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Abstract
Allergic diseases and asthma has long been hypothesized as the results of the dysregulation of
type2 immune responses to environmental allergens. Recent progresses in characterizing the
proinflammatory IL-17 cytokine family have added additional layer of complexity on the
regulation of allergic inflammation. The delineation of IL-17-producing CD4+ T cell subset
(Th17) has led to the revision of Th1/Th2 paradigm and impacts our perspectives on the basis of
chronic tissue inflammation. In addition, the distinctive expression patterns and biological
activities of individual IL-17 cytokine member may play different roles in the regulation of the
pathogenesis of allergic diseases. Understanding the cellular source and targeting cells of IL-17
cytokine family member will provide the basis to elucidate the cellular mechanism underlying
allergic inflammation and improve our therapeutic approaches for allergy.

Introduction
Allergic disorders, such as asthma and atopy, are caused by the dysregulated immune
responses. Research in the past decades has revealed that allergic diseases are often resulted
from an imbalance between the type 2 and type 1 branches of the immune system, which are
responsible for mediating humoral immune responses and delayed hypersensitivity reactions
(DTH), respectively. Breakthrough studies by Mosmann and Coffman led to the discovery
of two CD4+ T cell subsets, T helper type 1 (Th1), and Th2, characterized by their distinct
cytokine production profiles and effector functions. Th1 CD4+ T cells produce large amount
of IFN-γ and elicit DTH responses to clear intracellular pathogens, whereas Th2 CD4+ T
cells produce interleukin 4 (IL-4), IL-5, IL-13 to trigger allergic immune response and
eradicate parasitic infection. Thus, the concept of Th1/Th2 paradigm has provided the basis
to uncover the molecular and cellular mechanism of complex immune responses and led to
the hygiene hypothesis, suggesting that dominant Th2 reaction results in allergy. Recent
studies linking the discovery of IL-17 cytokine family and the analysis of IL-23 mediated
immune pathogenesis previously attributed to the Th1 subsets have led to the delineation of
a new effector CD4+ T cell subset that produce cytokine IL-17 (termed Th17). Severe
allergic diseases are often associated with chronic inflammation characterized by the
infiltration and accumulations of CD4+ T cells, neutrophils, eosinophils and mast cells.
While cytokine IL-17 was shown to play an important role on the inflammatory process, the
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role of IL-17 cytokine members and the IL-17-producing cells during allergic inflammation
is still largely unclear. In this review, we discuss recent reports regarding IL-17 cytokine
family and Th17 differentiation pathways and how the IL-17-driven inflammation regulates
allergic immune responses.

IL-17 cytokine family
Since the identification of IL-17A (originally named as CTLA-8) from activated T cell
clones [1–3], five additional family members were subsequently uncovered and designated
as IL-17A-F [4–6] (Table I). IL-17A, the prototypic family member, is a disulfide-linked
homodimeric glycoprotein that possesses characteristic cystein knot structure, similar to that
found in TGF-β, and nerve growth factor [7]. Among the IL-17 cytokine family, the
expression and functions of IL-17A, IL-17F and IL-17E (IL-25) are better characterized.
IL-17F share the greatest similarity with IL-17A (55% identity), whereas IL17E (IL-25) are
the most distant (17%) [8]. Unlike other IL-17 cytokine family members located in different
chromosomes, Il17a and Il17f are syntenic on mouse chromosome 1 and human
chromosome 6, suggesting that the regulatory regions may exist within the IL-17A/F locus
to control their expression. Indeed, the promoters and conserved noncoding sequence
regions of IL-17A and IL-17F genes undergo coordinated chromatin modifications, similar
to those identified in the locus of Th2 cytokine genes [9]. Both IL-17A and IL-17F were
found to be produced by activated memory T cells, but other members of IL-17 cytokine
family are expressed by broad range of tissues.

