluid (CSF)-
barrier, blood–retinal barrier, and blood–spinal cord barriers
all contribute to the limited movement of compounds from
the systemic circulation to the CNS [5]. The primary func-
tion of these barriers is to maintain homeostasis in the CNS.
Specificity of brain uptake of various endogenous ligands,
including amino acids, glucose, iron, and other nutrients, is
controlled by transporters and receptors expressed at the
barrier. For exogenous drugs, generally only lipophilic com-
pounds with a molecular weight less than ~400 Da are able
to diffuse through the barrier to any appreciable degree.
Thus, by restricting the movement of compounds between
the blood and the brain, the BBB has severely limited the
success of therapeutics for CNS disease.

The BBB is comprised of a continuous monolayer of
brain endothelial cells that constitute the brain microvascu-
lature (Fig. 1a; reviewed in [6, 7]). A network of transmem-
brane tight junction proteins (e.g., claudin-1, claudin-5,
occludin) between adjacent endothelial cells serves to create
a physical barrier, which results in a low paracellular per-
meability of hydrophilic molecules from the blood to the
brain [8, 9]. Besides these structural elements, transporters,
and enzymes present on both the luminal (blood) and
abluminal (brain) side of endothelial cells regulate the in-
flux, efflux, and metabolism of substances between the
periphery and the CNS [10–12]. Beyond the endothelial
cells, the astrocytes and pericytes that surround the endo-
thelial cell layer also play a role in the development and
maintenance of BBB integrity and constitute the highly
regulated neurovascular unit [13–17].

Ultimately, this tightly regulated neurovascular unit restricts
movement of substances from circulation into the CNS, thus
posing a challenge for systemically administered drugs. How-
ever, given that every CNS cell is no more than ~40 μm away

from the ~400 miles of capillary network in the human brain, a
number of approaches have beenmade to take advantage of this
extensive vascular barrier in order to deliver drugs from the
periphery to the brain [18–20]. These approaches most often
rely on the existing biological machinery found in the brain
vasculature, either via passive or receptor-mediated transport.

Limited Quantities of Therapeutic Antibodies Cross
the BBB

In general, only a mere 0.1–0.2 % of circulating antibodies
cross the BBB and enter the brain or CSF [21, 22]. This
uptake is similar in magnitude to other endogenous circu-
lating proteins that are taken up into brain in a nonspecific

Fig. 1 Endogenous transport systems of the blood–brain barrier. a
Passive fluid phase uptake of peripheral antibodies diffuse
nonspecifically across endothelial cells of the blood–brain barrier to
reach the brain. Chemical modifications, such as cationization, can
enhance this absorptive-mediated transport by enhancing the binding
of antibodies to negatively charged endothelial cell membranes. b
Receptor-mediated transport relies on substrate-specific binding of
antibodies to endocytic receptors expressed on the luminal surface of
endothelial cells. Bispecific antibodies that bind to both a receptor-
mediated transport and therapeutic target can enhance brain uptake of
the therapeutic agent
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manner, such as serum albumin. With a limited amount of
antibody uptake in brain, there is some uncertainty as to
whether antibodies do cross the BBB or if the small amount
of antibody measured in brain is a result of blood contamina-
tion. At least two major lines of evidence support the conclu-
sion that antibodies do cross the BBB and act centrally to
mediate their effects. First, taking a lesson from nature, there
are rare autoimmune diseases in which antibodies are raised
against CNS targets [23, 24]. Indeed, there are a number of
examples where autoantibodies are generated against extra-
cellular targets, such as N-methyl-D-aspartate (NMDA) and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, with associated syndromes consistent with
blocking receptor function. The second line of evidence is
recent success with preclinical and clinical drug development
in AD, particularly the fact that peripherally administered anti-
Aβ and anti-BACE1 antibodies can reduce plaque load and
amyloid production, respectively. Results from these efforts
and associated data supporting a direct mechanism of action
will be reviewed in the next section.