Studies of IL17 receptor family (IL-17RA-E) revealed additional complexities of the
regulations and biological functions of IL17 cytokine family (Table I). IL-17RA, the
cognate receptor for IL-17A, is ubiquitously expressed [10]. However, the biological
activity of IL-17 or IL-17F is dependent on the heterodimeric complex composed of
IL-17RA and IL17RC [11]. IL-17RB serves as receptor for both IL-17B and IL-17E with
higher binding avidity to IL-17E [12]. Most of IL17 receptor family members exhibit broad
tissue expression and often exist as alternatively spliced isoforms with no transmembrane or
cytoplasmic domains, thereby acting as soluble decoy receptors. The diverse expression
patterns and regulations of IL-17 cytokine family and their cognate receptors suggest that
this newly identified cytokine family may possess unique immunological functions and play
important roles in the maintenance of homeostasis and the progression of immune disease.

Th17 cells
The delineation of the newly defined Th17 subset has changed the perspectives of
immunologist and led to the revision of Th1/Th2 paradigm [13]. The attempt to characterize
the IL-17-producing T cells isolated from rheumatoid synovium or induced by microbial
lipopeptides has first led to the hypothesis that IL-17A may define a new subset of Th cells
functioning on local inflammatory reaction [14;15]. Studies using IL-17-deficient mice or by
neutralizing IL-17A activity demonstrated that IL-17-producing cells, not Th1 cells mediate
inflammatory pathology in autoimmune models [16–18]. The finding that IL-23 (p19−/−),
but not IL-12 (p35−/−) mice resistant to the development of joint autoimmune inflammation
were due to the lack of IL-17-producing, not Th1 T cells provide the basis for the discovery
of Th17 cell lineage [19–22]. Th17 cells are now defined by their production of IL-17A,
IL-17F, IL-22, and to a lesser extent, tumor necrosis factor (TNF) and IL-6 [23]. The
identification of RORγt as the master transcription factor for controlling Th17
differentiation has further support the notion that IL-17-producing cells represent the
additional T helper cell lineage [24]. The requirement of cytokine milieu to induce Th17 cell
differentiation between humans and mice has been controversial. Recent studies suggest that
TGF-β is essential for the induction of RORγt expression in both humans and mice, the
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addition of IL-6 plus IL-23 or IL-21 in mice, or IL-6 plus IL-1β or IL-21 in humans triggers
the production of IL-17A in vitro [25–29]. Interestingly, the additional complexity of the
regulation of Th17 cells exits. The combination of IL-23 with TGF-β and IL-6 was found to
be important for the maintenance of inflammatory Th17 cells in vivo by downregulating
IL-10 production [30], whereas the addition of IL-27 with TGF-β and IL-6 lead to the
suppression of Th17-mediated inflammation by the upregulation of IL-10 and IFN-γ
production [31]. The identification of Th17 subset and the analyses of their functions have
led to the resolution of some inconsistencies found in the Th1/Th2 paradigim. Th17 cells
represent the third branch of CD4+ Th subset and functions in the induction of tissue
inflammation and host protection against extracellular pathogens. Understanding the
cytokine milieu that regulates Th17 differentiation and effector function during allergic
inflammation may be the key to control the pathogenesis of allergic diseases.