Although there is evidence that peripherally originating
or administered antibodies can act centrally [25–28], the
mechanism(s) for such uptake is not entirely clear. Never-
theless, current evidence supports a steady-state equilibrium
being established through a passive fluid phase mechanism
relying on nonspecific uptake by endocytic vesicles in brain
vasculature (Fig. 1a). We have confirmed this proposed
mechanism of antibody uptake in brain indirectly by show-
ing that increasing the doses of anti-BACE1 antibodies
(discussed later) results in increased CNS exposure in a
nonsaturating fashion [29]. Furthermore, we have ob-
served that brain uptake of IgG is comparable in both
wild-type and severe combined immunodeficiency mice
(unpublished data), suggesting that IgG does not com-
pete for uptake at the BBB. It can therefore be con-
cluded that penetration of traditional antibodies is
limited by the amount of circulating antibody, and that
a non-saturable steady state is established roughly
equaling 1 antibody in brain for every 1000 circulating
antibodies in the blood. This limited BBB uptake and
associated minimal brain exposure makes it imperative
that therapeutic antibodies directed against CNS targets
either have extremely high affinities for their target or
are administered at large doses to achieve therapeutic
effects. Fortunately, antibodies targeting aggregated pro-
teins in neurodegenerative disease, such as Aβ and tau,
may take advantage of improved potency based on
substantial improvements in perceived affinity as a re-
sult of robust avidity towards their target (multiple
binding sites in close proximity), as shown for Aβ
[30], or even accumulate in brain around their aggre-
gated target [31]. Nevertheless, in order to tackle more
traditional antibody targets in brain, such as receptor/ligand

interactions or extracellular enzymes (e.g., BACE1), or even
go after more novel targets such as G protein-coupled recep-
tors or ion channels, improved brain uptake will substantially
increase the probability of success.

Targeting Neurodegenerative Disease With Antibodies

Aβ and the associated enzymes responsible for its pro-
duction are major targets of Alzheimer’s drug develop-
ment (Fig. 2a; [32–35]). The reason for such intense
efforts is based on compelling human genetic and patho-
logic findings. In addition to mutations in amyloid pre-
cursor protein (APP) causing early onset Alzheimer’s
disease as a result of increased Aβ production or a shift
in the ratio of toxic Aβ species [36], a recent variant in
APP was discovered that reduces BACE1 cleavage of
APP and is associated with a significant reduction in the
risk of developing AD [37].

Hallmark pathologic findings in AD also include extra-
cellular accumulations of Aβ and intracellular neurofibril-
lary tangles made of hyperphosphorylated tau [35, 38].
Recent studies evaluating imaging and CSF biomarkers in
both early onset and idiopathic AD suggest a long time
course of amyloid accumulation, followed by tau pathology
and neuronal loss tracking with cognitive decline [39]. Fur-
thermore, the prion-like spreading of tau has been proposed
based on numerous examples of pathologic spreading along
neuronal networks [40, 41] and studies where tau aggregates
are introduced ectopically to tau transgenic mouse brains
serve as seeds for tau pathology [42].

Taken together, the overwhelming genetic and pathologic
evidence pointing toward Aβ as a viable drug target in AD
has resulted in numerous approaches to reduce production
(secretase inhibitors), block aggregation and/or promote
disaggregation, and promote clearance of Aβ. In this review
we focus on passive immunotherapy approaches with ther-
apeutic antibodies, specifically anti-Aβ, anti-BACE1, and
anti-tau. We will also briefly discuss other passive immuno-
therapy approaches for neurodegeneration, focusing on sim-
ilarities in proposed mechanisms of action, such as slowing
the prion-like spreading of aggregating proteins (e.g., tau
and α-synuclein).

Using Anti-BACE1 to Reduce Aβ Production

The aspartyl protease β-site APP cleaving enzyme
(BACE1) is a highly sought after Alzheimer’s drug target,
as it is the first enzyme in the amyloidogenic processing of
APP giving rise to toxic Aβ (Fig. 2a) [43–45]. Until recent-
ly, it has been considered difficult to develop BACE1 small
molecule inhibitors that are selective, potent, and BBB
penetrant [46]. Nevertheless, recent advances have been
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made in the clinic that show promise for small molecule
inhibition of BACE1 [47], yet most of these approaches still
lack the specificity that an antibody approach will offer. In
particular, there are clear risks associated with cathepsin-D
inhibition [48–50], and the risks associated with BACE2
inhibition are not yet evident. Recent genetic studies have

also raised the concern that complete inhibition of BACE1
itself may be deleterious [51–53].

In an attempt to tackle BACE1 in a novel and selective
way, we, and others, have recently developed antibodies that
selectively bind and inhibit BACE1 activity [29, 54]. This
approach revealed several important aspects about antibody
therapeutics directed against CNS targets. First, there was a
direct pharmacokinetic/pharmacodynamic relationship be-
tween antibody levels in brain and inhibition of BACE1
activity as measured by Aβ levels. Second, with the current
level of potency (cellular IC50s ~5nMand in vivo IC50s ~15nM),
very high doses of drug were needed to substantially inhibit
BACE1 activity. Third, there is a direct steady-state relationship
between drug levels in brain versus drug levels in blood at
multiple dose levels, equalling, approximately, 1 to 1000 as
reported previously [21, 22]. Ultimately, these findings lead to
the conclusion that most antibodies targeting CNS targets could
potentially benefit from improved CNS uptake and/or extremely
high affinities against that selected target in order to advance
toward clinical applications.

Removing Amyloid Via Anti-Aβ Treatment

Numerous reviews have addressed the immunotherapeutic
approaches to target Aβ [4, 34, 55–57]; thus, we will focus
on the debate around the mechanism(s) of anti-Aβ action
(Fig. 2b) and the most recent clinical advances. From the
earliest observations that active immunization against Aβ in
APP transgenic mice could reduce plaque load [58] to the
most current clinical data showing that peripheral levels of
Aβ increase after dosing and that plaque can be reduced in
patients treated with Aβ immunotherapy [59–62], the mech-
anism by which anti-Aβ antibodies exert their effects have
remained somewhat controversial.

Based on early publications in the anti-Aβ field, two
opposing, but not mutually exclusive mechanisms have

Fig. 2 Alzheimer’s disease antibody approaches and associated mech-
anisms. a Amyloid precursor protein (APP) is cleaved sequentially by
β-site APP cleaving enzyme (BACE1) and the γ-secretase complex to
give rise to toxic beta amyloid (Aβ). Two antibody approaches to
mitigate the toxic effects of Aβ include reducing the initial cleavage
of APP by BACE1 with an antibody. A second, and more common,
approach is to clear existing Aβ with antibodies targeting Aβ directly.
b Two models for how anti-Aβ clears amyloid from the brain have
been proposed. The “direct action” hypothesis postulates that system-
ically delivered anti-Aβ antibodies cross the blood–brain barrier and
promote clearance of amyloid by activating microglia, inhibiting Aβ
aggregation, promoting Aβ disaggregation, and/or directly inhibit Aβ
oligomer toxicity to neurons. The “peripheral sink” hypothesis pro-
poses that Aβ captured in the periphery (blood vessels) shifts the
equilibrium of Aβ and pulls amyloid from the brain. c Recent evidence
supports a prion-like spreading of tau from one neuron to neuron. We
propose that immunologic approaches to tau may act primarily by
reducing tau spreading, as anti-tau antibodies cross the blood–brain
barrier and bind extracellular tau blocking its ability to seed pathology
in adjacent neurons

R
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been proposed, namely “direct action” and “peripheral sink”
(Fig. 2b) [30, 63]. In the strictest sense of the definition, the
“peripheral sink” hypothesis stipulates that Aβ captured by
anti-Aβ antibodies in the periphery (blood) would shift the
equilibrium and “pull” Aβ from the brain into the blood in
an attempt to re-establish Aβ equilibrium. This hypothesis
relies on the assumption that antibodies do not cross the
BBB and that Aβ exists in a passive equilibrium between
the brain and blood. Addressing the latter point: if Aβ were
to exist in peripheral/central equilibrium, any approach that
lowers Aβ in the periphery should subsequently reduce
brain Aβ levels. Unfortunately, the BBB is not a generally
permeable barrier and many examples abound where pe-
ripheral decreases in Aβ do not result in brain levels being
decreased, particularly associated with efforts to develop
secretase inhibitors [46]. Indeed, as just reviewed, anti-
BACE1 antibodies that inhibit BACE1 activity in the pe-
riphery do not show the same reduction of Aβ in brain.
Rather, the reduction in brain is related to the amount of
anti-BACE1 that crosses the BBB [29]. Finally, preclinical
experiments have been conducted to directly test the idea
that peripherally administered anti-Aβ antibodies pull Aβ
from brain [28]. Results from these studies suggested the
opposite: anti-Aβ/Aβ complexes actually are cleared more
slowly from the brain and provide additional proof that anti-
Aβ antibodies may be exerting their effects centrally in the
CNS.

Support is mounting for a “direct action” hypothesis by
which anti-Aβ reduce plaque load, inhibit aggregation, pro-
mote disaggregation, and possibly directly block the toxicity
of oligomeric Aβ (Fig. 2b). This hypothesis stipulates that
anti-Aβ antibodies cross the BBB and directly block the
toxic effects of Aβ while mediating its clearance by pro-
moting microglial engulfment or clearance as a complex via
CSF/interstitial fluid (ISF) bulk flow. The latter may explain
the peripheral rise in Aβ observed after dosing [28, 63].
Consistent with this hypothesis, antibodies that fully engage
microglia while binding plaque may cause reduction of amy-
loid plaque, but also disrupt the BBB causing vasogenic
edema [62], a phenomenon renamed amyloid-related imaging
abnormalities-edema [64]. These adverse effects have been
dose-limiting for bapineuzumab [62]. Mechanistically, it ap-
pears as though anti-Aβ antibodies that recognize aggregated
Aβ and are on a human IgG1 backbone show a dose-
dependent increase in amyloid-re la ted imaging
abnormalities-edema, which is likely related to BBB penetra-
tion of antibody and activation of microglia. Indeed, human
IgG1 antibodies have the greatest affinity to Fc-gamma re-
ceptors, thus potentially activating microglia maximally. It
may also be the case that unique epitopes must be targeted
to limit toxicity while still engaging plaques, such as proposed
by a recent study in which antibodies were raised to
pyroglutamate n-terminally truncated Aβ(p3-42) [65].