IL-17A potentiates allergic inflammation by regulating innate immunity
In asthmatic patients, IL-17A expression was increased in the lungs, sputum,
bronchoalveolar lavage (BAL) fluids or sera, and the severity of airway hypersensitivity in
patients correlates with the level of IL-17A expression, suggesting that IL-17 cytokines play
important role on driving allergic inflammation [32]. Indeed, IL-17A and/or IL-17F can
orchestrate local inflammation by inducing the release of proinflammatory cytokines such as
TNF-α, IL-1β, G-CSF, and IL-6, as well as chemokines CXCL1/Gro-α, CXCL2, and
CXCL8/IL-8 production by human bronchial fibroblast, epithelial, and airway smooth
muscle cells, as well as venous endothelial cells in vitro [33]. Furthermore, IL-17A can act
in synergy with IL-6 to induce mucus proteins (MUC)5B and MUC5AC [34], or with IL-1β
and TNF-α to enhance vascular endothelial growth factor expression [35]. In addition to
stimulating airway structural cells, IL-17A, and IL-17F can also trigger innate effector
eosinophils to release chemokine CXCL1/Gro-α, CXCL8/IL-8, and CCL4/MIP-1β. The
combination of IL-17F and IL-23 can further stimulate the production of proinflammatory
cytokines IL-1β and TNF-α by eosinophils [36]. The importance of IL-17A effect on
driving lung inflammation has been further substantiated by the findings in animal studies.
Overexpression of IL-17A or the administration of recombinant IL-17A in the lung results in
the influx and accumulation of neutrophils associated with elevated level of CXCL1/Gro-α,
CXCL8/IL-8, granulocyte colony-stimulating factor (G-CSF), and enhanced granulopoiesis
[37;38]. Mice deficient in IL-17RA or IL-17A have marked diminished recruitment of
neutrophils into the lung in response to a challenge with gram-negative pathogen or allergen
[16]. Together, these studies demonstrate that IL-17A can trigger lung inflammation by
stimulating innate immunity to mediate neutrophil recruitments, implicating the potential
role of IL-17A on the pathogenesis of severe asthma mediated by neutrophilia.

Atopic asthma features the infiltration and accumulation of Th2 effector/memory cells,
eosinphils, and mast cells, and increased IgE productions. The role of IL-17A on Th2-driven
allergic immune response has been complicated. In the studies using IL-17A−/− or IL-17RA
−/− mice, IL-17A was found to contribute to the induction of allergen-specific Th2 cell
activation, eosinophil accumulation, and serum IgE production [16;39]. On the contrary, the
administration of neutralizing anti-IL17A mAb in ovalbumin (OVA)-challenged murine
asthma model in the late effector phase induced the elevated eosinophil recruitment and IL-5
productions in BAL, suggesting a regulatory role of IL-17A on the established Th2-driven
allergic immune response [39]. These studies demonstrate the effect of IL-17A on the onset
of lung inflammation, which facilitates the Th2-driven pathogenesis of allergic asthma.
Since no evidence showed the direct effect of IL-17A on Th2 cells, the observation that
endogenous IL-17A can dampen Th2-driven eosinophil recruitment and IL-5 production in
the late phase of allergic immune responses remain further investigation.
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IL-25 enhances allergic inflammation by regulating adaptive immunity
Distinct from other IL-17 cytokine family members, IL-25 (IL-17E) was first described as a
TH2 cell-derived cytokine [40]. However, expression of IL-25 transcript was later found in
mast cells activated by IgE cross-linking [41], alveolar macrophage and lung epithelial cells
stimulated with allergens in mice [42]. In humans, bioactive IL-25 protein was found to be
secreted by activated eosinophils and basophils [43]. Interestingly, these cells obtained from
allergic patients produce more prominent amount of IL-25 after activation. These studies
suggest that the primary cellular sources of IL-25 may exit in the branch of innate immunity.

In addition to low sequence homology and unique expression pattern, IL-25 also possess
unique functions on evoking type 2 immune responses in animal studies [40;44;45].
Systemic administration of IL-25 protein [40;45] or overexpression of IL-25 [44;46] induces
elevated TH2 cytokine and eotaxin production, which results in eosinophilia, increased
serum IgE, mucus hyperplasia, and other pathological changes in many tissues. Moreover,
administration of a neutralizing antibody against IL-25 in an experimental model of allergic
asthma resulted in significantly reduced levels of IL-5, IL13 production, serum IgE
production, the infiltration of Th2 cells and eosinophils, and prevented airway
hyperresponsiveness [47]. These in vivo studies imply that IL-25 may play a pivotal role in
the development of Th2-mediated allergic inflammation.