In contrast to these approaches, we have engineered an
anti-Aβ antibody (crenezumab) on an IgG4 backbone that
shows reduced activation of microglia, while retaining the
ability to promote Aβ engulfment [59]. This decreased
immune response allows for higher doses of crenezumab,
thus increasing the exposure in brain and allowing for
maximizing the “direct action” of blocking Aβ toxicity.

The ultimate proof of Aβ immunotherapy is showing a
clinical benefit for patients. Unfortunately, a number of
recent phase III clinical trials in mild-to-moderate AD with
two anti-Aβ antibodies, bapineuzumab and solanezumab,
did not meet their primary endpoints. However, there were
some signs of efficacy on cognitive endpoints in a
prespecified secondary analysis of mild AD patients treated
with solanezumab. These data support the growing consen-
sus that therapies designed to target Aβ may need to be
given early, even in a preventative setting [66–69]. Indeed,
two recent publications assessing dominantly inherited early
onset cases of Alzheimer’s show that amyloid may accumu-
late as early as 25 years before the first signs of cognitive
decline [70, 71]. Thus, the future of anti-amyloid ap-
proaches may, indeed, be in a preventative setting, which
will require the development of additional biomarkers and
clinical endpoints to assess benefits to patients.

Slowing the Spreading of Tau Pathology With Anti-tau
Antibodies

Unlike the extended lead-time of pathologic accumulation
of Aβ prior to cognitive decline, tau intracellular pathology
spreads as cognitive impairment increases. Braak staging in
AD, which is based on presence of neurofibrillary tangles
formed by hyperphosphorylated tau, shows a direct relation-
ship between pathologic spreading and worsening of cogni-
tive scores [72]. These data, combined with evidence that
tau pathology can spread in mice [40, 41], and the observa-
tion that tau can be found extracellularly in interstitial fluid
[73], suggests that tau may be spread in a prion-like fashion
and may thus be a valid antibody target to treat AD.

Similar to the amyloid immunotherapy field, tau active
immunization provided the first evidence that pathologic
spreading could be reduced in long-term efficacy studies
[74–77]. These studies have more recently been followed
by passive immunotherapy studies also showing success in
reducing pathology and even rescuing motor deficits in tau
transgenic mice [78, 79]. The model we propose for anti-tau
mechanism of action relies on anti-tau antibodies crossing
the BBB, and binding to phosphorylated or aggregated tau
and reducing the prion-like behavior of seeding tau aggre-
gates in adjacent cells (Fig. 2c). Consistent with this hy-
pothesis, powerful assays have been developed recently that
show that tau can be secreted and taken up by adjacent cells
to seed pathology, a process that can be blocked with anti-
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tau antibodies [80]. The evidence for cellular spreading has
also extended to in vivo studies in mice using genetic means
to express human tau in a small subpopulation of neurons,
and then follow the spread of human tau and associated
aggregation of murine tau [40, 41].

Although still in its early days, anti-tau therapy may be a
more attractive approach than anti-Aβ therapy to treat in-
dividuals with early signs of cognitive decline. This is
especially promising when considering the fact that patients
with prodromal AD are just beginning to develop tau pa-
thology. Nevertheless, much remains to be understood about
the mechanisms of tau spreading and the ultimate contribu-
tion of this prion-like hypothesis to pathology in humans, as
opposed to a cell intrinsic mechanism for tau accumulation
downstream of Aβ. Also, similar to Aβ, it is not entirely
clear what toxic form of tau should be targeted to maximize
efficacy while limiting safety liabilities. Although many
years of drug development will be necessary before we
can realize the hope from such an approach, the coming
years of preclinical and clinical drug development for anti-
tau will be insightful.

Targeting Other Toxic Proteins in Neurodegeneration
With Antibodies

This review has focused largely on antibody approaches to
treat AD; however, similar principles may apply to other
aggregating proteins. One such example is α-synuclein.
Similar to tau, α-synuclein intracellular aggregates form
Lewy bodies and spread pathologically as Parkinson’s dis-
ease progresses; indeed, Braak also developed a staging
system for Parkinson’s disease, in this case based on
α-synculein Lewy body pathology [81]. Although
anti-α-synuclein immunotherapy is also in its early days,
there are examples of preclinical success with both ac-
tive and passive immunotherapy against α-synuclein in
transgenic mouse models [82, 83]. Recent in vitro cellu-
lar data also support the idea of α-synuclein spreading
from cell to cell [84, 85], a conclusion supported by in
vivo data in both mice [86] and humans [87, 88].

Other targets, such as huntingtin, TAR-DNA binding
protein 43 kDa, superoxide dismutase 1, and prion protein
are less validated as potential antibody targets; however,
there is accumulating evidence supporting the possibility
that these pathologic molecules can be modulated with
immunotherapy [89–93]. However, many of these suffer
the same uncertainty as tau and α-synuclein, as they are
considered primarily to be intracellular molecules (with the
exception of prion protein). It is not known how much of the
pathologic and toxic action of these proteins are mediated
extracellularly, and thus what portion of toxicity can be
alleviated with antibody therapy. In addition to this

uncertainty, antibody therapeutics against CNS targets face
an equally large challenge of crossing the BBB. Many
targets may be difficult to validate based on the limited
uptake of antibody in brain, and thus strategies to increase
uptake of antibodies will have a broad impact on CNS drug
development and may open the window for targets beyond
the currently pursued list of aggregating proteins in neuro-
degenerative diseases.

Implication of Extracellular Versus Intracellular Targets

We have proposed that “classical” intracellular aggregating
proteins, such as tau and α-synuclein, are antibody targets
based on a prion spreading hypothesis (Fig. 2c), as it is
generally believed that antibodies cannot penetrate cells
effectively and access the cytoplasm directly. In contrast,
Aβ is largely extracellular and thus readily accessible to
antibodies (Fig. 2b). Although it is interesting to note that
both extracellular and intracellular targeting of aggregating
proteins showed initial proof-of-concept via active immuni-
zation, Aβ immunotherapy is substantially advanced rela-
tive to tau and α-synuclein immunotherapy. As such, studies
aimed at elucidating the mechanism by which antibodies
slow the spreading of intracellular pathology are needed.
These studies may include assessing the role of effector
function, epitope specificity, and dose relationships to effi-
cacy. Furthermore, there may be mechanisms that allow for
antibodies to access the cytoplasm of neurons, but without
any clear molecular and cellular pathways currently con-
ceivable, such a proposal remains implausible.

Enhancing Antibody Uptake in Brain

Endogenous Transport Systems as a Means to Enhance
Antibody Uptake in Brain

Among the non-invasive strategies of delivering anti-
bodies to the CNS, the most explored strategy has been
to take advantage of a number of endogenous transport
systems that are present at the BBB (Fig. 1b;). Most
nutrients and small metabolites do not diffuse across the
BBB through passive paracellular diffusion in sufficient
quantities to serve the needs of the highly metabolically
active CNS. Instead, delivery of these important mole-
cules is regulated by active endogenous transport sys-
tems present on brain endothelial cells. There are three
main classes of transport systems at the BBB: 1)
nonspecific absorptive-mediated endocytosis (including
transmembrane diffusion and charged-based interactions
which do not require receptor interaction); 2) substrate-
selective carrier-mediated transport (e.g., glucose, amino
acids); and 3) receptor-mediated transcytosis (RMT) for
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larger molecules (e.g., transferrin [94], insulin [95],
leptin [96]).

Drug targeting using absorptive-mediated endocytosis
utilizes chemical modifications, such as cationization of
carboxyl groups, to nonspecifically increase cellular uptake
through binding of the positively charged modified antibody
to the negatively charged plasma membrane [97–99]. This
type of drug targeting is nonselective in that it does not
require binding of the drug to receptors; rather, endocytosis
of cationic-bound membrane results in the internalization of
compounds into intracellular endosomes. Polyamination
and glycation of antibodies and proteins have shown in-
creased BBB penetration [21, 98]. However, the nonspecific
nature of absorptive-mediated transport greatly limits its ther-
apeutic potential, as indiscriminate cellular uptake is not only
a major disadvantage in terms of off-target effects, but also for
their reduced pharmacokinetic properties. Additionally, cat-
ionic compounds have been shown to cause acute toxicity and
disruption of BBB permeability in vivo, which further brings
into question the utility of altering surfaces charges as a means
of increasing brain uptake [100].

Unlike absorptive-mediated transport, both carrier-
mediated transport (CMT) and RMT mechanisms are
substrate-selective. CMT is responsible for the delivery of
small molecule nutrients that include glucose, amino acids,
monocarboxylic acids, hormones, ions, and vitamins [101].
Binding and transport of these nutrients are stereospecific,
bidirectional, and independent of endocytic trafficking.
Drug targeting using CMT requires either mimicking the
natural small molecule ligand or conjugation to the endog-
enous substrate of the carrier protein. This can be successful
for small molecule CNS drugs, such as gabapentin and

L-dopa, both of which are delivered primarily through the
cerebrovascular large neutral amino acid transporter
(LAT1) carrier system [102, 103]. However, neither ap-
proach is conducive to large molecule transport required
for brain uptake of antibody therapeutics.