The function of IL-25 on type2 immunity, which play protective role in defense against
parasitic infection was further elucidated by recent studies in animal models using helminth
infection. In the absence of IL-25, mice infected with Trichuris muris, the gastrointestinal
parasite, failed to develop a lymphocyte dependent protective type2 immunity to expel
chronic parasitic infection [48]. In the other study, IL-25 was found to trigger the non-B/
non-T, c-kit+ cells for the rapid clearance of N. brasiliensis acute infection [49]. Using
allergen-induced allergic animal models, one study showed that administration of
recombinant IL-25 proteins can induce acute lung inflammation mediated by the
unidentified IL-5-producing non-B/non-T cells [45], whereas the other demonstrated that
enforced expression of IL-25 in lung resulted in the amplification of allergic inflammation
driven by CD4+T cells and STAT6 signaling pathway [50]. These findings suggest that
depending on experimental models, IL-25 can enhance type2 immune responses by
regulating CD4+ T cells or non-B/non-T, c-kit+ cells.

The finding that IL-25 receptor (IL-25R or IL-17BR) is highly expressed on CD4+ Th2
memory cells in humans has provided direct evidence that IL-25 can function directly on
CD4+ T cells to mediate enhanced type2 immune response [43;51]. Indeed, IL-25
costimulates the proliferation of the TH2 memory cells, and enhances their TH2 polarization
and cytokine productions, in particular IL-5, by upregulating the gene expression of the
transcription factors, GATA-3, c-MAF, and junB in an IL-4 independent manner [43]. In a
parallel study in mouse, IL-25 treatment during T cell differentiation can enhance Th2
cytokine production, and inhibit IFN-γ production, indicative of the Th2 polarizing function
[42]. Together, these results suggest that IL-25 may amplify allergic immune response by
inducing Th2 differentiation and the local expansion and augmented effector functions of
Th2 memory/effector cells. On the contrary to the T cell derived proinflammatory cytokine,
IL-17A/F, which regulates the innate effectors or structural cells during the onset of allergic
inflammation, IL-25 (IL-17E) produced by innate effectors, such as eosinophils, and
basophils may exert a critical role in maintaining the functional capacity and homeostatic
maintenance of IL-25R-expressing allergen-specific Th2 memory cells, thus propagating a
positive feed back loop between innate effectors and adaptive immunity leading to the
amplification of allergic inflammation. (Fig.1)
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Conclusion
Tissue inflammation is often one of the characteristic features of allergic diseases. Studies of
IL-17 cytokine family and Th17 cells have advanced our understanding of cellular
mechanisms underlying allergic inflammation. Th17 cells can mediate tissue inflammation
by the induction of chemokines and proinflammatory cytokines in the structural cells,
thereby supporting neutrophil recruitment and survival. However, the introduction of this
third branch of adaptive immunity also raises new questions as to how Th17 cells and Th2
cells cooperate in the pathogenesis of allergic diseases, such as asthma. Severe asthma
caused by neutrophilia can be further classified into the eosinophilic or noneosinophilic
asthmatics, suggesting that the heterogeneity in the pathology of asthma may be the results
of the interplay between these two T cell subsets. Moreover, recent studies support a
hypothesis that a reciprocal relationship between regulatory T cells and Th17 differentiation
pathway may exist [27], adding further complexity to the immune regulation during allergic
inflammation. Thus, the approaches to design curative therapy for chronic allergic diseases
in a phase-specific manner may require not only the understanding of the factors that drive
the various T helper subsets, but also their temporal sequence and potential interaction in the
induction of immunopathology.
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Fig. 1.
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Table I

IL-17 cytokine family and functional effects on allergy

Ligands Receptors Functions References

IL-17A IL-17RA IL-6, IL-8, IL-11, Gro-α, G-CSF and GM-CSF ↑ [38]

IL-17F IL-17RA/C MUC5AC and MUC5B ↑ [34]

Airway hyper-reactivity ↑ [16]

Neutrophilia ↑ [33]

Severity of asthma ↑ [16]

IL-17E IL-17RB IL-4, IL-5, IL-13, IgE, and eotaxin ↑ [40,42,43,44,45,46,50]

Mucus secretion ↑ [44,45]

Airway hyper-reactivity ↑ [40,47,50]

Eosinophilia ↑ [40,42,44,50]

Severity of asthma ↑ [40,44,47,50]
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