Is Receptor-Mediated Transcytosis the Answer to Enhance
Antibody Uptake in Brain?

Of the three transport routes, perhaps the most widely stud-
ied and most promising approach for targeting antibody
therapeutics to the brain is RMT (Fig. 1b). The specificity
of this mechanism of drug delivery takes advantage of
endogenous receptors expressed on the luminal side of the
BBB that function to deliver macromolecule nutrients to the
brain. Large molecule nutrients, such as iron-bound trans-
ferrin, insulin, and leptin, are delivered into the brain via
vesicular trafficking of the ligand-receptor complex
[94–96]. This process involves binding of the ligand onto
the extracellular domain of the receptor, endocytosis into the
cytoplasm of the ligand-bound receptor, and release of the

ligand either inside the endosomal compartment or exocy-
tosis on the abluminal (brain) side of the capillary endothe-
lium into the interstitial space (Fig. 1b).

Transferrin Receptor

One of the most widely explored RMT systems for drug
delivery is the transferrin (Tf) /transferrin receptor (TfR)
pathway. Highly expressed on brain capillary endothelium,
TfR is a transmembrane homodimer of two 90-kDa glyco-
protein subunits that functions to mediate the delivery of
iron into the brain [94]. Linked by a disulfide bridge, each
TfR subunit can bind one iron-carrying Tf protein [104,
105]. Within the CNS, TfR is expressed at very high levels
on capillary endothelial cells, but is also expressed to a
lesser extent on neurons [94, 106–108].

TfR is a constitutively recycling receptor, and thus its
internalization into clathrin-coated pits is independent of Tf
binding [109]. Together with the fact that TfR recycling is
rapid and occurs within minutes [110], this suggests that
trafficking of TfRs from the plasma membrane into internal
compartments is a highly dynamic process. Many groups
have thus attempted to take advantage of this active trans-
port pathway by either targeting the Tf ligand or by engi-
neering antibodies to the receptor. Competition with high
concentrations of endogenous Tf may be a significant ob-
stacle for targeting the ligand itself, though a few groups
have been able to demonstrate some modest success with
this method [111, 112].

A much more promising approach for antibody delivery
to the CNS has been to target TfR. Proof-of-concept studies
using a mouse monoclonal antibody against the rat TfR,
OX-26, were among the first to show brain delivery of a
TfR antibody [113–115]. OX-26 binds to an extracellular
epitope of TfR that does not interfere with Tf binding, and
thus iron transport is unaffected. Conjugation of a therapeu-
tic cargo to TfR antibodies has also been explored, where
fusion with compounds such as brain-derived neurotrophic
factor or nerve growth factor correlated with indirect im-
provements in neuroprotection [116–118]. Because OX-26
recognizes only the rat TfR, murine cross-reactive 8D3 and
R17-217 are additional anti-TfRs that have been generated
and explored for their ability to delivery large molecules to
the brain [115, 119].

Although clearly pioneering in nature, several practical
caveats exist for these early studies as it relates to translat-
ability to a clinical setting. The first is that that nearly all use
either radiolabeled anti-TfR at trace doses or doses lower
than 2 mg/kg. Although successful therapeutic results could,
theoretically, be achieved with high-affinity binding to the
therapeutic target, the feasibility of such low doses of the
antibody–drug conjugates providing a sustained effect in
brain is unlikely translatable for CNS disease therapeutics
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in chronic dosing paradigms. Second, many of the studies
do not measure directly the pharmacokinetic or pharmaco-
dynamic effects of the anti-TfR conjugates in therapeutic
dosing paradigms, but, instead, use a more downstream
effect as the readout of target engagement, such as plaque
reduction for anti-Aβ [120]. This method restricts the in-
terpretations of the engineered anti-TfR drug’s effects, relying
on correlative, rather than causative proximal, endpoints, and
thus creates limitations on fine-tuning the therapeutic
antibody’s dose response. Third, it remains unclear from these
studies whether brain uptake of TfR antibody resulted in broad
distribution of antibody throughout the brain parenchyma.
Indeed, one of the major criticisms of using TfR as a RMT
target is that the majority of antibodies mentioned above
accumulate primarily in the brain capillary endothelium, in-
stead of distributing throughout the brain [121]. This is obvi-
ously less than ideal, as target engagement required to produce
a therapeutic response in the CNS would occur beyond the
brain vasculature.

What has caused the lack of broad brain distribution of
systemically administered anti-TfR in these studies? One
contributing factor is likely the low amount of antibody that
was systemically dosed in the majority of these studies.
Because TfR is expressed not only in the brain, but also in
many other tissues [122], target-mediated clearance of the
antibody in peripheral organs likely contributes to an even
more reduced amount of antibody available for brain deliv-
ery. Another major factor for the retention of antibodies in
the brain capillaries is that these antibodies are selected to
have high binding affinity for TfR. To directly test this latter
explanation for vascular accumulation of anti-TfR anti-
bodies, we recently described that systemic administration
of lower-affinity TfR antibodies results in improved brain
accumulation and distribution compared to higher-affinity
antibodies [123]. In fact, brain concentration of systemically
administered antibody in mice increased from 2-fold with a
high-affinity anti-TfR to almost 6-fold with a low-affinity
anti-TfR 24 hours postdose compared with control IgG.
This inverse relationship is observed when therapeutically
relevant doses of anti-TfR are given (high dose), in which
case the luminal TfRs are saturated by both low- and high-
affinity anti-TfR antibodies (Fig. 3). These quantitiave data
are consistent with the conclusion that lower affinity TfR
antibody would have a greater likelihood of dissociating
after binding, resulting in improved brain uptake and
broader brain distribution. Importantly, when different anti-
TfR affinity variants are administered at radiolabeled trace
doses (low dose), similar to what is done in most BBB
studies, the exact opposite relationship is observed; that is,
higher-affinity anti-TfRs showed higher brain “uptake” than
lower-affinity antibodies. However, it is important to note
that, as reported previously [113–115, 121], trace doses of
antibody are accumulating in brain endothelial cells [123],

thus what is measured as “uptake” is actually brain endo-
thelial accumulation of high-affinity anti-TfR antibodies.
This suggests that to appropriately test an antibody’s ability
to cross the BBB and achieve therapeutic concentrations in
the brain, the affinity of the RMT targeting antibody, such as
anti-TfR, should be in the lower range to maximize brain
uptake and distribution.

A direct CNS pharmacodynamic effect has generally
been lacking in the functional assessment of BBB-crossing
antibodies. To address this, we engineered a bispecific anti-
body that binds both TfR and BACE1 [123]. As discussed
earlier, function-blocking antibodies to BACE1 have been
shown to reduce Aβ levels in vivo by inhibiting APP cleav-
age [29, 54]. Unfortunately, in order to have a modest
reduction of Aβ in brain, very high and frequent dosing
was required. In the bispecific format, however, anti-
TfR/BACE1 significantly reduced both brain and peripheral
Aβ levels even after a single intravenous injection [123].
The improved brain distribution and accumulation of a
lower affinity anti-TfR arm, combined with the ability to
directly measure antibody activity via anti-BACE1 reduc-
tion of Aβ in both the periphery and brain, provides evi-
dence that targeting CNS diseases with antibodies in this
manner may be a promising approach. Although this TfR
antibody does not interfere with Tf binding and iron trans-
port, a more thorough analysis of the safety implications of
targeting TfR (or any endogenous transport system) will
need to be addressed. Furthermore, these studies were all
conducted in rodents, thus application to primates is still
unknown.

Insulin Receptor

Another widely studied receptor system for drug targeting
via RMT is the insulin receptor (InsR). Expressed on brain
endothelial cells, the InsR is a tyrosine kinase receptor
comprised of two alpha and two beta subunits. Binding of
insulin induces both kinase activation and endocytosis
[124]. Like TfR, antibodies to InsR have also been generat-
ed for large molecule delivery across the BBB. Among the
most studied is the mouse monoclonal 83–14 antibody
against the human InsR, where trace doses of radiolabeled
antibody showed an increase in brain uptake, but also a fast
clearance, suggesting that this antibody has high affinity for
InsR [125, 126]. Nevertheless, 83–14 has been character-
ized in vivo using a number of fusion proteins, including
Aβ40 for amyloid imaging [127], single-chain anti-Aβ [128,
129], tissue-specific gene targeting, and glial cell-derived
neurotrophic factor [130]. However, as with most TfR anti-
body studies in the past, these were performed using
subtherapeutic doses, where the high affinity 83–14 may
potentially be demonstrating a brain uptake largely restrict-
ed to brain endothelial cells.
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Other RMT Targets

In addition to TfR and InsR, several other endogenous transport
systems have been studied for their drug delivery potential to
the brain. The low-density lipoprotein receptor-related proteins
1 and 2 (Lrp1 and Lrp2) are two such targets. Lrp1 and Lrp2 are
transmembrane receptors belonging to the low-density lipopro-
tein receptor gene family. Among their many interacting ligands
are receptor-associated protein, apolipoprotein E, and
melanotransferrin/p97 [131–133]. Drug targeting using p97 is
perhaps the most studied of these ligands, where injections of
the p97-conjugated chemotherapeutics paclitaxel or adriamycin

were reported to result in increased brain uptake, with the latter
also improving survival in a rat model of intracranial glioma
[134]. More recently, Angiochem Inc. has developed a 19-
amino-acid peptide against Lrp1, called Angiopep-2, to which
paclitaxel was conjugated [135]. Administered systemically,
this conjugate was found to localize to gliomas in mice, and
its uptake was dependent on Lrp1 expression. Although these
data suggest that targeting Lrp1 as an RMT target may be
possible, to date there has yet to be successful attempts at
delivering antibody therapeutics using Lrp receptors. Effective
RMT delivery of antibodies across the BBB would most likely
require high expression of the target receptor (e.g., TfR) on

Fig. 3 Inverse relationship between an antibody’s affinity for a recep-
tor-mediated transport (RMT) target and its brain uptake. When ad-
ministered at low trace doses a high-affinity RMT antibody will bind
more receptors on the luminal side of the brain endothelium (top left
panel) than a low-affinity RMT antibody (bottom left panel), with
minimal dissociation of antibody on the abluminal side during and

after transport. At therapeutic doses (right panels, top and bottom),
binding to the RMT receptors on the luminal side is saturated and
occurs regardless of affinity. However, lower affinity antibodies will
have a great likelihood of dissociation from the receptor during its
transcytosis route, resulting in increased brain uptake and broad paren-
chymal distribution
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capillary endothelial cells for sufficient transport capacity.
However, both electron microscopy and immunohistochemical
evidence suggest that Lrp1 is expressed on neurons and
perciytes, but not brain endothelial cells [136, 137]. Thus,
Lrp1 is unlikely an ideal RMT candidate for CNS antibody
therapy.

Along with high transport capacity (i.e., expression), high
brain specificity is also an important criterion for an ideal
RMT transport system. In order to address this, subtractive
panning approaches have been explored to identify brain-
specific RMT candidates. One such approach involves utiliz-
ing a naïve camelid phage display library of single-domain
antibody (sdAb) to identify receptors enriched in human ce-
rebrovascular endothelial cells compared with lung endothe-
lial cells [138, 139]. sdAb consist of only the variable heavy
chain and lack both the light chain and the Fc domain of a full
antibody, and are thus much smaller in size (~15 kDa). Two
novel sdAbs, FC5 and FC44, were identified using subtractive
panning of the sdAb phage library that were both enriched in
human cerebrovascular endothelial cells and showed evidence
of brain accumulation after systemic injection in mice [138].
The receptor for FC5 was identified as Cdc50A (also known
as TMEM30), which is expressed on the luminal side of brain
endothelial cells and undergoes clathrin-dependent endocyto-
sis [140]. However, their small size results in a considerably
short plasma half-life (~10 min), and, thus, improving the
pharmacokinetic properties of these sdAbs will be critical for
their therapeutic utility.

The Future of CNS Antibody Drug Development

In this brief review we have highlighted some of the exciting
progress that has been made in developing antibody therapeu-
tics for neurodegenerative disease, with a focus on AD and
novel technologies that will further open the CNS to large-
molecule therapeutics. Regardless of the success of this first
generation of traditional antibodies targeting aggregating pro-
teins, such as Aβ, tau, and α-synuclein, the next generation of
engineered antibodies taking advantage of new technologies to
boost antibody uptake in brain, such as bispecific antibody
platforms, will provide further incentive to target molecules in
the CNS previously thought to be off-limits to antibodies.

Much work remains to engineer safe and effective
CNS antibody platforms. Essential to the success of
exploiting BBB transport routes for antibody therapeu-
tics will be validating the safety of targeting these
specific pathways. This is especially critical when the
transport protein target is expressed on peripheral tissues
in addition to brain endothelial cells (i.e., TfR and
InsR). One major consideration is to ensure that the
antibodies do not affect the normal function of these
receptors. For instance, the TfR antibodies utilized for

in vivo validation of the anti-TfR/BACE1 bispecific
does not compete with transferrin binding, and thus
are not expected to alter iron transport and normal
TfR function [123]. In the case of InsR a recent publi-
cation has shown severe safety observations in monkeys
that may be related to InsR [141]. In general, it will be
necessary to validate each new BBB target not only for
its brain uptake potential, but also for the safety liabil-
ities they may bring, including the need for extensive
testing in higher species. Nevertheless, the future for
antibody therapeutics for neurodegenerative diseases is
bright, including the pursuit of novel approaches to
access the brain with therapeutic antibodies.
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